The Administration of Inactivated and Stabilized Whole-Cells of Saccharomyces cerevisiae to Gestating Sows Improves Lactation Efficiency and Post-Weaning Antimicrobial Use
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
dosage (mg/kg/d) × n animals × expected weight at treatment (kg)
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meat and Livestock Commission. Pig Yearbook 2006; Meat and Livestock Commission Economics Livestock and Marketing Services: London, UK, 2006.
- Kim, S.W.; Easter, R.A. Amino acid utilization for reproduction in sows. In Amino Acids in Animal Nutrition; D’Mello, J.P.F., Ed.; CABI: Wallingford, UK, 2003; pp. 203–222. [Google Scholar]
- Sulabo, R.C.; Jacela, J.Y.; Tokach, M.D.; Dritz, S.S.; Goodband, R.D.; DeRouchey, J.M.; Nelssen, J.L. Effects of lactation feed intake and creep feeding on sow and piglet performance. J. Anim. Sci. 2010, 88, 3145–3153. [Google Scholar] [CrossRef] [PubMed]
- Braat, H.; van den Brande, J.; van Tol, E.; Hommes, D.; Peppelenbosch, M.; van Deventer, S. Lactobacillus rhamnosus induces peripheral hyporesponsiveness in stimulated CD4+ T cells via modulation of dendritic cell function. Am. J. Clin. Nutr. 2004, 80, 1618–1625. [Google Scholar] [CrossRef] [PubMed]
- Van der Peet-Schwering, C.M.C.; Jansman, A.J.M.; Smidt, H.; Yoon, I. Effects of yeast culture on performance, gut integrity, and blood cell composition of weanling pigs. J. Anim. Sci. 2007, 85, 3099–3109. [Google Scholar] [CrossRef] [PubMed]
- Schierack, P.; Filter, M.; Scharek, L.; Toelke, C.; Taras, D.; Tedin, K.; Haverson, K.; Lübke- Becker, A.; Wieler, L.H. Effects of Bacillus cereus var. toyoi on immune parameters of pregnant sows. Vet. Immunol. Immunopathol. 2009, 127, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Cole, N.A.; Purdy, C.W.; Hutcheson, D.P. Influence of yeast culture on feeder calves and lambs. J. Anim. Sci. 1992, 70, 1682–1690. [Google Scholar] [CrossRef]
- McCoy, G.C.; Drackley, J.K.; Hutjens, M.F.; Garrett, J.E. Effect of yeast culture (Saccharomyces cerevisiae) on prepartum intake and postpartum intake and milk production of Jersey cows. J. Dairy Sci. 1997, 80 (Suppl. 1), 662. [Google Scholar]
- Sanchez, W.K.; Poppy, G.D.; Guy, M.A.; Garrett, J.E. Influence of yeast on lactational performance and blood mineral concentrations of high producing dairy cows on a commercial dairy. J. Dairy Sci. 1997, 80 (Suppl. 1), 210. [Google Scholar]
- Robinson, P.H.; Garrett, J.E. Effect of yeast culture (Saccharomyces cerevisiae) on adaptation of cows to postpartum diets and on lactational performance. J. Anim. Sci. 1999, 77, 988–999. [Google Scholar] [CrossRef]
- Kornegay, E.T.; Rhein-Welker, D.; Lindemann, M.D.; Wood, C.M. Performance and nutrient digestibility in weaning pigs as influenced by yeast culture additions to starter diets containing dried whey or one of two fiber sources. J. Anim. Sci. 1995, 73, 1381–1389. [Google Scholar] [CrossRef]
- Kim, S.W.; Brandherm, M.; Freeland, M.; Newton, B.; Cook, D.; Yoon, I. Effects of yeast culture supplementation to gestation and lactation diets on growth of nursing piglets. Asian-Aust. J. Anim. Sci. 2008, 21, 1011–1014. [Google Scholar] [CrossRef]
