The Effect of Copper and Zinc Sources on Liver Copper and Zinc Concentrations and Performance of Beef Cows and Suckling Calves
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Analysis of Liver Mineral Content
2.3. Cow Reproductive Performance
2.4. Health Management
2.5. Passive Immunity Transfer Status
2.6. Vaccine Titers
2.7. Viral Shedding Status
2.8. Statistical Analysis
3. Results and Discussion
3.1. Cow Body Weight and Body Condition Score
3.2. Cow Liver Zn and Cu
3.3. Cow AI Conception Rates
3.4. Calf 205-day Adjusted Weaning Weight
3.5. Transfer of Passive Immunity and Calf Response to Vaccine
3.6. Calf liver Zn and Cu
4. Discussion
4.1. Cow Liver Zn and Cu
4.2. Cow Body Weight and Body Condition Score
4.3. Cow AI Conception Rates
4.4. Calf Liver Zn and Cu
4.5. Calf 205-day Adjusted Weaning Weight
4.6. Transfer of Passive Immunity and Calf Response to Vaccine
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, M.J.; Ford, S.P.; Means, W.J.; Hess, B.W.; Nathanielsz, P.W.; Du, M. Maternal Nutrient Restriction Affects Properties of Skeletal Muscle in Offspring. J. Physiol. 2006, 575, 241–250. [Google Scholar] [CrossRef]
- Larson, D.M.; Martin, J.L.; Adams, D.C.; Funston, R.N. Winter Grazing System and Supplementation during Late Gestation Influence Performance of Beef Cows and Steer Progeny. J. Anim. Sci. 2009, 87, 1147–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, M.; Tong, J.; Zhao, J.; Underwood, K.R.; Zhu, M.; Ford, S.P.; Nathanielsz, P.W. Fetal Programming of Skeletal Muscle Development in Ruminant Animals. J. Anim. Sci. 2010, 88, E51–E60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennings, T.D.; Gonda, M.G.; Underwood, K.R.; Wertz-Lutz, A.E.; Blair, A.D. The Influence of Maternal Nutrition on Expression of Genes Responsible for Adipogenesis and Myogenesis in the Bovine Fetus. Animal 2016, 10, 1697–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spears, J.W. Trace Mineral Bioavailability in Ruminants. J. Nutr. 2003, 133, 1506S–1509S. [Google Scholar] [CrossRef] [Green Version]
- Spears, J. Zinc Methionine for Ruminants: Relative Bioavailability of Zinc in Lambs and Effects of Growth and Performance of Growing Heifers. J. Anim. Sci. 1989, 67, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, J.L.; Cook, M.E.; Greger, J.L. Research Note: Bioavailability of Zinc-Methionine for Chicks. Poult. Sci. 1991, 70, 1637–1639. [Google Scholar] [CrossRef]
- Suttle, N.F. The Interactions Between Copper, Molybdenum, and Sulphur in Ruminant Nutrition. Annu. Rev. Nutr. 1991, 11, 121–140. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle, 8th ed.; National Academies Press: Washington, DC, USA, 2016; ISBN 978-0-309-31702-3. [Google Scholar]
- Suttle, N.F. Mineral Nutrition of Livestock, 4th ed.; CABI: Wallingford, UK; Cambridge, MA, USA, 2010; ISBN 978-1-84593-472-9. [Google Scholar]
- Mortimer, R.G.; Dargatz, D.; Corah, L. Forage Analyses from Cow/Calf Herds in 23 States; #N303.499; USDA; APHIS; VS; Centers for Epidemiology and Animal Health: Fort Collins, CO, USA, 1999. [Google Scholar]
- Richards, M.W.; Spitzer, J.C.; Warner, M.B. Effect of Varying Levels of Postpartum Nutrition and Body Condition at Calving on Subsequent Reproductive Performance in Beef Cattle. J. Anim. Sci. 1986, 62, 300–306. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration National Centers for Environmental Information. Climate at a Glance County Time Series. Available online: https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/county/time-series/SD-063/pcp/12/12/1961-2011?base_prd=true&begbaseyear=1901&endbaseyear=2000 (accessed on 27 July 2023).
