Feeding and Nutritional Factors That Affect Somatic Cell Counts in Milk of Sheep and Goats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effects of Mineral and Vitamin Supplementation
Species | Dietary Treatment | mg/kg of DM | Log SCC | Milk Yield | Lactose | References |
---|---|---|---|---|---|---|
Dairy sheep | Zn500 | 500 | 0.53% | - | - | [29] |
Zn1000 | 1000 | −0.53% | - | - | ||
Zn | 113 | −1.75% | - | - | [28] | |
Se + Vit E | 5.1 | −10.00% | - | - | [24] | |
Se * | 2.9 | −1.37% | - | - | [36] | |
Vit A * | - ** | −24.53% | - | - | [25] | |
Dairy goat | Inorganic Zn * | 20 | −4.06% | 3.30% | −5.63% | [37] |
Nano Zn * | 10 | −5.37% | 7.69% | −4.63% | ||
Nano Zn * | 20 | −9.03% | 7.69% | −1.21% | ||
Zn methionine * | 5000 *** | −5.15% | 2.50% | - | [30] | |
Se + Vit E | 0.14 Se11 VitE *** | −31.79% | 7.14% | 3.87% | [35] | |
Se * | - | 14.93% | - | - | [38] | |
Organic acids and pure botanic | 10 **** | 10.1% | 1.6% | 0.5% | [39] |
3.2. Effects of Polyphenols and Products Containing Polyphenols
Species | Dietary Treatment | g/kg of DMI | Log SCC | Milk Yield | Lactose | References |
---|---|---|---|---|---|---|
Dairy sheep | Cocoa husk 50 | 24 | −8.73% | −1.52% | 0.83% | [42] |
Cocoa husk 100 | 48 | −12.66% | 0.76% | −3.53% | ||
Tomato pomace | 54 | 8.96% | −2.21% | 0.63% | [70] | |
Grape marc | 52 | 4.98% | 16.48% | 0.84% | ||
Exhausted myrtle berries | 41 | 3.98% | −13.93% | −1.88% | ||
Olive cake | 64 | 2.31% | 18.95% | 23.83% | [48] | |
Olive cake + E | 64 olive + 0.13 vit E | −2.31% | 9.55% | 23.83% | ||
Pomegranate pulp | 70 | 26.47% | 2.41% | −1.86% | [71] | |
1% of grape residue flour * | 3.8 | −10.20% | 8.61% | 0.52% | [52] | |
2% of grape residue flour * | 7.6 | −18.01% | 9.27% | 3.47% | ||
Grape seed | 118 | 0.41% | 2.01% | - | [51] | |
Linseed | 104 | 0.00% | 8.72% | - | ||
Mix grape and linseed | 218 | −11.52% | 12.75% | - | ||
Extruded linseed * | 300 ** | −0.19% | 1.25% | 2.08% | [72] | |
Hydrolyzable tannins | 60 ** | −11.88% | 0.38% | 1.08% | [53] | |
Hydrolyzable tannins | 120 ** | −9.57% | −0.61% | 1.95% | ||
Cocoa bean shell | 45 | −9.50% | - | [43] | ||
Pistachio shells * | 50 | 7.50% | 2.14% | 0.68% | [73] | |
Pomegranate hulls * | 50 | −14.64% | 4.95% | 2.04% | ||
Olive pulp* | 50 | −1.07% | −15.64% | −8.84% | ||
Olive pomace 2 phases | 52.2 | −19.40% | - | - | [74] | |
Olive pomace 3 phases | 39.6 | 7.38% | - | - | ||
Chestnut tannins extract | 66 ** | −14.11% | - | - | [54] | |
Quebracho tannins extract | 66 ** | −12.03% | - | - | ||
Dairy goat | Rosmary 10% | 100 | −2.18% | - | −2.05% | [75] |
Rosmary 20% | 200 | 0.73% | - | −6.97% | ||
Extruded linseed | 74 | 2.36% | 15.61% | - | [76] | |
Extruded lineseed * | 100 ** | −6.89% | 7.53% | 12.86% | [62] | |
Extruded linseed | 90 ** | −3.05% | 1.83% | 2.34% | [63] | |
Pumpkin seed cake | 160 ** | −0.68% | 14.68% | 0.70% | ||
Spent coffee ground 50 | 13.5 | −7.52% | −2.42% | −1.13% | [77] | |
Spent coffee ground 100 | 25.6 | 8.65% | 3.64% | −2.72% | ||
Cocoa bean shell * | 92.6 | 2.21% | −6.08% | −3.94% | [69] | |
Pomgranate seed pulp * | 120 ** | −4.82% | 2.22% | 1.68% | [78] | |
Sericea lespedeza (tannins)* | - | −19.51% | - | - | [61] | |
Artichoke silage 25% | 250 | 2.51% | −0.47% | −0.47% | [79] | |
Artichoke silage 40% | 400 | 0.18% | 2.12% | 2.12% | ||
Artichoke silage 60% | 600 | 0.36% | 0.24% | 0.24% |
3.3. Effects of Essential Oils and Vegetable and Marine Oils
Species | Dietary Treatment | g/kg of DM | SCC | Milk Yield | Lactose | References |
---|---|---|---|---|---|---|
Dairy sheep | Canola oil * | 50 ** | −2.27% | 8.47% | 0.00% | [80] |
Rice bran oil * | 50 ** | −8.55% | 8.88% | 0.00% | ||
Flaxseed oil * | 50 ** | −12.73% | 1.03% | −2.04% | ||
Safflower oil * | 50 ** | −0.80% | 16.12% | −2.04% | ||
Rumen protected marine oil * | 50 ** | −6.33% | 29.75% | −2.04% | ||
Linseed oil * | 20 | −13.54% | - | 3.85% | [90] | |
Rumen protected linseed oil | 6 | 3.19% | −7.31% | −2.44% | [91] | |
Essential orange oil * | 0.06 | −6.22% | 11.17% | −3.82% | [92] | |
0.122 | −0.18% | 13.28% | −3.41% | |||
0.200 | −3.94% | 4.02% | −0.80% | |||
Essential oil * | 0.05 ** | −3.08% | 9.56% | - | [84] | |