- Kim, S.W.; Brandherm, M.; Newton, B.; Cook, D.R.; Yoon, I.; Fitzner, G. Effect of supplementing Saccharomyces cerevisiae fermentation product in sow diets on reproductive performance in a commercial environment. Can. J. Anim. Sci. 2010, 90, 229–232. [Google Scholar] [CrossRef]
- Ali, S.; Lee, E.-B.; Hsu, W.H.; Suk, K.; Sayem, S.A.J.; Ullah, H.M.A.; Lee, S.-J.; Park, S.-C. Probiotics and postbiotics as an alternative to antibiotics: An emphasis on pigs. Pathogens 2023, 12, 874. [Google Scholar] [CrossRef]
- del Valle, J.C.; Bonadero, M.C.; Gimenez, A.V.F. Saccharomyces cerevisiae as probiotic, prebiotic, synbiotic, postbiotics and parabiotics in aquaculture: An overview. Aquaculture 2023, 569, 739342. [Google Scholar] [CrossRef]
- Shen, Y.B.; Carroll, J.A.; Yoon, I.; Mateo, R.D.; Kim, S.W. Effects of supplementing Saccharomyces cerevisiae fermentation product in sow diets on performance of sows and nursing piglets. J. Anim. Sci. 2011, 89, 2462–2471. [Google Scholar] [CrossRef] [PubMed]
- Chaney, W.E.; Naqvi, S.A.; Gutierrez, M.; Gernat, A.; Johnson, T.J.; Petry, D. Dietary inclusion of a Saccharomyces cerevisiae-derived postbiotic is associated with lower salmonella enterica burden in broiler chickens on a commercial farm in Honduras. Microorganisms 2022, 10, 544. [Google Scholar] [CrossRef] [PubMed]
- Gingerich, E.; Frana, T.; Logue, C.M.; Smith, D.P.; Pavlidis, H.O.; Chaney, W.E. Effect of feeding a postbiotic derived from Saccharomyces Cerevisiae fermentation as a preharvest food safety hurdle for reducing Salmonella Enteritidis in the ceca of layer pullets. J. Food Prot. 2021, 84, 275–280. [Google Scholar] [CrossRef]
- Lucassen, A.; Finkler-Schade, C.; Schuberth, H.J. A Saccharomyces cerevisiae fermentation product (Olimond BB) alters the early response after influenza vaccination in racehorses. Animals 2021, 11, 2726. [Google Scholar] [CrossRef]
- Varney, J.L.; Coon, C.N.; Norton, S.A. PSV-B-20 Effects of Saccharomyces cerevisiae fermentation product (SCFP) postbiotic in Labrador retrievers during exercise and transport stress. J. Anim. Sci. 2021, 99 (Suppl. 3), 332–333. [Google Scholar] [CrossRef]
- Bergsma, R.; Kanis, E.; Verstegen, M.W.A.; van der Peet–Schwering, C.M.C.; Knol, E.F. Lactation efficiency as a result of body composition dynamics and feed intake in sows. Livest. Sci. 2009, 125, 208–222. [Google Scholar] [CrossRef]
- Hasan, S.M.K.; Junnikkala, S.; Valros, A.; Peltoniemi, O.; Oliviero, C. Validation of Brix refractometer to estimate colostrum immunoglobulin G content and composition in the sow. Animal 2016, 10, 1728–1733. [Google Scholar] [CrossRef]
- Quigley, J.D.; Lago, A.; Chapman, C.; Erickson, P.; Polo, J. Evaluation of the Brix refractometer to estimate immunoglobulin G concentration in bovine colostrum. J. Dairy Sci. 2013, 96, 1148–1155. [Google Scholar] [CrossRef] [PubMed]
- EMA. Principles on Assignment of Defined Daily Dose for animals (DDDvet) and Defined Course Dose for Animals (DCDvet). Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/principles-assignment-defined-daily-dose-animals-dddvet-defined-course-dose-animals-dcdvet_en.pdf (accessed on 26 July 2023).