- Pearson, E.G.; Craig, A.M. The Diagnosis of Liver Disease in Equine and Food Animals. Mod. Vet. Pract. 1980, 61, 233–237. [Google Scholar]
- Engle, T.E.; Spears, J.W. Effects of Dietary Copper Concentration and Source on Performance and Copper Status of Growing and Finishing Steers. J. Anim. Sci. 2000, 78, 2446. [Google Scholar] [CrossRef] [Green Version]
- Wahlen, R.; Evans, L.; Turner, J.; Hearn, R. The Use of Collision/Reaction Cell ICP-MS for the Determination of Elements in Blood and Serum Samples. Spectroscopy 2005, 20, 84–89. [Google Scholar]
- Perry, G.A.; Perry, B.L.; Krantz, J.H.; Rodgers, J. Influence of Inducing Luteal Regression before a Modified Fixed-Time Artificial Insemination Protocol in Postpartum Beef Cows on Pregnancy Success. J. Anim. Sci. 2012, 90, 489–494. [Google Scholar] [CrossRef] [Green Version]
- Lamb, G.C.; Stevenson, J.S.; Kesler, D.J.; Garverick, H.A.; Brown, D.R.; Salfen, B.E. Inclusion of an Intravaginal Progesterone Insert plus GnRH and Prostaglandin F2α for Ovulation Control in Postpartum Suckled Beef Cows. J. Anim. Sci. 2001, 79, 2253–2259. [Google Scholar] [CrossRef] [Green Version]
- OIE Terrestrial Manual; WOAH: Fort Collins, CO, USA, 2010; Chapter 2.4.13; pp. 9–10.
- OIE Terrestrial Manual; WOAH: Fort Collins, CO, USA, 2010; Chapter 2.4.8; pp. 14–15.
- Fulton, R.W.; Confer, A.W.; Burge, L.J.; Perino, J.M.; d’Offay, J.M.; Payton, M.E.; Mock, R.E. Antibody Responses by Cattle after Vaccination with Commercial Viral Vaccines Containing Bovine Herpesvirus-1, Bovine Viral Diarrhea Virus, Parainfluenza-3 Virus, and Bovine Respiratory Syncytial Virus Immunogens and Subsequent Revaccination at Day 140. Vaccine 1995, 13, 725–733. [Google Scholar] [CrossRef]
- Moore, S.; Gunn, M.; Walls, D. A Rapid and Sensitive PCR-Based Diagnostic Assay to Detect Bovine Herpesvirus 1 in Routine Diagnostic Submissions. Vet. Microbiol. 2000, 75, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Mahlum, C.E.; Sigrun, H.; Shivers, J.L.; Rossow, K.D.; Goyal, S.M.; Collins, J.E.; Faaberg, K.S. Detection of Bovine Viral Diarrhea Virus by Taqman Reverse Transcription Polymerase Chain Reaction. J. Vet. Diagn. Investig. 2002, 14, 145–153. [Google Scholar] [CrossRef]
- Boxus, M.; Letellier, C.; Kerkhofs, P. Real Time RT-PCR for the Detection and Quantitation of Bovine Respiratory Syncytial Virus. J. Virol. Methods 2005, 125, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Littell, R.C.; Henry, P.R.; Ammerman, C.B. Statistical Analysis of Repeated Measures Data Using SAS Procedures. J. Anim. Sci. 1998, 76, 1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrieu, S. Is There a Role for Organic Trace Element Supplements in Transition Cow Health? Vet. J. 2008, 176, 77–83. [Google Scholar] [CrossRef]
- Hansard, S.L.; Mohammed, A.S.; Turner, J.W. Gestation Age Effects upon Maternal-Fetal Zinc Utilization in the Bovine. J. Anim. Sci. 1968, 27, 1097–1102. [Google Scholar] [CrossRef]