0.1 ** | −7.13% | 27.94% | - | |||
0.15 ** | −11.57% | 50.74% | - | |||
Dairy goat | Microalgae | 5.3 | −6.81% | 4.00% | −0.22% | [89] |
Soybean oil * | 26.4 | −5.90% | −3.54% | 1.10% | [93] | |
Soybean oil+ tuna oil * | 15.6 Soybean oil + 10.4 tuna oil | −0.51% | −22.87% | 2.19% | ||
Soybean oil+ tuna oil+ grape tannins * | 15.7 Soybean oil + 10.6 tuna oil + 8.4 grape tannins | 0.47% | −15.58% | −0.44% | ||
Fish oil | 32.2 ** | −0.68% | 11.90% | 0.88% | [94] | |
Linseed oil | 100 ** | −0.51% | 29.63% | 0.66% | ||
L-Coriander oil * | 0.95 | −19.25% | 8.48% | 1.12% | [86] | |
H-Coriander oil * | 1.9 | −10.07% | 14.01% | 1.97% | ||
Pomegranade Seed oil | 25 | −4.07% | 6.16% | −1.85% | [95] | |
Linseed oil | 25 | −0.45% | 5.46% | −1.44% | ||
Fish oil | 11 | −6.99% | −10.31% | −0.42% | [96] | |
Canola oil * | 30 | −0.70% | - | 1.72% | [97] | |
Sunflower oil * | 30 | −3.39% | - | 5.41% | ||
Soybean oil * | 30 | −1.81% | - | −0.74% |
3.4. Effects of Pasture and Forage to Concentrate Ratio on Milk SCCs
Species | Treatment | SCC | Milk Yield | Lactose | References |
---|---|---|---|---|---|
Dairy sheep | Indoor * | [98] | |||
Outdoor * | −10.99% | - | |||
Intensive | [101] | ||||
Semi-intensive | 0.52% | - | −1.70% | ||
Concentrate-based feeding | [102] | ||||
Artificial-pasture-based grazing | −0.49% | 7.60% | 0.45% | ||
Feed restricted * | −15.46% | −21.98% | −1.92% | [36] | |
High feed * | −10.80% | 0.52% | −0.38% | ||
Dairy goat | Low concentrate (30%) | [99] | |||
High concentrate (60%) | 3.52% | 23.92% | −1.17% |
3.5. Combined Effect on Production Level, Milk SCCs, and Lactose Concentrations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harmon, R.J. Somatic cell counts: A primer. In Proceedings of the National Mastisi Council 40th Annual Meeting, Reno, NV, USA, 11–14 February 2001; pp. 3–9. [Google Scholar]
- Halasa, T.; Kirkeby, C. Differential somatic cell count: Value for udder health management. Front. Vet. Sci. 2020, 7, 609055. [Google Scholar] [CrossRef]
- Paape, M.J.; Wiggans, G.R.; Bannerman, D.D.; Thomas, D.L.; Sanders, A.H.; Contreras, A.; Moroni, P.; Miller, R.H. Monitoring goat and sheep milk somatic cell counts. Small Rumin. Res. 2007, 68, 114–125. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, N.K.; Bhadwal, M.S. Relationship of somatic cell count and mastitis: An overview. Asian Australas J. Anim. Sci. 2011, 24, 429–438. [Google Scholar] [CrossRef]
- Albenzio, M.; Figliola, L.; Caroprese, M.; Marino, R.; Sevi, A.; Santillo, A. Somatic cell count in sheep milk. Small Rumin. Res. 2019, 176, 24–30. [Google Scholar] [CrossRef]
- Paape, M.J.; Poutrel, B.; Contreras, A.; Marco, J.C.; Capuco, A.V. Milk somatic cells and lactation in small ruminants. J. Dairy Sci. 2001, 84, E237–E244. [Google Scholar] [CrossRef]
- Nudda, A.; Feligini, M.; Battacone, G.; Macciotta, N.P.P.; Pulina, G. Effects of lactation stage, parity, β-lactoglobulin genotype and milk SCC on whey protein composition in Sarda dairy ewes. Ital. J. Anim. Sci. 2003, 2, 29–39. [Google Scholar] [CrossRef]
- Zhao, X.; Lacasse, P. Mammary tissue damage during bovine mastitis: Causes and control. J. Anim. Sci. 2008, 86, 57–65. [Google Scholar] [CrossRef]
- Kaskous, S.; Farschtschi, S.; Pfaffl, M.W. Physiological Aspects of Milk Somatic Cell Count in Small Ruminants—A Review. Dairy 2023, 4, 26–42. [Google Scholar] [CrossRef]
- Suriyasathaporn, W.; Schukken, Y.H.; Nielen, M.; Brand, A. Low somatic cell count: A risk factor for subsequent clinical mastitis in a dairy herd. J. Dairy Sci. 2000, 83, 1248–1255. [Google Scholar] [CrossRef] [PubMed]
- Grinberg, N.; Elazar, S.; Rosenshine, I.; Shpigel, N.Y. β-Hydroxybutyrate abrogates formation of bovine neutrophil extracellular traps and bactericidal activity against mammary pathogenic Escherichia coli. Infect. Immun. 2008, 76, 2802–2807. [Google Scholar] [CrossRef] [Green Version]
- Ingvartsen, K.L.; Moyes, K. Nutrition, immune function and health of dairy cattle. Animal 2013, 7, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kehrli, M.E.; Neill, J.D.; Burvenich, C.; Goff, J.P.; Lippolis, J.D.; Reinhardt, T.A.; Nonnecke, B.J. 2006 Energy and protein effects on the immune system. In Ruminant Physiology: Digestion, Metabolism and Impact of Nutrition on Gene Expression, Immunology and Stress; Wageningen Academic Publishers: Wageningen, The Netherlands, 2006; pp. 455–471. [Google Scholar]
