The Use of Kaolin as a Prophylactic Treatment to Prevent Columnaris Disease (Flavobacterium covae) in Commercial Baitfish and Sportfish Species
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Histology
2.3. Electron Microscopy of Channel Catfish Skin
2.4. Whole Body Metal Analysis of Largemouth Bass
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Austin, B.; Austin, D.A. Bacterial Fish Pathogens: Disease in Farmed and Wild Fish, 4th ed.; Ellis Horwood: New York, NY, USA, 1993; pp. 112–122. [Google Scholar]
- Wagner, B.A.; Wise, D.J.; Khoo, L.J.; Terhune, J.S. The epidemiology of bacterial disease in food-size channel catfish. J. Aquat. Anim. Health 2002, 14, 263–272. [Google Scholar] [CrossRef]
- Evenhuis, J.P.; LaPatra, S.E.; Marancik, D. Early life stage rainbow trout (Oncorhynchus mykiss) mortalities due to Flavobacterium columnare in Idaho, USA. Aquaculture 2014, 418, 126–131. [Google Scholar] [CrossRef]
- Barony, G.M.; Tavares, G.C.; Assis, G.B.N.; Luz, R.K.; Figueiredo, H.C.P.; Leal, C.A.G. New hosts and genetic diversity of Flavobacterium columnare isolated from Brazilian native species and Nile tilapia. Dis. Aquat. Org. 2015, 117, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Faisal, M.; Diamanka, A.; Loch, T.P.; LaFrentz, B.R.; Winters, A.D.; García, J.C.; Toguebaye, B.S. Isolation and characterization of Flavobacterium columnare strains infecting fishes inhabiting the Laurentian Great Lakes basin. J. Fish Dis. 2017, 40, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahman, H.A.; Hemstreet, W.G.; Roy, L.A.; Hanson, T.R.; Beck, B.H.; Kelly, A.M. Epidemiology and economic impact of disease-related losses on commercial catfish farms: A seven-year case study from Alabama, USA. Aquaculture 2023, 566, 739206. [Google Scholar] [CrossRef]
- LaFrentz, B.R.; Králová, S.; Burbick, C.R.; Alexander, T.L.; Phillips, C.W.; Griffin, M.J.; Waldbieser, G.C.; García, J.C.; de Alexandre Sebastião, F.; Soto, E.; et al. The fish pathogen Flavobacterium columnare represents four distinct species: Flavobacterium columnare, Flavobacterium covae sp. nov., Flavobacterium davisii sp. nov. and Flavobacterium oreochromis sp. nov., and emended description of Flavobacterium columnare. Syst. Appl. Microbiol. 2022, 45, 126293. [Google Scholar] [CrossRef]
- Groff, J.M.; Lapatra, S.E. Infectious diseases impacting the commercial culture of salmonids. J. Appl. Aquac. 2000, 10, 17–90. [Google Scholar] [CrossRef]
- Plumb, J.A. Overview of warmwater fish diseases. J. Appl. Aquac. 1999, 9, 1–10. [Google Scholar] [CrossRef]
- Snieszko, S.F. The effects of environmental stress on outbreaks of infectious diseases of fishes. J. Fish Biol. 1974, 6, 197–208. [Google Scholar] [CrossRef]
- Wakabayashi, H. Effect of environmental conditions on the infectivity of Flexibacter columnaris to fish. J. Fish Dis. 1991, 14, 279–290. [Google Scholar] [CrossRef]
- Wedemeyer, G.A. Effects of rearing conditions on the health and physiological quality of fish in intensive culture. In Fish Stress and Health in Aquaculture; Iwama, G.K., Pickering, A.D., Sumpter, J.P., Schreck, C.B., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 35–71. [Google Scholar]