- Price, K.L.; Totty, H.R.; Lee, H.B.; Utt, M.D.; Fitzner, G.E.; Yoon, I.; Ponder, M.A.; Escobar, J. Use of Saccharomyces cerevisiae fermentation product on growth performance and microbiota of weaned pigs during Salmonella infection. J. Anim. Sci. 2010, 88, 3896–3908. [Google Scholar] [CrossRef]
- van Heugten, E.; Funderburke, D.W.; Dorton, K.L. Growth performance, nutrient digestibility, and fecal microflora in weaning pigs fed live yeast. J. Anim. Sci. 2003, 81, 1004–1012. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.B.; Piao, X.S.; Kim, S.W.; Wang, L.; Liu, P.; Yoon, I.; Zhen, Y.G. Effects of yeast culture supplementation on growth performance, intestinal health, and immune response of nursery pigs. J. Anim. Sci. 2009, 87, 2614–2624. [Google Scholar] [CrossRef]
- Perricone, V.; Sandrini, S.; Irshad, N.; Savoini, G.; Comi, M.; Agazzi, A. Yeast-derived products: The role of hydrolyzed yeast and yeast culture in poultry nutrition—A review. Animals 2022, 12, 1426. [Google Scholar] [CrossRef] [PubMed]
- Veum, T.L.; Bowman, G.L. Saccharomyces cervisiae yeast culture in diets for mechanically-fed neonatal pigs and early growing self-fed pigs. J. Anim. Sci. 1973, 37 (Suppl. 1), 67. [Google Scholar] [CrossRef]
- Xia, T.; Yin, C.; Comi, M.; Agazzi, A.; Perricone, V.; Li, X.; Jiang, X. Live yeast supplementation in gestating and lactating primiparous sows improves immune response in dams and their progeny. Animals 2022, 12, 1315. [Google Scholar] [CrossRef]
- Daudelin, J.-F.; Lessard, M.; Beaudoin, F.; Nadeau, E.; Bissonnette, N.; Boutin, Y.; Brousseau, J.-P.; Lauzon, K.; Fairbrother, J.M. Administration of probiotics influences F4 (K88)-positive enterotoxigenic Escherichia coli attachment and intestinal cytokine expression in weaned pigs. Vet. Res. 2011, 42, 69. [Google Scholar] [CrossRef]
- Kiarie, E.; Bhandari, S.; Scott, M.; Krause, D.O.; Nyachoti, C.M. Growth performance and gastrointestinal microbial ecology responses of piglets receiving Saccharomyces cerevisiae fermentation products after an oral challenge with Escherichia coli (K88). J. Anim. Sci. 2011, 89, 1062–1078. [Google Scholar] [CrossRef]
- Lessard, M.; Dupuis, M.; Gagnon, N.; Nadeau, E.; Matte, J.J.; Goulet, J.; Fairbrother, J.M. Administration of Pediococcus acidilactici or Saccharomyces cerevisiae boulardii modulates development of porcine mucosal immunity and reduces intestinal bacterial translocation after Escherichia coli challenge. J. Anim. Sci. 2009, 87, 922–934. [Google Scholar] [CrossRef]
- Kaiserlian, D.; Cerf-Bensussan, N.; Hosmalin, A. The mucosal immune system: From control of inflammation to protection against infections. J. Leukoc. Biol. 2005, 78, 311–318. [Google Scholar] [CrossRef]
- Betancur, C.; Martínez, Y.; Tellez-Isaias, G.; Castillo, R.; Ding, X. Effect of oral administration with lactobacillus plantarum CAM6 strain on sows during gestation-lactation and the derived impact on their progeny performance. Mediat. Inflamm. 2021, 2021, 6615960. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ma, H.; Yu, H.; Qin, G.; Tan, Z.; Wang, Y.; Pang, H. Screening of Lactobacillus plantarum subsp. plantarum with potential probiotic activities for inhibiting ETEC K88 in weaned piglets. Molecules 2020, 25, 4481. [Google Scholar] [CrossRef]