- Leslie, K.E.; Duffield, T.F.; Schukken, Y.H.; LeBlanc, S.J. The influence of negative energy balance on udder health. In National Mastitis Council Regional Meeting Proceedings; Omnipress: Madison, WI, USA, 2000. [Google Scholar]
- Nudda, A.; Atzori, A.S.; Correddu, S.; Battacone, G.; Lunesu, M.F.; Cannas, A.; Pulina, G. Effects of nutrition on main components of sheep milk. Small Rumin. Res. 2020, 184, 106015. [Google Scholar] [CrossRef]
- Dang, A.K.; Prasad, S.; De, K.; Pal, S.; Mukherjee, J.; Sandeep, I.V.R.; Kapila, R. Effect of supplementation of vitamin E, copper and zinc on thein vitrophagocytic activity and lymphocyte proliferation index of peripartum Sahiwal (Bos indicus) cows. J. Anim. Physiol. Anim. Nutr. 2013, 97, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.L.; Li, X.S. Role of antioxidant vitamins and trace elements in mastitis in dairy cows. J. Adv. Vet. Anim. Res. 2014, 2, 1–9. [Google Scholar] [CrossRef]
- Bobbo, T.; Cipolat-Gotet, C.; Bittante, G.; Cecchinato, A. The nonlinear effect of somatic cell count on milk composition, coagulation properties, curd firmness modeling, cheese yield, and curd nutrient recovery. J. Dairy Sci. 2016, 99, 5104–5119. [Google Scholar] [CrossRef] [Green Version]
- Bisutti, V.; Vanzin, A.; Toscano, A.; Pegolo, S.; Giannuzzi, D.; Tagliapietra, F.; Schiavon, S.; Gallo, L.; Trevisi, E.; Negrini, R.; et al. Impact of somatic cell count combined with differential somatic cell count on milk protein fractions in Holstein cattle. J. Dairy Sci. 2022, 105, 6447–6459. [Google Scholar] [CrossRef]
- Ikonen, T.; Morri, S.; Tyrisevä, A.M.; Ruottinen, O.; Ojala, M. Genetic and phenotypic correlations between milk coagulation properties, milk production traits, somatic cell count, casein content, and pH of milk. J. Dairy Sci. 2004, 87, 458–467. [Google Scholar] [CrossRef] [Green Version]
- Bobbo, T.; Penasa, M.; Cassandro, M. Combining total and differential somatic cell count to better assess the association of udder health status with milk yield, composition and coagulation properties in cattle. Ital. J. Anim. Sci. 2020, 19, 697–703. [Google Scholar] [CrossRef]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Wessels, I.; Maywald, M.; Rink, L. Zinc as a gatekeeper of immune function. Nutrients 2017, 9, 1286. [Google Scholar] [CrossRef] [Green Version]
- Morgante, M.; Beghelli, D.; Pauselli, M.; Dall’Ara, P.; Capuccella, M.; Ranucci, S. Effect of administration of vitamin E and selenium during the dry period on mammary health and milk cell counts in dairy ewes. J. Dairy Sci. 1999, 82, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Koutsoumpas, A.T.; Giadinis, N.D.; Petridou, E.J.; Konstantinou, E.; Brozos, C.; Lafi, S.Q.; Fthenakis, G.C.; Karatzias, H. Consequences of reduced vitamin A administration on mammary health of dairy ewes. Small Rumin. Res. 2013, 110, 120–123. [Google Scholar] [CrossRef]
- Raynal-Ljutovac, K.; Pirisi, A.; De Cremoux, R.; Gonzalo, C. Somatic cells of goat and sheep milk: Analytical, sanitary, productive and technological aspects. Small Rumin. Res. 2007, 68, 126–144. [Google Scholar] [CrossRef]
- Sordillo, L.M.; Aitken, S.L. Impact of oxidative stress on the health and immune function of dairy cattle. Vet. Immunol. Immunopathol. 2009, 128, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Page, C.M.; Murphy, T.W.; Taylor, J.B.; Julian, A.A.; Whaley, J.R.; Woodruff, K.L.; Hummel, G.L.; Demarco, C.F.; Laverell, D.M.; Cunningham-Hollinger, H.C.; et al. Effects of dietary Zn on ewe milk minerals and somatic cell count. Transl. Anim. Sci. 2020, 4, S17–S21. [Google Scholar] [CrossRef]
- Page, C.M.; Knuth, R.M.; Murphy, T.W.; Rule, D.C.; Bisha, B.; Taylor, J.B.; Stewart, W.C. Effects of increasing dietary zinc sulfate fed to gestating ewes: II. Milk somatic cell count, microbial populations, and fatty acid composition. Appl. Anim. Sci. 2022, 38, 285–295. [Google Scholar] [CrossRef]
