Volatile Sulfur Compounds Produced by the Anaerobic Bacteria Porphyromonas spp. Isolated from the Oral Cavities of Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statements and Sample Collection
2.2. Bacterial Culture and Isolation
2.3. Bacterial Production of VSCs and Determination of VSCs
2.4. Molecular Identification of Bacterial Species
2.5. Data Analysis
3. Results
3.1. Molecular Identification of Bacteria
3.2. Volumes of VSCs Produced
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suzuki, N.; Yoneda, M.; Takeshita, T.; Hirofuji, T.; Hanioka, T. Induction and inhibition of oral malodor. Mol. Oral Microbiol. 2019, 34, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Hampelska, K.; Jaworska, M.M.; Babalska, Z.Ł.; Karpiński, T.M. The role of oral microbiota in intra-oral halitosis. J. Clin. Med. 2020, 9, 2484. [Google Scholar] [CrossRef] [PubMed]
- Mteo, A.; Torre, C.; Crusafont, J.; Sallas, A.; Jeusette, I.C. Evaluation of efficacy of dental chew to reduce gingivitis, dental plaque, calculus, and halitosis in toy breed dogs. J. Vet. Dentist. 2020, 37, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Croft, J.M.; Patel, K.V.; Inui, T.; Ruparell, A.; Staunton, R.; Holcombe, L.J. Effectiveness of oral care interventions on malodour in dogs. BMC Vet. Res. 2022, 18, 164. [Google Scholar] [CrossRef]
- Ratcliff, P.A.; Johnson, P.W. The relationship between oral malodor, gingivitis, and periodontitis. A review. J. Periodontol. 1999, 70, 485–489. [Google Scholar] [CrossRef]
- Wu, D.-D.; Ngowi, E.E.; Zhai, Y.-K.; Wang, Y.-Z.; Khan, N.H.; Kombo, A.F.; Khattak, S.; Li, T. Role of Hydrogen Sulfide in Oral. Disease 2022, 2022, 1886277. [Google Scholar] [CrossRef]
- Nakayama, K. Porphyromonas gingivalis and related bacteria: From colonial pigmentation to the type IX secretion system and gliding motility. J. Periodontal Res. 2015, 50, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Borsanelli, A.C.; Gaetti-Jardim, E.; Schweitzer, C.M.; Viora, L.; Busin, V.; Riggio, M.P.; Dutra, I.S. Black-pigmented anaerobic bacteria associated with ovine periodotitis. Vet. Microbiol. 2017, 203, 271–274. [Google Scholar] [CrossRef] [Green Version]
- Pessoa, L.; Galvão, V.; Damante, C.; Sant’Ana, A.C.P. Removal of black stains from teeth by photodynamic therapy: Clinical and microbiological analysis. BMJ Case Rep. 2015, 2015, bcr2015212276. [Google Scholar] [CrossRef]
- Milella, L. The negative effects of volatile sulphur compounds. J. Vet. Dent. 2015, 32, 99–102. [Google Scholar] [CrossRef]
- Ma, L.; Pang, C.; Yan, C.; Chen, J.; Wang, X.; Hui, J.; Zhou, L.; Zhang, X. Effect of lemon essential oil on halitosis. Oral Dis. 2023, 29, 1845–1854. [Google Scholar] [CrossRef] [PubMed]
- Wallis, C.; Holcombe, L.J. A review of the frequency and impact of periodontal disease in dogs. J. Small Anim. Pract. 2020, 61, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Wallis, C.; Saito, E.K.; Salt, C.; Holcombe, L.J.; Desforges, N.G. Association of periodontal disease with breed size, breed, weight, and age in pure-bred client-owned dogs in the United States. Vet. J. 2021, 275, 105717. [Google Scholar] [CrossRef] [PubMed]
- Sedghi, L.M.; Bacino, M.; Kapila, Y.L. Periodontal Disease: The good, the bad, and the unknown. Front. Cell Infect. Microbiol. 2021, 11, 766944. [Google Scholar] [CrossRef] [PubMed]
- Hajishengallis, G.; Chavakis, T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat. Rev. Immunol. 2021, 21, 426–440. [Google Scholar] [CrossRef]
- Graziano, T.S.; Calil, C.M.; Sartoratto, A.; Franco, G.C.N.; Groppo, F.C.; Cogo-Müller, K. In vitro effects of Melaleuca alternifolia essential oil on growth and production of volatile sulphur compounds by oral bacteria. J. Appl. Oral Sci. 2016, 24, 582–589. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, N.; Higuchi, T.; Nakajima, M.; Fujimoto, A.; Morita, H.; Yoneda, M.; Hanioka, T.; Hirofuji, T. Inhibitory effects of Enterococcus faecium WB2000 on volatile sulfur compound production by Porphyromonas gingivalis. Int. J. Dent. 2016, 2016, 8241681. [Google Scholar] [CrossRef]