- Decostere, A.; Haesebrouck, F.; Turnbull, J.F.; Charlier, G. Influence of water quality and temperature on adhesion of high and low virulence Flavobacterium columnare strains to isolated gill arches. J. Fish Dis. 1999, 22, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Cabello, F.C. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environ. Microbiol. 2006, 8, 1137–1144. [Google Scholar] [CrossRef]
- Defoirdt, T.; Sorgeloos, P.; Bossier, P. Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr. Opin. Microbiol. 2011, 14, 251–258. [Google Scholar] [CrossRef]
- Declercq, A.M.; Boyen, F.; Van Den Broeck, W.; Bossier, P.; Karsi, A.; Haesebrouck, F.; Decostere, A. Antimicrobial susceptibility pattern of Flavobacterium columnare isolates collected worldwide from 17 fish species. J. Fish Dis. 2013, 36, 45–55. [Google Scholar] [CrossRef]
- Isabel Carretero, M.I. Clay minerals and their beneficial effects upon human health. A review. Appl. Clay Sci. 2002, 21, 155–163. [Google Scholar] [CrossRef]
- Isabel Carretero, M.I.; Gomes, C.S.F.; Tateo, F. Clays and human health. In Handbook of Clay Science; Bergaya, F., Theng, K.G., Lagaly, G., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2006; pp. 717–741. [Google Scholar]
- Isabel Carretero, M.; Lagaly, G. Clays and health: An introduction. Appl. Clay Sci. 2007, 36, 1–3. [Google Scholar] [CrossRef]
- Gomes, C.D.S.F.; Silva, J.B.P. Minerals and clay minerals in medical geology. Appl. Clay Sci. 2007, 36, 4–21. [Google Scholar] [CrossRef]
- Otto, C.; Haydel, S. Microbicidal clays: Composition, activity, mechanism of action, and therapeutic applications. In Pathogens and Strategies for Combating Them; Méndez-Vilas, A., Ed.; Microbial Science, Technology and Education: Badajoz, Spain, 2013; pp. 1169–1180. [Google Scholar]
- Hrenovic, J.; Ivankovic, T.; Tibljas, D. The effect of mineral carrier composition on phosphate-accumulating bacteria immobilization. J. Hazard. Mater. 2009, 166, 1377–1382. [Google Scholar] [CrossRef]
- Muter, O.; Potapova, K.; Nikolajeva, V.; Petrina, Z.; Griba, T.; Patmalnieks, A.; Svinka, R.; Svinka, V. Comparative study on bacteria colonization onto ceramic beads originated from two Devonian clay deposits in Latvia. Rigas Teh. Univ. Zinat. Raksti 2012, 26, 134. [Google Scholar]
- Rong, X.; Huang, Q.; He, X.; Chen, H.; Cai, P.; Liang, W. Interaction of Pseudomonas putida with kaolinite and montmorillonite: A combination study by equilibrium adsorption, ITC, SEM and FTIR. Colloids Surf. B 2008, 64, 49–55. [Google Scholar] [CrossRef]
- Gui, X.; Xing, Y.; Rong, G.; Cao, Y.; Liu, J. Interaction forces between coal and kaolinite particles measured by atomic force microscopy. Powder Technol. 2016, 301, 349–355. [Google Scholar] [CrossRef]
- Katsikogianni, M.; Missirlis, Y.F. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur. Cell. Mater. 2004, 8, 37–57. [Google Scholar] [CrossRef] [PubMed]
- Di Bonaventura, G.; Piccolomini, R.; Paludi, D.; D’orio, V.; Vergara, A.; Conter, M.; Ianieri, A. Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: Relationship with motility and cell surface hydrophobicity. J. Appl. Microbiol. 2008, 104, 1552–1561. [Google Scholar] [CrossRef]