- Salama, A.A.; Caja, G.; Albanell, E.; Such, X.; Casals, R.; Plaixats, J. Effects of dietary supplements of zinc-methionine on milk production, udder health and zinc metabolism in dairy goats. J. Dairy Res. 2003, 70, 9–17. [Google Scholar] [CrossRef]
- Sobhanirad, S.; Carlson, D.; Bahari Kashani, R. Effect of zinc methionine or zinc sulfate supplementation on milk production and composition of milk in lactating dairy cows. Biol. Trace Elem. Res. 2010, 136, 48–54. [Google Scholar] [CrossRef]
- Cope, C.M.; Mackenzie, A.M.; Wilde, D.; Sinclair, L.A. Effects of level and form of dietary zinc on dairy cow performance and health. J. Dairy Sci. 2009, 92, 2128–2135. [Google Scholar] [CrossRef] [Green Version]
- Horst, E.A.; Mayorga, E.J.; Al-Qaisi, M.; Abeyta, M.A.; Goetz, B.M.; Ramirez, H.R.; Kleinschmit, D.H.; Baumgard, L.H. Effects of dietary zinc source on the metabolic and immunological response to lipopolysaccharide in lactating Holstein dairy cows. J. Dairy Sci. 2019, 102, 11681–11700. [Google Scholar] [CrossRef] [Green Version]
- Weng, X.; Monteiro, A.P.A.; Guo, J.; Li, C.; Orellana, R.M.; Marins, T.N.; Bernard, J.K.; Tomlinson, D.J.; DeFrain, J.M.; Wohlgemuth, S.E.; et al. Effects of heat stress and dietary zinc source on performance and mammary epithelial integrity of lactating dairy cows. J. Dairy Sci. 2018, 101, 2617–2630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tufarelli, V.; Laudadio, V. Dietary supplementation with selenium and vitamin E improves milk yield, composition and rheological properties of dairy Jonica goats. J. Dairy Res. 2011, 78, 144–148. [Google Scholar] [CrossRef]
- Meyer, A.M.; Reed, J.J.; Neville, T.L.; Thorson, J.F.; Maddock-Carlin, K.R.; Taylor, J.B.; Reynolds, L.P.; Redmer, D.A.; Luther, J.S.; Hammer, C.J.; et al. Nutritional plane and selenium supply during gestation affect yield and nutrient composition of colostrum and milk in primiparous ewes. J. Anim. Sci. 2011, 89, 1627–1639. [Google Scholar] [CrossRef] [PubMed]
- Shafi, B.U.D.; Kumar, R.; Jadhav, S.E.; Kar, J. Effect of zinc nanoparticles on milk yield, milk composition and somatic cell count in early-lactating barbari does. Biol. Trace Elem. Res. 2020, 196, 96–102. [Google Scholar] [CrossRef] [PubMed]
- de Vasconcelos, Â.M.; Martins, T.P.; de Souza, V.; Bonfim, J.M.; Pompeu, R.C.F.F.; Façanha, D.A.E.; Pereira, P.L.; Ferreira, J.; Silveira, R.M.F. Effect of a 60-day organic selenium-supplemented diet on the decrease of somatic cell counts in goat milk. Trop. Anim. Health Prod. 2023, 55, 113. [Google Scholar] [CrossRef]
- Giorgino, A.; Raspa, F.; Valle, E.; Bergero, D.; Cavallini, D.; Gariglio, M.; Bongiorno, V.; Bussone, G.; Bergagna, S.; Cimino, F.; et al. Effect of dietary organic acids and botanicals on metabolic status and milk parameters in mid–late lactating goats. Animals 2023, 13, 797. [Google Scholar] [CrossRef]
- Correddu, F.; Lunesu, M.F.; Buffa, G.; Atzori, A.S.; Nudda, A.; Battacone, G.; Pulina, G. Can agro-industrial by-products rich in polyphenols be advantageously used in the feeding and nutrition of dairy small ruminants? Animals 2020, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Correddu, F.; Caratzu, M.F.; Lunesu, M.F.; Carta, S.; Pulina, G.; Nudda, A. Grape, Pomegranate, Olive, and Tomato By-Products Fed to Dairy Ruminants Improve Milk Fatty Acid Profile without Depressing Milk Production. Foods 2023, 12, 865. [Google Scholar] [CrossRef]
- Carta, S.; Nudda, A.; Cappai, M.G.; Lunesu, M.F.; Atzori, A.S.; Battacone, G.; Pulina, G. Cocoa husks can effectively replace soybean hulls in dairy sheep diets—Effects on milk production traits and hematological parameters. J. Dairy Sci. 2020, 103, 1553–1558. [Google Scholar] [CrossRef]
- Campione, A.; Pauselli, M.; Natalello, A.; Valenti, B.; Pomente, C.; Avondo, M.; Luciano, G.; Caccamo, M.; Morbidini, L. Inclusion of cocoa by-product in the diet of dairy sheep: Effect on the fatty acid profile of ruminal content and on the composition of milk and cheese. Animal 2021, 15, 100243. [Google Scholar] [CrossRef]