- Ahola, J.K.; Baker, D.S.; Burns, P.D.; Mortimer, R.G.; Enns, R.M.; Whittier, J.C.; Geary, T.W.; Engle, T.E. Effect of Copper, Zinc, and Manganese Supplementation and Source on Reproduction, Mineral Status, and Performance in Grazing Beef Cattle over a Two-Year Period. J. Anim. Sci. 2004, 82, 2375–2383. [Google Scholar] [CrossRef]
- Muehlenbein, E.L.; Brink, D.R.; Deutscher, G.H.; Carlson, M.P.; Johnson, A.B. Effects of Inorganic and Organic Copper Supplemented to First-Calf Cows on Cow Reproduction and Calf Health and Performance. J. Anim. Sci. 2001, 79, 1650. [Google Scholar] [CrossRef] [PubMed]
- Puls, R. Mineral Levels in Animal Health: Diagnostic Data, 2nd ed.; Sherpa International: Victoria, BC, Canada, 1994. [Google Scholar]
- McDowell, L.R. Nutrition of Grazing Ruminants in Warm Climates; Academic Press Inc.: New York, NY, USA, 1985. [Google Scholar]
- Suttle, N.F.; Abrahams, P.; Thornton, I. The Role of a Soil × Dietary Sulphur Interaction in the Impairment of Copper Absorption by Ingested Soil in Sheep. J. Agric. Sci. 1984, 103, 81–86. [Google Scholar] [CrossRef]
- Engle, T.E.; Nockels, C.F.; Kimberling, C.V.; Weaber, D.L.; Johnson, A.B. Zinc Repletion with Organic or Inorganic Forms of Zinc and Protein Turnover in Marginally Zinc-Deficient Calves. J. Anim. Sci. 1997, 75, 3074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayeri, A.; Upah, N.C.; Sucu, E.; Sanz-Fernandez, M.V.; DeFrain, J.M.; Gorden, P.J.; Baumgard, L.H. Effect of the Ratio of Zinc Amino Acid Complex to Zinc Sulfate on the Performance of Holstein Cows. J. Dairy Sci. 2014, 97, 4392–4404. [Google Scholar] [CrossRef] [Green Version]
- Nutrient Requirements of Beef Cattle: Seventh Revised Edition: Update 2000; National Academies Press: Washington, DC, USA, 2000; ISBN 978-0-309-06934-2.
- Du, Z.; Hemken, R.W.; Harmon, R.J. Copper Metabolism of Holstein and Jersey Cows and Heifers Fed Diets High in Cupric Sulfate or Copper Proteinate. J. Dairy Sci. 1996, 79, 1873–1880. [Google Scholar] [CrossRef]
- Gooneratne, S.R.; Christensen, D.A.; Bailey, J.V.; Symonds, H.W. Effects of Dietary Copper, Molybdenum and Sulfur on Biliary Copper and Zinc Excretion in Simmental and Angus Cattle. Can. J. Anim. Sci. 1994, 74, 315–325. [Google Scholar] [CrossRef]
- Littledike, E.T.; Wittum, T.E.; Jenkins, T.G. Effect of Breed, Intake, and Carcass Composition on the Status of Several Macro and Trace Minerals of Adult Beef Cattle. J. Anim. Sci. 1995, 73, 2113–2119. [Google Scholar] [CrossRef]
- Mullis, L.A.; Spears, J.W.; McCraw, R.L. Estimated Copper Requirements of Angus and Simmental Heifers1. J. Anim. Sci. 2003, 81, 865–873. [Google Scholar] [CrossRef]