- Kouider, N.; Hamadi, F.; Mallouki, B.; Bengourram, J.; Mabrouki, M.; Zekraoui, M.; Ellouali, M.; Latrache, H. Effect of stainless steel surface roughness on Staphylococcus aureus adhesion. Int. J. Pure Appl. Sci. 2010, 4, 1–7. [Google Scholar]
- Beck, B.H.; Farmer, B.D.; Straus, D.L.; Li, C.; Peatman, E. Putative roles for a rhamnose binding lectin in Flavobacterium columnare pathogenesis in channel catfish Ictalurus punctatus. Fish Shellfish Immunol. 2012, 33, 1008–1015. [Google Scholar] [CrossRef]
- Peatman, E.; Li, C.; Peterson, B.; Straus, D.; Farmer, B.; Beck, B.H. Basal polarization of the mucosal compartment in Flavobacterium columnare susceptible and resistant channel catfish Ictalurus punctatus. Mol. Immunol. 2013, 56, 317–327. [Google Scholar] [CrossRef]
- Hektoen, L.; Rappaport, B. The use of kaolin to remove bacteria from the throat and nose. J. Am. Med. Assoc. 1915, 64, 1985. [Google Scholar] [CrossRef]
- Gunnison, J.B.; Marshall, M.S. Adsorption of bacteria by inert particulate reagents. J. Bacteriol. 1937, 33, 401. [Google Scholar] [CrossRef] [Green Version]
- Grove, D.J.; Loizides, L.G.; Nott, J. Satiation amount, frequency of feeding and gastric emptying rate in Salmo gairdneri. J. Fish Biol. 1978, 12, 507–516. [Google Scholar] [CrossRef]
- Jobling, M. Dietary digestibility and the influence of food components on gastric evacuation in plaice, Pleuronectes platessa L. J. Fish Biol. 1981, 19, 29–36. [Google Scholar] [CrossRef]
- Mizuno, S.; Sasaki, Y.; Omoto, N.; Imada, K. Elimination of adhesiveness in the eggs of shishamo smelt (Spirinchus lanceolatus) using kaolin treatment to achieve high hatching rate in an environment with a high iron concentration. Aquaculture 1959, 242, 713–726. [Google Scholar] [CrossRef]
- Esterman, E.F.; McLaren, A.D. Stimulation of bacterial proteolysis by adsorbents. J. Soil Sci. 1959, 10, 64–78. [Google Scholar] [CrossRef]
- Soda, S.; Ike, M.; Fujita, M. Adsorption of bacterial cells onto activated sludge flocs. J. Biosci. Bioeng. 1999, 87, 513–518. [Google Scholar] [CrossRef]
- Beck, B.H.; Barnett, L.M.; Farmer, B.D.; Peatman, E.; Carter, D. Kaolinitic clay protects against Flavobacterium columnare infection in channel catfish Ictalurus punctatus (Rafinesque). J. Fish Dis. 2015, 38, 241–248. [Google Scholar] [CrossRef]
- Yildirim-Aksoy, M.; Mohammed, H.; Peatman, E.; Fuller, S.A.; Beck, B.H. Influence of kaolin clay on Aeromonas hydrophila growth, chemotaxis, and virulence to channel catfish. N. Am. J. Aquac. 2018, 80, 427–435. [Google Scholar] [CrossRef]
- SAS. The SAS System for Windows, Release 9.4; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Berkman, H.E.; Rabeni, C.F. Effect of siltation on stream fish communities. Environ. Biol. Fishes 1987, 18, 285–294. [Google Scholar] [CrossRef]
- Wallen, I.E. The direct effect of turbidity on fishes. Bulletin of Oklahoma Agricultural and Mechanical College. Okla. Arts Sci. Stud. Biol. Ser. 1951, 48, 1–27. [Google Scholar]
- Herbert, D.W.M.; Merkens, J.C. The survival of trout. Int. J. Air Water Pollut. 1961, 5, 46–55. [Google Scholar]