- Hu, J.; Ma, L.; Nie, Y.; Chen, J.; Zheng, W.; Wang, X.; Xie, C.; Zheng, Z.; Wang, Z.; Yang, T. A microbiota-derived bacteriocin targets the host to confer diarrhea resistance in early-weaned piglets. Cell Host Microbe 2018, 24, 817–832. [Google Scholar] [CrossRef] [PubMed]
- Farmer, C.; Quesnel, H. Nutritional, hormonal, and environmental effects on colostrum in sows. J. Anim. Sci. 2009, 87, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Quesnel, H. Colostrum production by sows: Variability of colostrum yield and immunoglobulin G concentrations. Animal 2011, 5, 1546–1553. [Google Scholar] [CrossRef]
- Baxter, E.M.; Schmitt, O.; Pedersen, L.J. Managing the litter from hyperprolific sows. In The Suckling and Weaned Piglet; Wageningen Academic Publishers: Wageningen, The Netherlands, 2020; pp. 347–356. [Google Scholar]
- Glencorse, D.; Plush, K.; Hazel, S.; D’Souza, D.; Hebart, M. Impact of non-confinement accommodation on farrowing performance: A systematic review and meta-analysis of farrowing crates versus pens. Animals 2019, 9, 957. [Google Scholar] [CrossRef] [PubMed]
- Baxter, E.M.; Moustsen, V.A.; Goumon, S.; Illmann, G.; Edwards, S.A. Transitioning from crates to free farrowing: A roadmap to navigate key decisions. Front. Vet. Sci. 2022, 9, 998192. [Google Scholar] [CrossRef]
- Rutherford, K.M.D.; Baxter, E.M.; D’Eath, R.B.; Turner, S.P.; Arnott, G.; Roehe, R.; Ask, B.; Sandøe, P.; Moustsen, V.A.; Thorup, F.; et al. The welfare implications of large litter size in the domestic pig I: Biological factors. Anim. Welf. 2013, 22, 199–218. [Google Scholar] [CrossRef]
- Noblet, J.; Etienne, M.; Dourmad, J.Y. Energetic efficiency of milk production. In The Lactating Sow; Verstegen, M.W.A., Moughan, P.J., Schrama, J.W., Eds.; Wageningen Pers: Wageningen, The Netherlands, 1998; pp. 113–130. [Google Scholar]
- Eissen, J.J. Breeding for Feed Intake Capacity in Pigs. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2000; pp. 105–122. [Google Scholar]
- Whittemore, C.T.; Morgan, C.A. Model components for the determination of energy and protein requirements for breeding sows: A review. Livest. Prod. Sci. 1990, 26, 1–37. [Google Scholar] [CrossRef]
- Clowes, E.J.; Aherne, F.X.; Foxcroft, G.R.; Baracos, V.E. Selective protein loss in lactating sows is associated with reduced litter growth and ovarian function. J. Anim. Sci. 2003, 81, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Den Ouden, M.; Nijsing, J.T.; Dijkhuizen, A.A.; Huirne, R.B.M. Economic optimization of pork production-marketing chains: I. Model input on animal welfare and costs. Livest. Prod. Sci. 1997, 48, 23–37. [Google Scholar] [CrossRef]
- Zassenhaus, M. The Lost History of the Naming of Cellular Agriculture. Available online: https://new-harvest.org/lost-history-naming-cellular-agriculture (accessed on 26 July 2023).
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Cameron, D.; Osborne, C.; Horton, P.; Sinclair, M. A Sustainable Model for Intensive Agriculture. Grantham Centre for Sustainable Futures, The University of Sheffield. Available online: https://grantham.sheffield.ac.uk/wp-content/uploads/A-sustainable-model-for-intensive-agriculture-Grantham-Centre-briefing-note-December-2015.pdf (accessed on 26 July 2023).