- Falcone, F.H.; Pritchard, D.I.; Gibbs, B.F. Do basophils play a role in immunity against parasites? Trends Parasitol. 2001, 17, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Manis, C.; Scano, P.; Nudda, A.; Carta, S.; Pulina, G.; Caboni, P. LC-QTOF/MS untargeted metabolomics of sheep milk under cocoa husks enriched diet. Dairy 2021, 2, 112–121. [Google Scholar] [CrossRef]
- Martínez-Pinilla, E.; Oñatibia-Astibia, A.; Franco, R. The relevance of theobromine for the beneficial effects of cocoa consumption. Front. Pharmacol. 2015, 6, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Union. Directive 2002/32/EC of the European Parliament and the Council of 7 May 2002 on Undesirable Substances in Animal Feed; Eur-Lex: Brussels, Belgium, 2002. [Google Scholar]
- Chiofalo, B.; Liotta, L.; Zumbo, A.; Chiofalo, V. Administration of olive cake for ewe feeding: Effect on milk yield and composition. Small Rumin. Res. 2004, 55, 169–176. [Google Scholar] [CrossRef]
- Mukherjee, R. Selenium and vitamin E increases polymorphonuclear cell phagocytosis and antioxidant levels during acute mastitis in riverine buffaloes. Vet. Res. Commun. 2008, 32, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Koujalagi, S.; Chhabra, S.; Randhawa, S.N.S.; Singh, R.; Gupta, D.K. Effect of herbal vitamin E and organic selenium complex supplementation on oxidative stress, milk quality and somatic cell count in transition dairy cows. J. Entomol. Zool. Stud. 2020, 8, 660–665. [Google Scholar]
- Nudda, A.; Correddu, F.; Marzano, A.; Battacone, G.; Nicolussi, P.; Bonelli, P.; Pulina, G. Effects of diets containing grape seed, linseed, or both on milk production traits, liver and kidney activities, and immunity of lactating dairy ewes. J. Dairy Sci. 2015, 98, 1157–1166. [Google Scholar] [CrossRef] [Green Version]
- Alba, D.F.; Campigotto, G.; Cazarotto, C.J.; Dos Santos, D.S.; Gebert, R.R.; Reis, J.H.; Souza, C.F.; Baldissera, M.D.; Gindri, A.L.; Kempka, A.P.; et al. Use of grape residue flour in lactating dairy sheep in heat stress: Effects on health, milk production and quality. J. Therm. Biol. 2019, 82, 197–205. [Google Scholar] [CrossRef]
- Pulina, G.; Battacone, G.; Mazzette, A.; Acciaro, M.; Decandia, M.; Sitzia, M.; Nudda, A. The effects of hydrolyzable tannins on rumen fluid traits and production performances in dairy sheep fed on pasture. In Proceedings of the 3rd EAAP International Symposium on Energy and Protein Metabolism and Nutrition, Parma, Italy, 6–10 September 2010. [Google Scholar]
- Castañares, N.; Mazzette, A.; Lovicu, M.; Mazza, A.; Nudda, A. Milk production of Sarda ewes fed chestnut and quebracho tannins. Ital. J. Anim. Sci. 2011, 10, 96. [Google Scholar]
- Prapaiwong, T.; Srakaew, W.; Poolthajit, S.; Wachirapakorn, C.; Jarassaeng, C. Effects of Chestnut Hydrolysable Tannin on Intake, Digestibility, Rumen Fermentation, Milk Production and Somatic Cell Count in Crossbred Dairy Cows. Vet. Sci. 2023, 10, 269. [Google Scholar] [CrossRef]
- Lahiri, D.; Dash, S.; Dutta, R.; Nag, M. Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants. J. Biosci. 2019, 44, 52. [Google Scholar] [CrossRef] [PubMed]
- Jagani, S.; Chelikani, R.; Kim, D.S. Effects of phenol and natural phenolic compounds on biofilm formation by Pseudomonas aeruginosa. Biofouling 2009, 25, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Liu, H.; Yu, X.; Zhang, X.; Lu, H.; Zhou, T.; Cao, J. Antimicrobial and anti-biofilm activity of tannic acid against Staphylococcus aureus. Nat. Prod. Res. 2018, 32, 2225–2228. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.T.; Lu, Z.; Chou, M. Mechanism of inhibition of tannic acid and related compounds on the growth of intestinal bacteria. Food Chem. Toxicol. 1998, 36, 1053–1060. [Google Scholar] [CrossRef]
- Tintino, S.R.; Oliveira-Tintino, C.D.M.; Campina, F.F.; Silva, R.L.P.; Costa, M.D.S.; Menezes, I.R.A.; Calixto-Júnior, J.T.; Siqueira-Junior, J.P.; Coutinho, H.D.M.; Leal-Balbino, T.C.; et al. Evaluation of the tannic acid inhibitory effect against the NorA efflux pump of Staphylococcus aureus. Microb. Pathog. 2016, 97, 9–13. [Google Scholar] [CrossRef]
- Min, B.R.; Hart, S.P.; Miller, D.; Tomita, G.M.; Loetz, E.; Sahlu, T. The effect of grazing forage containing condensed tannins on gastro-intestinal parasite infection and milk composition in Angora does. Vet. Parasitol. 2005, 130, 105–113. [Google Scholar] [CrossRef]