- Ward, J.; Spears, J.; Gengelbach, G. Differences in Copper Status and Copper Metabolism among Angus, Simmental, and Charolais Cattle. J. Anim. Sci. 1995, 73, 571–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiener, G.; Suttle, N.F.; Field, A.C.; Herbert, J.G.; Woolliams, J.A. Breed Differences in Copper Metabolism in Sheep. J. Agric. Sci. 1978, 91, 433–441. [Google Scholar] [CrossRef]
- Stanton, T.; Whittier, J.; Geary, T.; Kimberling, C.; Johnson, A. Effects of Trace Mineral Supplementation on Cow-Calf Performance, Reproduction, and Immune Function. Prof. Anim. Sci. 2000, 16, 121–127. [Google Scholar] [CrossRef]
- Wright, C.L.; Spears, J.W. Effect of Zinc Source and Dietary Level on Zinc Metabolism in Holstein Calves. J. Dairy Sci. 2004, 87, 1085–1091. [Google Scholar] [CrossRef] [Green Version]
- Spears, J.W.; Kegley, E.B. Effect of Zinc Source (Zinc Oxide vs. Zinc Proteinate) and Level on Performance, Carcass Characteristics, and Immune Response of Growing and Finishing Steers. J. Anim. Sci. 2002, 80, 2747–2752. [Google Scholar] [CrossRef]
- Chang, G.X.; Mallard, B.A.; Mowat, D.N.; Gallo, G.F. Effect of Supplemental Chromium on Antibody Responses of Newly Arrived Feeder Calves to Vaccines and Ovalbumin. Can. J. Vet. Res. 1996, 60, 140–144. [Google Scholar] [PubMed]
- Orr, C.; Hutcheson, D.; Grainger, R.; Cummins, J.; Mock, R. Serum Copper, Zinc, Calcium and Phosphorus Concentrations of Calves Stressed by Bovine Respiratory Disease and Infectious Bovine Rhinotracheitis. J. Anim. Sci. 1990, 68, 2893–2900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Item | Treatment | |||
---|---|---|---|---|
INORG 3 | ORG 4 | |||
Year 1 | Year 2 | Year 1 | Year 2 | |
CP, % | 9.40 | 8.78 | 9.10 | 8.47 |
ADF, % | 37.13 | 33.72 | 38.58 | 32.98 |
NDF, % | 63.14 | 68.92 | 65.69 | 67.81 |
Ash, % | 7.70 | 7.50 | 7.29 | 7.44 |
Ether extract, % | 2.43 | 2.20 | 2.34 | 1.99 |
Ca, % | 0.28 | 0.38 | 0.32 | 0.36 |
P, % | 0.19 | 0.17 | 0.18 | 0.18 |
Mg, % | 0.11 | 0.13 | 0.11 | 0.11 |
K, % | 1.57 | 1.55 | 1.39 | 1.32 |
S, % | 0.18 | 0.17 | 0.16 | 0.17 |
Na, % | 0.03 | 0.03 | 0.02 | 0.01 |
Cl, % | 0.51 | 0.36 | 0.41 | 0.24 |
Se, mg/kg | 0.48 | 0.66 | 0.61 | 0.29 |
Mn, mg/kg | 50.33 | 48.00 | 46.50 | 38.33 |
Zn, mg/kg | 40.00 | 26.50 | 36.25 | 25.67 |
Cu, mg/kg | 18.33 | 11.75 | 19.25 | 14.00 |
Fe, mg/kg | 222.67 | 221.75 | 309.25 | 230.67 |
Mo, mg/kg | 0.98 | 4.35 | 1.10 | 3.02 |
Nutrient | Hay (Source 1) | Hay (Source 2) | 30% Crude Protein Supplement |
---|---|---|---|
CP, % | 7.69 | 11.74 | 30.72 |
ADF, % | 39.56 | 43.43 | 15.01 |
NDF, % | 59.69 | 60.56 | 22.73 |
Ash, % | 9.78 | 9.75 | 7.39 |
Ether, % | 3.32 | 1.96 | 2.38 |
Ca, % | 0.33 | 1.16 | 0.61 |
P, % | 0.14 | 0.20 | 0.88 |
Na, % | 0.21 | 0.05 | 0.37 |
Cl, % | 0.45 | 0.13 | 0.45 |
Mg, % | 0.17 | 0.23 | 0.45 |
K, % | 1.09 | 1.93 | 1.48 |
S, % | 0.35 | 0.16 | 0.55 |
Se, mg/kg | 0.26 | 0.42 | 0.92 |
Fe, mg/kg | 196 | 695 | 203 |
Cu, mg/kg | 14 | 15 | 7 |
Mn, mg/kg | 79 | 65 | 115 |
Zn, mg/kg | 29 | 26 | 87 |
