Molecular Characteristics of Bovine Viral Diarrhea Virus Strains Isolated from Persistently Infected Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture and Virus Isolation
2.2. Indirect Immunofluorescence Assay (IFA)
2.3. RNA Extraction and RT-PCR
2.4. Complete Genomic Amplification and Sequencing
2.5. Complete Genomic Sequence Analysis
2.6. Recombination Analysis
3. Results
3.1. Virus Isolation and Identification
3.2. Genome Sequencing and Phylogenetic Analysis
3.3. Sequence Analysis of 5′-UTR
3.4. Amino Acid Analysis of E2
3.5. Amino Acid Analysis of E0
3.6. Recombination Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Primers | Primer Sequence (5′-3′) | Annealing Temperature | |
---|---|---|---|
P1 | F | GTATACGAGGTTAGGCAAGTTCTCG | 52 °C |
R | GCAGCATCCTATCAGACTGTATTC | ||
P2 | F | AAAAGAGGCTAACCACG | 47 °C |
R | CCATGT(C)TTG(A)TTCCACTCAT | ||
P3 | F | CCTCAAGAGTCACGCAAGAAA | 52 °C |
R | TACGGTCCCTGTCCATCCTAT | ||
P4 | F | TCTTTGCCCATGCGATGCTAG | 55 °C |
R | GCTCCGAATCAGGAACACCC | ||
P5 | F | CGCTACTGATGATTAGTTATGTG | 50 °C |
R | TATGTTTACTGCCTCTGGATT | ||
P6 | F | GCCAAAGCAACAACAAGTTAA | 52 °C |
R | AGGGACCTGGACCTCATAACT | ||
P7 | F | TGAAGTAGCCAAGAAACTAAAAGC | 54 °C |
R | GTCTGACACCGACTCACCCC | ||
P8 | F | TTTATGCCACCGAAGATG | 48 °C |
R | TGACAATACCGTGCTCCA | ||
P9 | F | GGACTCTGAAGGGAAGATAAG | 52 °C |
R | TGATGCCTGAAGAAACCAACT | ||
P10 | F | CGGACCAAACAAGAATAGTGA | 52 °C |
R | GCTGGTATTATCAGACCACCTAA | ||
P11 | F | AGGGGCTGCAGGCTTTCTA | 55 °C |
R | TTTTTCCCCTTCGGTTATCTTT | ||
P12 | F | CGGGCAAGCCTCAAAAGATAA | 58 °C |
R | CTCGCCTGCAGCTGAAGTTGT |
Pestivirus Species | Subtype | Strain | Origin | Location | Collection Year | GenBank Accession Number |
---|---|---|---|---|---|---|
BVDV-1 | 1a | NADL | Cattle | USA | 1963 | AJ133739 |
BVDV-1 | 1a | SD1 | USA | M96751 | ||
BVDV-1 | 1b | CC13B | Cattle | China | 2013 | KF772785 |
BVDV-1 | 1b | CP7 | Cattle | Germany | 1987 | U63479 |
BVDV-1 | 1b | JL-1 | Cattle | China | 2009 | KF501393 |
BVDV-1 | 1c | Bega-like | Bovine | Australia | 2012 | KF896608 |
BVDV-1 | 1d | 10JJ-SKR | Cattle | South Korea | 2010 | KC757383 |
BVDV-1 | 1e | Carlito | Cattle | Switzerland | 2014 | KP313732 |
BVDV-1 | 1h | UM/126/07 | Cattle | Italy | 2016 | LT631725 |
BVDV-1 | 1j | KS86-1ncp | Cattle | Japan | 2002 | AB078950 |
BVDV-1 | 1j | KS86-1cp | Cattle | Japan | 2002 | AB078952 |
BVDV-1 | 1k | SuwaCp | Cattle | Switzerland | 1999 | KC853441 |
BVDV-1 | 1k | SuwaNcp | Cattle | Switzerland | 2000 | KC853440 |
BVDV-1 | 1m | SD-15 | Cattle | China | 2015 | KR866116 |
BVDV-1 | 1m | ZM-95 | Pig | China | 1995 | AF526381 |
BVDV-1 | 1n | Shitara/02/06 | Cattle | Japan | 2006 | LC089876 |
BVDV-1 | 1o | IS26/01ncp | Cattle | Japan | 2001 | LC089875 |
BVDV-1 | 1q | Camel-6 | Camel | China | 2010 | KC695810 |
BVDV-1 | 1q | SD0803 | Pig | China | 2008 | JN400273 |
BVDV-1 | 1r | VE/245/12 | - | Italy | 2012 | LT837585 |