- Lake, R.G.; Hinch, S.G. Acute effects of suspended sediment angularity on juvenile coho salmon (Oncorhynchus kisutch). Can. J. Fish. Aquat. Sci. 1999, 56, 862–867. [Google Scholar] [CrossRef]
- Goldes, S.A.; Ferguson, H.W.; Daoust, P.Y.; Moccia, R.D. Phagocytosis of the inert suspended clay kaolin by the gills of rainbow trout, Salmo gairdneri Richardson. J. Fish Dis. 1986, 9, 147–151. [Google Scholar] [CrossRef]
- Redding, J.M.; Schreck, C.B.; Everest, F.H. Physiological effects on coho salmon and steelhead of exposure to suspended solids. Trans. Am. Fish. Soc. 1987, 116, 737–744. [Google Scholar] [CrossRef]
- Newcombe, C.P.; MacDonald, D.D. Effects of suspended sediments on aquatic ecosystems. N. Am. J. Fish. Manag. 1991, 11, 72–82. [Google Scholar] [CrossRef]
- Richter, B.D.; Braun, D.P.; Mendelson, M.A.; Master, L.L. Threats to imperiled freshwater fauna: Amenazas a la fauna dulceacuicola en riesgo. Conserv. Biol. 1997, 11, 1081–1093. [Google Scholar] [CrossRef]
- Wilber, D.H.; Clarke, D.G. Biological effects of suspended sediments: A review of suspended sediment impacts on fish and shellfish with relation to dredging activities in estuaries. N. Am. J. Fish. Manag. 2001, 21, 855–875. [Google Scholar] [CrossRef]
- Sutherland, A.B.; Meyer, J.L. Effects of increased suspended sediment on growth rate and gill condition of two southern Appalachian minnows. Environ. Biol. Fish. 2007, 80, 389–403. [Google Scholar] [CrossRef]
- Awata, S.; Tsuruta, T.; Yada, T.; Iguchi, K.I. Effects of suspended sediment on cortisol levels in wild and cultured strains of ayu Plecoglossus altivelis. Aquaculture 2011, 314, 115–121. [Google Scholar] [CrossRef]
- Berli, B.I.; Gilbert, M.J.; Ralph, A.L.; Tierney, K.B.; Burkhardt-Holm, P. Acute exposure to a common suspended sediment affects the swimming performance and physiology of juvenile salmonids. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2014, 176, 1–10. [Google Scholar] [CrossRef]
- Goldes, S.A.; Ferguson, H.W.; Moccia, R.D.; Daoust, P.Y. Histological effects of the inert suspended clay kaolin on the gills of juvenile rainbow trout, Salmo gairdneri Richardson. J. Fish Dis. 1988, 11, 23–33. [Google Scholar] [CrossRef]
- O’Conner, J.M.; Neuman, D.A.; Sherk, J.A., Jr. Lethal Effects of Suspended Sediments on Estuarine Fish. 1976. Available online: https://erdc-library.erdc.dren.mil/jspui/bitstream/11681/2877/1/CERC-TP-76-20.pdf (accessed on 16 June 2023).
- Anderson, D.M.; Andersen, P.; Bricelj, V.M.; Cullen, J.J.; Rensel, J.J. Monitoring and Management Strategies for Harmful Algal Blooms in Coastal Waters; Unesco: Paris, France, 2001; p. 268. [Google Scholar]
- Song, X.; Zhang, Y.; Yu, Z. As eco-en=vironmental assessment of harmful algal bloom mitigation using modified clay. Harmful Algae 2021, 107, 102067. [Google Scholar] [CrossRef]
- FDA. CPG Sec. 540.600 Fish, Shellfish, Crustaceans and Other Aquatic Animals—Fresh, Frozen or Processed—Methyl Mercury. 2007. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cpg-sec-540600-fish-shellfish-crustaceans-and-other-aquatic-animals-fresh-frozen-or-processed-methyl (accessed on 9 March 2023).