Mo, mg/kg | 2.17 | 1.75 | 1.28 |
Treatment | ||
---|---|---|
Nutrient | INORG 2 | ORG 3 |
Ca, % | 13.40 | 13.40 |
P, % | 12.05 | 12.1 |
Mg, % | 1.56 | 1.55 |
K, % | 0.42 | 0.43 |
Co, mg/kg | 30.5 | 30.5 |
Cu, mg/kg | 2340.0 | 2340.0 |
I, mg/kg | 180 | 180 |
Mn, mg/kg | 238.6 | 238.5 |
Zn, mg/kg | 2340.0 | 2347.1 |
Vitamin A, IU/kg | 441,000 | 441,000 |
Vitamin D3, IU/kg | 33,075 | 33,075 |
Vitamin E, IU/kg | 1102.5 | 1102.5 |
Intake | Diet Concentration | |||||||
---|---|---|---|---|---|---|---|---|
Cu, mg | Zn, mg | Cu, mg/kg Diet DM | Zn, mg/kg Diet DM | |||||
Time Period 2 | INORG 3 | ORG 4 | INORG | ORG | INORG | ORG | INORG | ORG |
May Year 1 | 489.2 | 502.9 | 832.3 | 618.0 | 30.7 | 31.7 | 52.3 | 38.9 |
October Year 1 | 450.2 | 460.2 | 747.1 | 559.1 | 32.7 | 33.7 | 54.2 | 41.0 |
December Year 1 | 404.2 | 413.4 | 695.6 | 547.4 | 34.5 | 35.5 | 59.4 | 47.0 |
July Year 2 | 384.5 | 416.9 | 771.3 | 599.1 | 24.2 | 26.6 | 48.6 | 38.3 |
October Year 2 | 359.5 | 395.9 | 694.1 | 560.7 | 26.2 | 28.0 | 50.5 | 39.6 |
Treatment (Trmt) 2 | Sex | Collection Period (CP) 3 | p-Value 4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
INORG | ORG | SEM | Heifers | Steers | SEM | Pre Vacc. | Post Vacc. | SEM | Trmt | Sex | CP | |
WW 5, kg | 252.6 a | 259.1 b | 2.69 | 247.2 a | 264.5 b | 2.69 | - | - | - | 0.0167 | <0.0001 | - |
Total protein 6, g/dL | 7.36 | 7.43 | 0.275 | 7.44 | 7.36 | 0.278 | - | - | - | 0.7950 | 0.7580 | - |
BRSV, log 2 | 1.18 | 1.11 | 0.075 | 1.14 | 1.15 | 0.075 | 1.10 | 1.19 | 0.051 | 0.3995 | 0.9127 | 0.0887 |
IBRV, log 2 | 4.85 | 4.89 | 0.306 | 4.85 | 4.89 | 0.306 | 4.75 | 4.99 | 0.297 | 0.9146 | 0.8803 | 0.4257 |
BVDV type I, log 2 | 4.96 | 5.48 | 0.366 | 5.21 | 5.22 | 0.366 | 4.75 a | 5.68 b | 0.292 | 0.1610 | 0.9704 | 0.0020 |
BVDV type II, log 2 | 5.26 | 5.66 | 0.282 | 5.41 | 5.51 | 0.282 | 4.96 a | 5.96 b | 0.282 | 0.1529 | 0.7262 | 0.0005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fulton, J.O.; Blair, A.D.; Underwood, K.R.; Daly, R.F.; Gonda, M.G.; Perry, G.A.; Wright, C.L. The Effect of Copper and Zinc Sources on Liver Copper and Zinc Concentrations and Performance of Beef Cows and Suckling Calves. Vet. Sci. 2023, 10, 511. https://doi.org/10.3390/vetsci10080511
Fulton JO, Blair AD, Underwood KR, Daly RF, Gonda MG, Perry GA, Wright CL. The Effect of Copper and Zinc Sources on Liver Copper and Zinc Concentrations and Performance of Beef Cows and Suckling Calves. Veterinary Sciences. 2023; 10(8):511. https://doi.org/10.3390/vetsci10080511
Chicago/Turabian StyleFulton, Jesse O., Amanda D. Blair, Keith R. Underwood, Russell F. Daly, Michael G. Gonda, George A. Perry, and Cody L. Wright. 2023. "The Effect of Copper and Zinc Sources on Liver Copper and Zinc Concentrations and Performance of Beef Cows and Suckling Calves" Veterinary Sciences 10, no. 8: 511. https://doi.org/10.3390/vetsci10080511