BVDV-2 | 2a | HLJ-10 | Cattle | China | 2011 | JF714967 |
BVDV-2 | 2a | SH-28 | Pig | China | 2009 | HQ258810 |
BVDV-2 | 2b | Hokudai-Lab/09 | Bovine | Japan | 2010 | AB567658 |
BVDV-2 | 2b | SD1301 | Cattle | China | 2012 | KJ000672 |
BVDV-2 | 2c | Potsdam 1600 | Cattle | Germany | 2000 | HG426491 |
BVDV-2 | 2c | SH2210-23 | Cattle | Germany | 2010 | HG426494 |
BDV | BDV | BD31 | Lamb | USA | - | U70263 |
BDV | BDV | X818 | Sheep | Germany | - | AF037405 |
CSFV | CSFV | Heb52010 | - | China | 2012 | JQ268754 |
CSFV | CSFV | cF114 | - | China | 2001 | AF333000 |
References
- Loddo, R.; Francesconi, V.; Laurini, E.; Boccardo, S.; Aulic, S.; Fermeglia, M.; Pricl, S.; Tonelli, M. 9-Aminoacridine-based agents impair the bovine viral diarrhea virus (BVDV) replication targeting the RNA-dependent RNA polymerase (RdRp). Bioorg. Med. Chem. 2018, 26, 855–868. [Google Scholar] [CrossRef] [PubMed]
- Becher, P.; Orlich, M.; Shannon, A.D.; Horner, G.; König, M.; Thiel, H.J. Phylogenetic analysis of pestiviruses from domestic and wild ruminants. J. Gen. Virol. 1997, 7, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Passler, T.; Walz, P.H. Bovine viral diarrhea virus infections in heterologous species. Anim. Health. Res. Rev. 2010, 11, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Yeşilbağ, K.; Alpay, G.; Becher, P. Variability and Global Distribution of Subgenotypes of Bovine Viral Diarrhea Virus. Viruses 2017, 6, 128. [Google Scholar] [CrossRef] [Green Version]
- Deng, M.; Chen, N.; Guidarini, C.; Xu, Z.; Zhang, J.; Cai, L.; Yuan, S.; Sun, Y.; Metcalfe, L. Prevalence and genetic diversity of bovine viral diarrhea virus in dairy herds of China. Vet. Microbiol. 2020, 242, 108565. [Google Scholar] [CrossRef]
- Fulton, R.W.; Ridpath, J.F.; Ore, S.; Confer, A.W.; Saliki, J.T.; Burge, L.J.; Payton, M.E. Bovine viral diarrhoea virus (BVDV) subgenotypes in diagnostic laboratory accessions: Distribution of BVDV1a, 1b, and 2a subgenotypes. Vet. Microbiol. 2005, 111, 35–40. [Google Scholar] [CrossRef]
- Ridpath, J.F. Bovine viral diarrhea virus: Global status. Vet. Clin. N. Am. Food Anim. Pract. 2010, 1, 105–121. [Google Scholar] [CrossRef]
- Collett, M.S.; Larson, R.; Belzer, S.K.; Retzel, E. Proteins encoded by bovine viral diarrhea virus: The genomic organization of a pestivirus. Virology 1988, 1, 200–208. [Google Scholar] [CrossRef]
- Deng, R.; Brock, K.V. Molecular cloning and nucleotide sequence of a pestivirus genome, noncytopathic bovine viral diarrhea virus strain SD-1. Virology 1992, 2, 867–879. [Google Scholar] [CrossRef]
- Yilmaz, H.; Altan, E.; Ridpath, J.; Turan, N. Genetic diversity and frequency of bovine viral diarrhea virus (BVDV) detected in cattle in Turkey. Comp. Immunol. Microbiol. Infect. Dis. 2012, 5, 411–416. [Google Scholar] [CrossRef]
- Colett, M.S.; Larson, R.; Gold, C.; Strick, D.; Anderson, D.K.; Purchio, A.F. Molecular cloning and nucleotide sequence of the pestivirus bovine viral diarrhea virus. Virology 1988, 1, 191–199. [Google Scholar] [CrossRef]