- Bennato, F.; Ianni, A.; Innosa, D.; Grotta, L.; D’Onofrio, A.; Martino, G. Chemical-nutritional characteristics and aromatic profile of milk and related dairy products obtained from goats fed with extruded linseed. Asian-australas. J. Anim. Sci. 2020, 33, 148. [Google Scholar] [CrossRef] [Green Version]
- Klir, Z.; Castro-Montoya, J.M.; Novoselec, J.; Molkentin, J.; Domacinovic, M.; Mioc, B.; Dickhoefer, U.; Antunovic, Z. Influence of pumpkin seed cake and extruded linseed on milk production and milk fatty acid profile in Alpine goats. Animal 2017, 11, 1772–1778. [Google Scholar] [CrossRef] [Green Version]
- Kawai, K.; Kuruhara, K.; Matano, Y.; Akiyama, K.; Hashimura, S.; Tanaka, S.; Kiku, Y.; Watanabe, A.; Shinozuka, Y. Effects of coffee ground silage feeding in reducing somatic cell count in bovine subclinical mastitis milk. Asian J. Anim. Vet. Adv. 2018, 13, 377–382. [Google Scholar] [CrossRef]
- Casula, M.; Scano, P.; Manis, C.; Tolle, G.; Nudda, A.; Carta, S.; Pulina, G.; Caboni, P. UHPLC-QTOF/MS Untargeted Lipidomics and Caffeine Carry-Over in Milk of Goats under Spent Coffee Ground Enriched Diet. Appl. Sci. 2023, 13, 2477. [Google Scholar] [CrossRef]
- Acikalin, B.; Sanlier, N. Coffee and its effects on the immune system. Trends Food Sci. Technol. 2021, 114, 625–632. [Google Scholar] [CrossRef]
- Shabtay, A.; Nikbachat, M.; Zenou, A.; Yosef, E.; Arkin, O.; Sneer, O.; Shwimmer, A.; Yaari, A.; Budman, E.; Agmon, G.; et al. Effects of adding a concentrated pomegranate extract to the ration of lactating cows on performance and udder health parameters. Anim. Feed Sci. Technol. 2012, 175, 24–32. [Google Scholar] [CrossRef]
- Campos, E.Í.A.; de Sousa Silva, L.; de Sousa Garcia, S.A.; de Oliveira, P.G.; de Oliveira, M.A.P.; da Silva, C.A.; de Paula, J.R. Atividade antimicrobiana do extrato, frações e punicalagina da casca do fruto de Punica granatum frente a isolados clínicos de vacas com mastite. Res. Soc. Dev. 2021, 10, e531101623935. [Google Scholar] [CrossRef]
- Renna, M.; Lussiana, C.; Colonna, L.; Malfatto, V.M.; Mimosi, A.; Cornale, P. Inclusion of cocoa bean shell in the diet of dairy goats: Effects on milk production performance and milk fatty acid profile. Front. Vet. Sci. 2022, 9, 848452. [Google Scholar] [CrossRef] [PubMed]
- Nudda, A.; Buffa, G.; Atzori, A.S.; Cappai, M.G.; Caboni, P.; Fais, G.; Pulina, G. Small amounts of agro-industrial byproducts in dairy ewes diets affects milk production traits and hematological parameters. Anim. Feed Sci. Technol. 2019, 251, 76–85. [Google Scholar] [CrossRef]
- Valenti, B.; Luciano, G.; Morbidini, L.; Rossetti, U.; Codini, M.; Avondo, M.; Priolo, A.; Bella, M.; Natalello, A.; Pauselli, M. Dietary pomegranate pulp: Effect on ewe milk quality during late lactation. Animals 2019, 9, 283. [Google Scholar] [CrossRef] [Green Version]
- Serra, A.; Conte, G.; Ciucci, F.; Bulleri, E.; Corrales-Retana, L.; Cappucci, A.; Buccioni, A.; Mele, M. Dietary linseed supplementation affects the fatty acid composition of the sn-2 position of triglycerides in sheep milk. J. Dairy Sci. 2018, 101, 6742–6751. [Google Scholar] [CrossRef] [Green Version]
- Kahraman, M.; Sakar, E.; Yurtseven, S.; Aydın, D.A.Ş.; Yalçin, H.; Mehmet, A.V.C.I.; Güngören, G.; Doğan Daş, B.; Şahan, A.; Takim, K.; et al. The effect of pistachio shell, pomegranate hull, and olive pulp feeding on milk yield, milk quality, and some biochemical blood parameters in sheep. Harran Üniversitesi Vet. Fakültesi Derg. 2022, 11, 84–92. [Google Scholar] [CrossRef]
- Mannelli, F.; Cappucci, A.; Pini, F.; Pastorelli, R.; Decorosi, F.; Giovannetti, L.; Mele, M.; Minieri, S.; Conte, G.; Pauselli, M.; et al. Effect of different types of olive oil pomace dietary supplementation on the rumen microbial community profile in Comisana ewes. Sci. Rep. 2018, 8, 8455. [Google Scholar] [CrossRef]
- Boutoial, K.; Ferrandini, E.; Rovira, S.; García, V.; López, M.B. Effect of feeding goats with rosemary (Rosmarinus officinalis spp.) by-product on milk and cheese properties. Small Rumin. Res. 2013, 112, 147–153. [Google Scholar] [CrossRef]