- Johnson, J.M.; Post, D.M. Morphological constraints on intracohort cannibalism in age-0 largemouth bass. Trans. Am. Fish. Soc. 1996, 125, 809–812. [Google Scholar] [CrossRef]
Fish Species | Average Length (cm) | Average Weight (g) | Survival (%) |
---|---|---|---|
Channel Catfish | 7.9 ± 0.75 | 3.5 ± 1.20 | 100 |
Black Crappie | 2.7 ± 0.78 | 6.6 ± 0.59 | 100 |
Largemouth Bass | 8.2 ± 0.69 | 5.6 ± 1.41 | 100 |
Bluegill | 9.4 ± 0.72 | 14.6 ± 3.24 | 100 |
Golden Shiner | 6.8 ± 0.68 | 2.5 ± 0.91 | 100 |
Fathead Minnow | 4.7 ± 0.27 | 1.0 ± 0.16 | 100 |
Bioassay | Dissolved Oxygen (%) | Temperature (°C) |
---|---|---|
Channel Catfish | 125 ± 3.71 | 17.8 ± 0.27 |
Black Crappie | 125 ± 6.94 | 18.1 ± 0.93 |
Largemouth Bass | 130 ± 5.34 | 16.2 ± 1.50 |
Bluegill | 124 ± 4.97 | 18.7 ± 0.29 |
Golden Shiner | 122 ± 1.17 | 17.8 ± 0.20 |
Fathead Minnow | 122 ± 3.18 | 17.8 ± 0.25 |
Species | Control (0 g/L Kaolin) | 8 g/L Kaolin |
---|---|---|
Channel Catfish | Gills: Irregular epithelial surface and focal loss of outer epithelium; Skin: Focal thinning or loss of the epidermis was present in the flank region (suspected sampling artifact); Eyes and gastrointestinal system: No significant findings. | Gills: Irregular epithelial surface and focal loss of outer epithelium; Skin: Focal thinning or loss of the epidermis was present in the flank region (suspected sampling artifact); Eyes, gastrointestinal system: No significant findings. |
Black Crappie | Gills: Irregular epithelial surface and focal loss of outer epithelium; Skin: Focal thinning or loss of the epidermis was present in the flank region (possibly related to sampling artifact); Eyes, gastrointestinal system: No significant findings. | Gills: Irregular epithelial surface and focal loss of outer epithelium; Skin: Some irregular epidermal cells in the outer epidermis; Brain, kidney, spleen, heart, gastrointestinal system: No significant findings. |
Bluegill | Gills: Irregular epithelial surface and focal loss of outer epithelium; Skin: Focal loss of the outer epidermis at the flank region; Eyes, gastrointestinal system: No significant findings. | Skin: Focal thinning or loss of the epidermis was present in the flank region (possibly related to sampling artifact); Eyes, gastrointestinal system: No significant findings. |
Golden Shiner | Gill, skin, intestine, eye: No significant findings. | Gill, skin, eye: No significant findings; Gastrointestinal tract: Small protozoan parasites associated with gut epithelial surface. |
Fathead Minnow | Gill, skin, gastrointestinal tract intestine, eye: No significant findings. | Gill, liver, stomach, pancreas, intestine, eye: No significant findings. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelly, A.M.; Renukdas, N.; Barnett, L.M.; Beck, B.H.; Abdelrahman, H.A.; Roy, L.A. The Use of Kaolin as a Prophylactic Treatment to Prevent Columnaris Disease (Flavobacterium covae) in Commercial Baitfish and Sportfish Species. Vet. Sci. 2023, 10, 441. https://doi.org/10.3390/vetsci10070441
Kelly AM, Renukdas N, Barnett LM, Beck BH, Abdelrahman HA, Roy LA. The Use of Kaolin as a Prophylactic Treatment to Prevent Columnaris Disease (Flavobacterium covae) in Commercial Baitfish and Sportfish Species. Veterinary Sciences. 2023; 10(7):441. https://doi.org/10.3390/vetsci10070441
Chicago/Turabian StyleKelly, Anita M., Nilima Renukdas, Louis Matthew Barnett, Benjamin H. Beck, Hisham A. Abdelrahman, and Luke A. Roy. 2023. "The Use of Kaolin as a Prophylactic Treatment to Prevent Columnaris Disease (Flavobacterium covae) in Commercial Baitfish and Sportfish Species" Veterinary Sciences 10, no. 7: 441. https://doi.org/10.3390/vetsci10070441
APA StyleKelly, A. M., Renukdas, N., Barnett, L. M., Beck, B. H., Abdelrahman, H. A., & Roy, L. A. (2023). The Use of Kaolin as a Prophylactic Treatment to Prevent Columnaris Disease (Flavobacterium covae) in Commercial Baitfish and Sportfish Species. Veterinary Sciences, 10(7), 441. https://doi.org/10.3390/vetsci10070441