- Tautz, N.; Tews, B.A.; Meyers, G. The Molecular Biology of Pestiviruses. Adv. Virus Res. 2015, 93, 47–160. [Google Scholar]
- Lackner, T.; Müller, A.; Pankraz, A.; Becher, P.; Thiel, H.; Gorbalenya, A.E.; Tautz, N. Temporal modulation of an autoprotease is crucial for replication and pathogenicity of an RNA virus. J. Virol. 2004, 19, 10765–10775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walther, T.; Fellenberg, J.; Klemens, O.; Isken, O.; Tautz, N. Membrane Topology of Pestiviral Non-Structural Protein 2 and determination of the minimal autoprotease domain. J. Virol. 2021, 11, e121–e154. [Google Scholar]
- Meyers, G.; Tautz, N.; Stark, R.; Brownlie, J.; Dubovi, E.J.; Collett, M.S.; Thiel, H.J. Rearrangement of viral sequences in cytopathogenic pestiviruses. Virology 1992, 1, 368–386. [Google Scholar] [CrossRef]
- Meyers, G.; Thiel, H.J. Molecular characterization of pestiviruses. Adv. Virus Res. 1996, 47, 53–118. [Google Scholar]
- Fricke, J.; Gunn, M.; Meyers, G. A family of closely related bovine viral diarrhea virus recombinants identified in an animal suffering from mucosal disease: New insights into the development of a lethal disease in cattle. Virology 2001, 1, 77–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fricke, J.; Voss, C.; Thumm, M.; Meyers, G. Processing of a pestivirus protein by a cellular protease specific for light chain 3 of microtubule-associated proteins. J. Virol. 2004, 11, 5900–5912. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Brunak, S. Prediction of glycosylation across the human proteome and the correlation to protein function. In Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing; World Scientific: Singapore, 2002; pp. 310–322. [Google Scholar]
- Delputte, P.L.; Costers, S.; Nauwynck, H.J. Analysis of porcine reproductive and respiratory syndrome virus attachment and internalization: Distinctive roles for heparan sulphate and sialoadhesin. J. Gen. Virol. 2005, 5, 1441–1445. [Google Scholar] [CrossRef]
- Wang, F.; Deng, M.; Huang, Y.; Chang, C. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters. Viruses 2015, 7, 3506–3529. [Google Scholar] [CrossRef] [Green Version]
- Rümenapf, T.; Unger, G.; Strauss, J.H.; Thiel, H.J. Processing of the envelope glycoproteins of pestiviruses. J. Virol. 1993, 6, 3288–3294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Wang, L.; Zhao, D.; Zhang, G.; Luo, J.; Deng, R.; Yang, Y. Identification of host cell binding peptide from an overlapping peptide library for inhibition of classical swine fever virus infection. Virus Genes 2011, 11, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.; Mccauley, J.W. Identification of the glycosaminoglycan-binding site on the glycoprotein E(rns) of bovine viral diarrhoea virus by site-directed mutagenesis. J. Gen. Virol. 2002, 9, 2153–2159. [Google Scholar] [CrossRef] [PubMed]