- Nudda, A.; Battacone, G.; Atzori, A.S.; Dimauro, C.; Rassu, S.P.G.; Nicolussi, P.; Bonelli, P.; Pulina, G. Effect of extruded linseed supplementation on blood metabolic profile and milk performance of Saanen goats. Animal 2013, 7, 1464–1471. [Google Scholar] [CrossRef] [PubMed]
- Carta, S.; Tsiplakou, E.; Nicolussi, P.; Pulina, G.; Nudda, A. Effects of spent coffee grounds on production traits, haematological parameters, and antioxidant activity of blood and milk in dairy goats. Animal 2022, 16, 100501. [Google Scholar] [CrossRef] [PubMed]
- Yaowapaksophon, J. Performance and milk anti-oxidant property of dairy goats fed pomegranate seed pulp and soybean oil. J. Adv. Agric. Technol. 2018, 5, 109–116. [Google Scholar] [CrossRef]
- Monllor, P.; Muelas, R.; Roca, A.; Bueso-Ródenas, J.; Atzori, A.S.; Sendra, E.; Romero, G.; Díaz, J.R. Effect of the Short-Term Incorporation of Different Proportions of Ensiled Artichoke By-Product on Milk Parameters and Health Status of Dairy Goats. Agronomy 2021, 11, 1649. [Google Scholar] [CrossRef]
- Nguyen, Q.V.; Le, H.V.; Nguyen, D.V.; Nish, P.; Otto, J.R.; Malau-Aduli, B.S.; Nichols, P.D.; Malau-Aduli, A.E. Supplementing dairy ewes grazing low quality pastures with plant-derived and rumen-protected oils containing eicosapentaenoic acid and docosahexaenoic acid pellets increases body condition score and milk, fat, and protein yields. Animals 2018, 8, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Hamd, A.; El-Diahy, Y.M.; El-Maghraby, M.M.; Elshora, M.A. Effect of flaxseed oil on digestibility, blood parameters, immuno-response and productive performance of suckling Friesian calves. J. Anim. Poult. Prod. 2015, 6, 755–765. [Google Scholar] [CrossRef]
- Pi, Y.; Ma, L.; Wang, H.; Wang, J.; Xu, J.; Bu, D. Rubber seed oil and flaxseed oil supplementation on serum fatty acid profile, oxidation stability of serum and milk, and immune function of dairy cows. Asian-Australas J. Anim. Sci. 2019, 32, 1363. [Google Scholar] [CrossRef] [Green Version]
- Karcher, E.L.; Hill, T.M.; Bateman II, H.G.; Schlotterbeck, R.L.; Vito, N.; Sordillo, L.M.; VandeHaar, M.J. Comparison of supplementation of n-3 fatty acids from fish and flax oil on cytokine gene expression and growth of milk-fed Holstein calves. J. Dairy Sci. 2014, 97, 2329–2337. [Google Scholar] [CrossRef]
- Giannenas, I.; Skoufos, J.; Giannakopoulos, C.; Wiemann, M.; Gortzi, O.; Lalas, S.; Kyriazakis, I. Effects of essential oils on milk production, milk composition, and rumen microbiota in Chios dairy ewes. J. Dairy Sci. 2011, 94, 5569–5577. [Google Scholar] [CrossRef]
- Jaguezeski, A.M.; Perin, G.; Bottari, N.B.; Wagner, R.; Fagundes, M.B.; Schetinger, M.R.C.; Morsch, V.M.; Stein, C.S.; Moresco, R.N.; Barreta, D.A.; et al. Addition of curcumin to the diet of dairy sheep improves health, performance and milk quality. Anim. Feed Sci. Technol. 2018, 246, 144–157. [Google Scholar] [CrossRef]
- Kholif, A.E.; Elazab, M.A.; Matloup, O.H.; Olafadehan, O.A.; Sallam, S.M.A. Crude coriander oil in the diet of lactating goats enhanced lactational performance, ruminal fermentation, apparent nutrient digestibility, and blood chemistry. Small Rumin. Res. 2021, 204, 106522. [Google Scholar] [CrossRef]
- Miguel, M.G. Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S.; Mandal, M. Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity. Asian Pac. J. Trop. Biomed. 2015, 5, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Pajor, F.; Egerszegi, I.; Szűcs, Á.; Póti, P.; Bodnár, Á. Effect of marine algae supplementation on somatic cell count, prevalence of udder pathogens, and fatty acid profile of dairy goats’ milk. Animals 2021, 11, 1097. [Google Scholar] [CrossRef]
- Valizadeh Yonjalli, R.; Mirzaei Aghjehgheshlagh, F.; Mahdavi, A.; Navidshad, B.; Staji, H. The effects of tannin extract and linseed oil on yield, physicochemical characteristics and fatty acid profile of ewe milk. Int. J. Dairy Technol. 2020, 73, 656–666. [Google Scholar] [CrossRef]