- Ritala, A.; Hakkinen, S.T.; Toivari, M.; Wiebe, M.G. Single cell protein— state-of-the-art, industrial landscape and patents 2001–2016. Front. Microbiol. 2017, 8, 2009. [Google Scholar] [CrossRef] [PubMed]
- Nyyssölä, A.; Suhonen, A.; Ritala, A.; Oksman-Caldentey, K.M. The role of single cell protein in cellular agriculture. Curr. Opin. Biotechnol. 2022, 75, 102686. [Google Scholar] [CrossRef] [PubMed]
Item | Gestation 1 (0 to 90 Days) | Gestation 2 (90 to 113 Days) | Lactation |
---|---|---|---|
Ingredients | |||
Barley | 34.0 | 29.4 | 23.7 |
Corn | 20.0 | 17.5 | 25.9 |
Soft wheat bran | 14.0 | 14.3 | 20.0 |
Wheat middling | 10.0 | 7.0 | 8.0 |
Beet pulp | 7.0 | 15.0 | 3.0 |
Soybean meal, 48% CP | 6.5 | 7.8 | 12.8 |
Soft wheat | 5.0 | 6.0 | 0.33 |
Calcium carbonate | 1.2 | 0.5 | 1.0 |
Soybean oil | 1.2 | 1.1 | 2.3 |
Fish meal | - | - | 2.0 |
Vitamin and mineral premix * | 0.4 | 0.9 | 0.52 |
Mono-dicalcium phosphate | 0.35 | - | 0.37 |
Sodium chloride | 0.3 | 0.5 | - |
D1-Methionine, 98% | 0.08 | 0.09 | 0.04 |
L-Tryptophan, 98% | 0.04 | 0.04 | 0.01 |
Total | 100 | 100 | 100 |
Nutrient levels | |||
Dry matter | 87.2 | 87.4 | 87.6 |
Crude protein | 13.4 | 13.6 | 16.1 |
Crude fat | 3.4 | 3.3 | 4.6 |
Fiber | 5.7 | 7.0 | 3.7 |
Metabolizable energy, kcal/kg | 2996.7 | 2999.2 | 3241.9 |
Valine | 0.74 | 0.76 | 0.89 |
Lysine | 0.57 | 0.63 | 0.77 |
Methionine + cysteine | 0.52 | 0.53 | 0.57 |
Threonine | 0.47 | 0.49 | 0.59 |
Tryptophan | 0.20 | 0.20 | 0.20 |
Item | Weaning 1 (6 to 12 kg of BW) | Weaning 2 (12 to 23 kg of BW) | Weaning 3 (23 to 30 kg of BW) |
---|---|---|---|
Administered in weaning site 1 | Yes | Yes | Yes |
Administered in weaning site 2 | Yes | No | No |
Ingredients | |||
Wheat, 11% CP | 25.0 | 18.0 | 13.0 |
Soft wheat bran | - | - | 11.6 |
Barley, 11% CP | 20.0 | 22.9 | 15.7 |
Milkiwean®® mix 1 | 15.0 | 7.5 | - |
Bakery meal | 7.25 | 10.0 | - |
Wheat bran, 15% CP | 5.0 | 6.0 | - |
Whey, 20% added fat | 5.0 | 2.5 | - |
Corn, 8% PG | 5.0 | 12.0 | 37.0 |
Soybean meal, 44% CP | 5.0 | 10.5 | - |
Soybean meal, 48% CP | - | - | 15.4 |
Milkiwean Vital®® 1 | 5.0 | 5.0 | - |
Soybean oil | 3.0 | 2.0 | 1.6 |
Pea, 22% CP | - | - | 2.0 |
Fish meal | 2.5 | 2.5 | - |
Plasma proteins | 1.5 | - | - |
Benzoic acid | 0.5 | 0.3 | - |
Selacid®® 1 | 0.25 | 0.15 | 0.3 |
Calcium carbonate | - | 0.5 | 1.4 |
Mono-dicalcium phosphate | - | - | 0.7 |
Sodium chloride | - | - | 0.5 |
Vitamin and mineral premix | - | - | 0.7 |
Total | 100 | 100 | 100 |
Nutrient levels | |||
Dry matter | 90.2 | 89.5 | 87.5 |
Crude protein | 17.3 | 17.2 | 16.4 |
Crude fat | 7.2 | 6.0 | 4.0 |
Fiber | 3.3 | 3.7 | 3.2 |
Metabolizable energy, kcal/kg | 3392.0 | 3312.0 | 3201.4 |
Lysine | 1.2 | 1.3 | 1.0 |
Threonine | 0.90 | 0.86 | 0.70 |
Methionine + cysteine | 0.86 | 0.83 | 0.65 |
Tryptophan | 0.27 | 0.25 | 0.20 |
Parameter | Treated Group (n = 90 Sows; 1373 Piglets) | Control Group (n = 93 Sows; 1443 Piglets) | p-Value | ||