- Mingala, C.N.; Konnai, S.; Tajima, M.; Onuma, M.; Ohashi, K. Classification of new BVDV isolates from Philippine water buffalo using the viral E2 region. J. Basic Microb. 2009, 5, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lok, S.; Yu, I.; Zhang, Y.; Kuhn, R.J.; Chen, J.; Rossmann, M.G. The flavivirus precursor membrane-envelope protein complex: Structure and maturation. Science 2008, 5871, 1830–1834. [Google Scholar] [CrossRef] [Green Version]
- El Omari, K.; Iourin, O.; Harlos, K.; Grimes, J.M.; Stuart, D.I. Structure of a pestivirus envelope glycoprotein E2 clarifies its role in cell entry. Cell Rep. 2013, 1, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Jia, S.; Huang, X.; Li, H.; Zheng, D.; Wang, L.; Qiao, X.; Jiang, Y.; Cui, W.; Tang, L.; Li, Y.; et al. Immunogenicity evaluation of recombinant Lactobacillus casei W56 expressing bovine viral diarrhea virus E2 protein in conjunction with cholera toxin B subunit as an adjuvant. Microb. Cell Fact. 2020, 1, 186. [Google Scholar] [CrossRef]
- Deng, M.; Ji, S.; Fei, W.; Raza, S.; He, C.; Chen, Y.; Chen, H.; Guo, A. Prevalence study and genetic typing of bovine viral diarrhea virus (BVDV) in four bovine species in China. PLoS ONE 2015, 7, e134777. [Google Scholar]
- Peterhans, E.; Schweizer, M. BVDV: A pestivirus inducing tolerance of the innate immune response. Biologicals 2013, 1, 39–51. [Google Scholar] [CrossRef]
- Smirnova, N.P.; Webb, B.T.; Mcgill, J.L.; Schaut, R.G.; Bielefeldt-Ohmann, H.; Van Campen, H.; Sacco, R.E.; Hansen, T.R. Induction of interferon-gamma and downstream pathways during establishment of fetal persistent infection with bovine viral diarrhea virus. Virus Res. 2014, 183, 95–106. [Google Scholar] [CrossRef]
- Chernick, A.; Ambagala, A.; Orsel, K.; Wasmuth, J.D.; van Marle, G.; van der Meer, F. Bovine viral diarrhea virus genomic variation within persistently infected cattle. Infect. Genet. Evol. 2018, 58, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Lanyon, S.R.; Hill, F.I.; Reichel, M.P.; Brownlie, J. Bovine viral diarrhoea: Pathogenesis and diagnosis. Vet. J. 2014, 2, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Walz, P.H.; Chamorro, M.F.; Falkenberg, S.M.; Passler, T.; van der Meer, F.; Woolums, A.R. Bovine viral diarrhea virus: An updated American College of Veterinary Internal Medicine consensus statement with focus on virus biology, hosts, immunosuppression, and vaccination. J. Vet. Intern. Med. 2020, 5, 1690–1706. [Google Scholar] [CrossRef] [PubMed]
- Tautz, N.; Meyers, G.; Stark, R.; Dubovi, E.J.; Thiel, H.J. Cytopathogenicity of a pestivirus correlates with a 27-nucleotide insertion. J. Virol. 1996, 11, 7851–7858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, F.; Ridpath, J.F.; Lewis, T.; Bolin, S.R.; Berry, E.S. Analysis of the bovine viral diarrhea virus genome for possible cellular insertions. Virology 1992, 1, 285–292. [Google Scholar] [CrossRef]