- Contreras-Solís, I.; Porcu, C.; Sotgiu, F.D.; Chessa, F.; Pasciu, V.; Dattena, M.; Caredda, M.; Abecia, J.A.; Molle, G.; Berlinguer, F. Effect of Strategic Supplementation of Dietary By-Pass Linseed Oil on Fertility and Milk Quality in Sarda Ewes. Animals 2023, 13, 280. [Google Scholar] [CrossRef]
- Kotsampasi, B.; Tsiplakou, E.; Christodoulou, C.; Mavrommatis, A.; Mitsiopoulou, C.; Karaiskou, C.; Sossidou, E.; Fragioudakis, N.; Kapsomenos, I.; Bampidis, V.A.; et al. Effects of dietary orange peel essential oil supplementation on milk yield and composition, and blood and milk antioxidant status of dairy ewes. Anim. Feed Sci. Technol. 2018, 245, 20–31. [Google Scholar] [CrossRef]
- Ha, N.T.T.; Mai, D.T.T.; Hang, T.T.T.; Thanh, L.P. Effects of oil and grape seed tannin extract on intakes, digestibility, milk yield and composition of Saanen goats. Vet. Integr. Sci. 2023, 21, 37–47. [Google Scholar]
- Caroprese, M.; Ciliberti, M.G.; Santillo, A.; Marino, R.; Sevi, A.; Albenzio, M. Immune response, productivity and quality of milk from grazing goats as affected by dietary polyunsaturated fatty acid supplementation. Res. Vet. Sci. 2016, 105, 229–235. [Google Scholar] [CrossRef]
- Emami, A.; Ganjkhanlou, M.; Nasri, M.F.; Zali, A.; Rashidi, L.; Sharifi, M. Antioxidant status of dairy goats fed diets containing pomegranate seed oil or linseed oil. Small Rumin. Res. 2017, 153, 175–179. [Google Scholar] [CrossRef]
- Cattaneo, D.; Dell’Orto, V.; Varisco, G.; Agazzi, A.; Savoini, G. Enrichment in n− 3 fatty acids of goat’s colostrum and milk by maternal fish oil supplementation. Small Rumin. Res. 2006, 64, 22–29. [Google Scholar] [CrossRef]
- Chávari, A.C.T.; Marques, R.O.; Cañizares, G.I.L.; Brito, E.P.; Gomes, H.F.B.; Lourençon, R.V.; de Lima Meirelles, P.R.; Gonçalves, H.C. Yield, composition, and fatty acid profile of milk from Anglo Nubian goats fed a diet supplemented with vegetable oils. Rev. Bras. Zootec. 2020, 49, e20200071. [Google Scholar] [CrossRef]
- Casamassima, D.; Sevi, A.; Palazzo, M.; Ramacciato, R.; Colella, G.E.; Bellitti, A. Effects of two different housing systems on behavior, physiology and milk yield of Comisana ewes. Small Rumin. Res. 2001, 41, 151–161. [Google Scholar] [CrossRef]
- Giger-Reverdin, S.; Rigalma, K.; Desnoyers, M.; Sauvant, D.; Duvaux-Ponter, C. Effect of concentrate level on feeding behavior and rumen and blood parameters in dairy goats: Relationships between behavioral and physiological parameters and effect of between-animal variability. J. Dairy Sci. 2014, 97, 4367–4378. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Xue, M.; Liu, J. Composition of rumen bacterial community in dairy cows with different levels of somatic cell counts. Front. Microbiol. 2018, 9, 3217. [Google Scholar] [CrossRef] [Green Version]
- Kasapidou, E.; Basdagianni, Z.; Papadopoulos, V.; Karaiskou, C.; Kesidis, A.; Tsiotsias, A. Effects of intensive and semi-intensive production on sheep milk chemical composition, physicochemical characteristics, fatty acid profile, and nutritional indices. Animals 2021, 11, 2578. [Google Scholar] [CrossRef]
- Ceyhan, A.; Avcı, M.; Tanrıkulu, M.M.; Yılmaz, B.; Ul Hassan, M. The effect of different management systems on milk yield and milk quality in Awassi sheep. Arch. Anim. Breed. 2022, 65, 407–416. [Google Scholar] [CrossRef]
- Herve, L.; Quesnel, H.; Lollivier, V.; Portanguen, J.; Bruckmaier, R.M.; Boutinaud, M. Mammary epithelium disruption and mammary epithelial cell exfoliation during milking in dairy cows. J. Dairy Sci. 2017, 100, 9824–9834. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nudda, A.; Carta, S.; Battacone, G.; Pulina, G. Feeding and Nutritional Factors That Affect Somatic Cell Counts in Milk of Sheep and Goats. Vet. Sci. 2023, 10, 454. https://doi.org/10.3390/vetsci10070454
Nudda A, Carta S, Battacone G, Pulina G. Feeding and Nutritional Factors That Affect Somatic Cell Counts in Milk of Sheep and Goats. Veterinary Sciences. 2023; 10(7):454. https://doi.org/10.3390/vetsci10070454
Chicago/Turabian StyleNudda, Anna, Silvia Carta, Gianni Battacone, and Giuseppe Pulina. 2023. "Feeding and Nutritional Factors That Affect Somatic Cell Counts in Milk of Sheep and Goats" Veterinary Sciences 10, no. 7: 454. https://doi.org/10.3390/vetsci10070454