- Yoo, H.J.; Jwa, S.K.; Kim, D.H.; Ji, Y.J. Inhibitory effects of Streptococcus salivarius K12 and M18 on halitosis in vitro. Clin. Exp. Dent. Res. 2020, 6, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Hennet, P.R.; Delille, B.; Davot, J.L. Oral malodor measurements on a tooth surface of dogs with gingivitis. Am. J. Vet. Res. 1998, 59, 255–257. [Google Scholar]
- Lau, J.S.Y.; Korman, T.M.; Yeung, A.; Streitberg, R.; Francis, M.J.; Graham, M. Bacteroides pyogenes causing serious human wound infection from animal bites. Anaerobe 2016, 42, 172–175. [Google Scholar] [CrossRef]
- Majewska, A.; Kierzkowska, M.; Kawecki, D. What we actually know about the pathogenicity of Bacteroides pyogenes. Med. Microbiol. Immunol. 2021, 210, 157–163. [Google Scholar] [CrossRef]
- Niemiec, B.A.; Gawor, J.; Tang, S.; Prem, A.; Krumbeck, J.A. The bacteriome of the oral cavity in healthy dogs and dogs with periodontal disease. Am. J. Vet. Res. 2021, 83, 50–58. [Google Scholar] [CrossRef]
- Do, K.-H.; Pak, H.-E.; Kang, M.-S.; Kim, J.-T.; Yeu, J.-E.; Lee, W.-K. Effects of Weissella cibaria CUM on halitosis and calculus, plaque, and gingivitis indices in Beagles. J. Vet. Dent. 2019, 36, 135–142. [Google Scholar] [CrossRef]
- Kačírová, J.; Sondorová, M.; Maďari, A.; Styková, E.; Mucha, R.; Nemcová, R.; Marečáková, N.; Farbáková, J.; Maďar, M. De-tection of periodontal pathogens from dental plaques of dogs with and without periodontal disease. Pathogens 2022, 11, 480. [Google Scholar] [CrossRef]
- Tonzetich, J. Direct gas chromatographic analysis of sulphur compounds in mouth air in man. Arch. Oral Biol. 1971, 16, 587–597. [Google Scholar] [CrossRef]
Bacterial Species | Numbers Isolated | Reference Isolates in GenBank | Identity |
---|---|---|---|
Porphyromonas gulae (B) | |||
1 | JN713220 | 99.58% | |
1 | JN713221 | 99.86% | |
1 | JN713277 | 99.72% | |
1 | KM461998 | 99.58% | |
9 | KM462071 | 99.44–99.87% | |
7 | KM462153 | 99.44–99.86% | |
3 | LC749393 | 99.86–99.59% | |
2 | LC749394 | 99.59%, 99.86% | |
1 | LR134506 | 99.86% | |
Porphyromonas macacae (B) | |||
2 | AB547666 | 99.86%, 100% | |
6 | KM461959 | 99.58–99.86% | |
Porphyromonas gingivalis (B) | |||
1 | CP024594 | 99.72% | |
1 | CP024601 | 100% | |
2 | CP025931 | 99.86%, 100% | |
Porphyromonas gingivicanis (B) | |||
3 | NR_104833 | 99.46–99.72% | |
1 | JN713184 | 99.73% | |
Bacteroides pyogenes (NB) | |||
1 | HF558365 | 100% | |
1 | JN713205 | 100% | |
1 | MT271930 | 100% | |
1 | NR_041280 | 100% |
Bacterial Species | Number of Colonies | H2S (ppb) | CH3SH (ppb) | (CH3)2S (ppb) | CH3SH/H2S |
---|---|---|---|---|---|
Black-pigmented colony formed | |||||
Porphyromonas gulae | 26 | 6275.6 ± 341.6 (a) | 14,304.1 ± 1119.5 (d) | 64.2 ± 126.3 | 2.21 ± 0.15 (g) |
Porphyromonas macacae | 8 | 5089.9 ± 973.3 (b) | 12,078.0 ± 1660.3 (e) | 0.9 ± 2.5 | 2.40 ± 0.17 (h) |
Porphyromonas gingivalis | 4 | 6044.8 ± 485.5 | 13,471.5 ± 1578.5 | 0 ± 0 | 2.22 ± 0.14 |
Porphyromonas gingivicanis | 4 | 6384.9 ± 408.1 | 14,292.3 ± 663.5 | 341.5 ± 327.1 | 2.24 ± 0.07 |
Non-black-pigmented colony formed | |||||
Bacteroides pyogenes | 4 | 2279.3 ± 1056.8 (c) | 505.1 ± 901.4 (f) | 0 ± 0 | 0.18 ± 0.32 (i) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ito, N.; Itoh, N.; Kameshima, S. Volatile Sulfur Compounds Produced by the Anaerobic Bacteria Porphyromonas spp. Isolated from the Oral Cavities of Dogs. Vet. Sci. 2023, 10, 503. https://doi.org/10.3390/vetsci10080503
Ito N, Itoh N, Kameshima S. Volatile Sulfur Compounds Produced by the Anaerobic Bacteria Porphyromonas spp. Isolated from the Oral Cavities of Dogs. Veterinary Sciences. 2023; 10(8):503. https://doi.org/10.3390/vetsci10080503
Chicago/Turabian StyleIto, Noriyuki, Naoyuki Itoh, and Satoshi Kameshima. 2023. "Volatile Sulfur Compounds Produced by the Anaerobic Bacteria Porphyromonas spp. Isolated from the Oral Cavities of Dogs" Veterinary Sciences 10, no. 8: 503. https://doi.org/10.3390/vetsci10080503
APA StyleIto, N., Itoh, N., & Kameshima, S. (2023). Volatile Sulfur Compounds Produced by the Anaerobic Bacteria Porphyromonas spp. Isolated from the Oral Cavities of Dogs. Veterinary Sciences, 10(8), 503. https://doi.org/10.3390/vetsci10080503