---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | ||
Live born piglets/sow (n) | 15.3 | 1.4 | 15.5 | 1.3 | 0.208 |
Litter weight at birth (kg) | 21.0 | 4.5 | 20.2 | 4.8 | 0.210 |
Average piglet’s birth weight (kg) | 1.39 | 0.32 | 1.32 | 0.36 | 0.089 |
Weaned piglets/sow (n) | 11.4 | 2.5 | 11.0 | 2.3 | 0.429 |
Litter weight at weaning (kg) | 74.9 | 20.5 | 71.9 | 19.5 | 0.398 |
Average piglet’s weight at weaning (kg) | 6.63 | 1.29 | 6.61 | 1.50 | 0.987 |
Litter’s fecal score (check 1, day 3) | 1.35 | 0.56 | 1.27 | 0.49 | 0.511 |
Litter’s fecal score (check 2, day 10) | 1.10 | 0.42 | 1.02 | 0.15 | 0.389 |
Litter’s fecal score (check 3, day 23) | 1.06 | 0.43 | 1.09 | 0.46 | 0.258 |
Piglet’s average weight gain (kg) | 5.24 | 1.24 | 5.29 | 1.46 | 0.746 |
Litter’s average weight gain (kg) | 53.9 | 20.0 | 51.7 | 20.0 | 0.529 |
Brix * (%) | 20.28 | 5.77 | 20.91 | 4.93 | 0.510 |
Lactation efficiency (%) | 41.3 | 11.4 | 35.4 | 11.6 | 0.011 |
Piglets’ mortality (%) | 25.1 | 16.7 | 28.8 | 14.4 | 0.048 |
Piglets’ antibiotic consumption (DDDvet/PCU) | 3.32 | 1.78 | 3.29 | 1.95 | 0.487 |
Parameter | Treated Group (n = 90 Sows; 1584 Piglets) | Control Group (n = 93 Sows; 1702 Piglets) | p-Value | ||
---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | ||
Live born piglets/sow (n) | 17.6 | 3.9 | 18.3 | 3.8 | 0.232 |
Total born piglets/sow (n) | 18.5 | 4.1 | 19.5 | 4.0 | 0.210 |
Stillborn piglets/sow (%) | 6.2 | 10.7 | 8.3 | 12.2 | 0.108 |
Mummified piglets/sow (n) | 2.9 | 6.0 | 3.6 | 10.9 | 0.911 |
Piglets’ mortality (%) | 24.2 | 19.5 | 24.9 | 16.9 | 0.362 |
Weaned piglets (n) | 11.1 | 2.9 | 10.8 | 3.0 | 0.355 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scollo, A.; Borello, I.; Ghilardi, M.; Cavagnini, A. The Administration of Inactivated and Stabilized Whole-Cells of Saccharomyces cerevisiae to Gestating Sows Improves Lactation Efficiency and Post-Weaning Antimicrobial Use. Vet. Sci. 2023, 10, 576. https://doi.org/10.3390/vetsci10090576
Scollo A, Borello I, Ghilardi M, Cavagnini A. The Administration of Inactivated and Stabilized Whole-Cells of Saccharomyces cerevisiae to Gestating Sows Improves Lactation Efficiency and Post-Weaning Antimicrobial Use. Veterinary Sciences. 2023; 10(9):576. https://doi.org/10.3390/vetsci10090576
Chicago/Turabian StyleScollo, Annalisa, Irene Borello, Marco Ghilardi, and Alberto Cavagnini. 2023. "The Administration of Inactivated and Stabilized Whole-Cells of Saccharomyces cerevisiae to Gestating Sows Improves Lactation Efficiency and Post-Weaning Antimicrobial Use" Veterinary Sciences 10, no. 9: 576. https://doi.org/10.3390/vetsci10090576
APA StyleScollo, A., Borello, I., Ghilardi, M., & Cavagnini, A. (2023). The Administration of Inactivated and Stabilized Whole-Cells of Saccharomyces cerevisiae to Gestating Sows Improves Lactation Efficiency and Post-Weaning Antimicrobial Use. Veterinary Sciences, 10(9), 576. https://doi.org/10.3390/vetsci10090576