- Becher, P.; Orlich, M.; Thiel, H.J. Mutations in the 5′ nontranslated region of bovine viral diarrhea virus result in altered growth characteristics. J. Virol. 2000, 17, 7884–7894. [Google Scholar] [CrossRef] [Green Version]
- Chon, S.K.; Perez, D.R.; Donis, R.O. Genetic analysis of the internal ribosome entry segment of bovine viral diarrhea virus. Virology 1998, 2, 370–382. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, H.; Cao, Y.; Gai, X.; Guo, C.; Liu, Y.; Liu, J.; Wang, X. Molecular Characterization of a Novel Bovine Viral Diarrhea Virus Isolate SD-15. PLoS ONE 2016, 10, e165044. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.X.; Fan, X.H.; Xie, Y.; Chu, Q.; Sun, Y.; Zhang, Y.; Zhang, S.L.; Gong, W.J.; Chen, S.H.; Li, Y.H.; et al. Short communication: Distribution of recessive genetic defect carriers in Chinese Holstein. J. Dairy Sci. 2011, 11, 5695–5698. [Google Scholar] [CrossRef] [Green Version]
- Carter, J.M. Epitope prediction methods. Methods Mol. Biol. 1994, 36, 193–206. [Google Scholar]
- Lin, M.; Mcrae, H.; Dan, H.; Tangorra, E.; Laverdiere, A.; Pasick, J. High-resolution epitope mapping for monoclonal antibodies to the structural protein Erns of classical swine fever virus using peptide array and random peptide phage display approaches. J. Gen. Virol. 2010, 12, 2928–2940. [Google Scholar] [CrossRef] [PubMed]
- Lecot, S.; Belouzard, S.; Dubuisson, J.; Rouillé, Y. Bovine viral diarrhea virus entry is dependent on clathrin-mediated endocytosis. J. Virol. 2005, 16, 10826–10829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pecora, A.; Aguirreburualde, M.S.P.; Aguirreburualde, A.; Leunda, M.R.; Odeon, A.; Chiavenna, S.; Bochoeyer, D.; Spitteler, M.; Filippi, J.L.; Dus Santos, M.J.; et al. Safety and efficacy of an E2 glycoprotein subunit vaccine produced in mammalian cells to prevent experimental infection with bovine viral diarrhoea virus in cattle. Vet. Res. Commun. 2012, 3, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Diraviyam, T.; Li, X.; Yao, G.; Michael, A. Preparation of chicken IgY against recombinant E2 protein of bovine viral diarrhea virus (BVDV) and development of ELISA and ICA for BVDV detection. Biosci. Biotechnol. Biochem. 2016, 12, 2467–2472. [Google Scholar] [CrossRef] [Green Version]
- Meyer, D.; Aebischer, A.; Müller, M.; Grummer, B.; Greiser-Wilke, I.; Moennig, V.; Hofmann, M.A. New insights into the antigenic structure of the glycoprotein E(rns) of classical swine fever virus by epitope mapping. Virology 2012, 1, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Deregt, D.; Dubovi, E.J.; Jolley, M.E.; Nguyen, P.; Burton, K.M.; Gilbert, S.A. Mapping of two antigenic domains on the NS3 protein of the pestivirus bovine viral diarrhea virus. Vet. Microbiol. 2005, 108, 13–22. [Google Scholar] [CrossRef] [PubMed]
- HL, M.; WR, K. Molecular determinants of co- and post-translational N-glycosylation of type I transmembrane peptides. Biochem. J. 2013, 453, 427–434. [Google Scholar]
- Kuca, T.; Passler, T.; Newcomer, B.W.; Neill, J.D.; Galik, P.K.; Riddell, K.P.; Zhang, Y.; Walz, P.H. Identification of Conserved Amino Acid Substitutions During Serial Infection of Pregnant Cattle and Sheep With Bovine Viral Diarrhea Virus. Front. Microbiol. 2018, 9, 1109. [Google Scholar] [CrossRef]
Recombinant Strains | Location(s) [nt(99%CI)] | Major Parent | Minor Parent | Methods a | ||||||
---|---|---|---|---|---|---|---|---|---|---|
RDP | GeneConv | Bootscan | MaxChi | Chimaera | SiScan | 3Seq | ||||
TJ2101 | 739–1094 | NADL (1a) | SD-15 (1m) | 1.140 × 10−1 | - | 3.668 × 10−3 | 9.396 × 10−3 | 1.006 × 10−2 | 1.909 × 10−4 | - |
TJ2102 | 739–1211 | NADL (1a) | SD-15 (1m) | 1.369 × 10−4 | - | 5.171 × 10−5 | 1.518 × 10−4 | 3.415 × 10−5 | 1.969 × 10−3 | - |
TJ2104 | 691–1155 | NADL (1a) | SD-15 (1m) | 5.845 × 10−5 | - | 3.728 × 10−5 | 7.622 × 10−5 | 2.269 × 10−5 | 1.857 × 10−3 | - |
TJ2105 | 692–1164 | NADL (1a) | SD-15 (1m) | 1.411 × 10−3 | - | 1.322 × 10−3 | 1.490 × 10−3 | 2.352 × 10−4 | - | - |
TJ2106 | 724–1188 | NADL (1a) | SD-15 (1m) | 7.965 × 10−5 | - | 5.366 × 10−5 | 1.409 × 10−4 | 3.420 × 10−5 | 3.236 × 10−3 | - |
TJ2107 | 691–1156 | NADL (1a) | SD-15 (1m) | 1.469 × 10−4 | - | 1.701 × 10−4 | 1.520 × 10−4 | 5.010 × 10−5 | 3.015 × 10−3 | - |
TJ2108 | 691–1155 | NADL (1a) | SD-15 (1m) | 5.361 × 10−5 | - | 3.505 × 10−5 | 3.468 × 10−5 | 1.485 × 10−5 | 1.559 × 10−3 | - |
TJ2109 | 691–1155 | NADL (1a) | SD-15 (1m) | 1.074 × 10−4 | - | 4.368 × 10−5 | 1.012 × 10−4 | 3.418 × 10−5 | 2.724 × 10−2 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Zhang, G.; Jiang, H.; Xin, T.; Jia, L.; Zhang, Y.; Yang, Y.; Qin, T.; Xu, C.; Cao, J.; et al. Molecular Characteristics of Bovine Viral Diarrhea Virus Strains Isolated from Persistently Infected Cattle. Vet. Sci. 2023, 10, 413. https://doi.org/10.3390/vetsci10070413
Wu Y, Zhang G, Jiang H, Xin T, Jia L, Zhang Y, Yang Y, Qin T, Xu C, Cao J, et al. Molecular Characteristics of Bovine Viral Diarrhea Virus Strains Isolated from Persistently Infected Cattle. Veterinary Sciences. 2023; 10(7):413. https://doi.org/10.3390/vetsci10070413
Chicago/Turabian StyleWu, Yinghao, Guangzhi Zhang, Hui Jiang, Ting Xin, Li Jia, Yichen Zhang, Yifei Yang, Tong Qin, Chuang Xu, Jie Cao, and et al. 2023. "Molecular Characteristics of Bovine Viral Diarrhea Virus Strains Isolated from Persistently Infected Cattle" Veterinary Sciences 10, no. 7: 413. https://doi.org/10.3390/vetsci10070413
APA StyleWu, Y., Zhang, G., Jiang, H., Xin, T., Jia, L., Zhang, Y., Yang, Y., Qin, T., Xu, C., Cao, J., Ameni, G., Ahmad, A., Ding, J., Li, L., Ma, Y., & Fan, X. (2023). Molecular Characteristics of Bovine Viral Diarrhea Virus Strains Isolated from Persistently Infected Cattle. Veterinary Sciences, 10(7), 413. https://doi.org/10.3390/vetsci10070413