Artificial Intelligence in Veterinary Imaging: An Overview
Abstract
:Simple Summary
Abstract
1. Introduction
2. Machine Learning
2.1. Artificial Neural Networks and Deep Learning
2.2. Overfitting
2.3. Convolutional Neural Networks
2.4. Transfer Learning
2.5. Object Detection and Segmentation Tasks
2.6. Evaluation of the Model’s Performance
3. Veterinary Imaging
3.1. Musculoskeletal
3.2. Thoracic
3.3. Nervous System
3.4. Abdominal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chartrand, G.; Cheng, P.M.; Vorontsov, E.; Drozdzal, M.; Turcotte, S.; Pal, C.J.; Kadoury, S.; Tang, A. Deep Learning: A Primer for Radiologists. RadioGraphics 2017, 37, 2113–2131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macukow, B. Neural Networks-State of Art, Brief History, Basic Models and Architecture. In Computer Information Systems and Industrial Management, Proceedings of the 15th IFIP TC8 International Conference on Computer Information Systems and Industrial Management, Vilnius, Lithuania, 14–16 September 2016; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2016; Volume 9842, pp. 3–14. [Google Scholar] [CrossRef] [Green Version]
- Tsuneki, M. Deep Learning Models in Medical Image Analysis. J. Oral Biosci. 2022, 64, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K. Overview of Deep Learning in Medical Imaging. Radiol. Phys. Technol. 2017, 10, 257–273. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Nakaura, T.; Higaki, T.; Awai, K.; Ikeda, O.; Yamashita, Y. A Primer for Understanding Radiology Articles about Machine Learning and Deep Learning. Diagn. Interv. Imaging 2020, 101, 765–770. [Google Scholar] [CrossRef]
- Hennessey, E.; DiFazio, M.; Hennessey, R.; Cassel, N. Artificial Intelligence in Veterinary Diagnostic Imaging: A Literature Review. Vet. Radiol. Ultrasound 2022, 63, 851–870. [Google Scholar] [CrossRef]
- McBee, M.P.; Awan, O.A.; Colucci, A.T.; Ghobadi, C.W.; Kadom, N.; Kansagra, A.P.; Tridandapani, S.; Auffermann, W.F. Deep Learning in Radiology. Acad. Radiol. 2018, 25, 1472–1480. [Google Scholar] [CrossRef] [Green Version]
- Hespel, A.; Zhang, Y.; Basran, P.S. Artificial Intelligence 101 for Veterinary Diagnostic Imaging. Vet. Radiol. Ultrasound 2022, 63, 817–827. [Google Scholar] [CrossRef]
- Borstelmann, S.M. Machine Learning Principles for Radiology Investigators. Acad. Radiol. 2020, 27, 13–25. [Google Scholar] [CrossRef] [Green Version]
- McEvoy, F.J.; Proschowsky, H.F.; Müller, A.V.; Moorman, L.; Bender-Koch, J.; Svalastoga, E.L.; Frellsen, J.; Nielsen, D.H. Deep Transfer Learning Can Be Used for the Detection of Hip Joints in Pelvis Radiographs and the Classification of Their Hip Dysplasia Status. Vet. Radiol. Ultrasound 2021, 62, 387–393. [Google Scholar] [CrossRef]
- Currie, G.; Hawk, K.E.; Rohren, E.; Vial, A.; Klein, R. Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging. J. Med. Imaging Radiat. Sci. 2019, 50, 477–487. [Google Scholar] [CrossRef] [Green Version]
- Razzak, M.I.; Naz, S.; Zaib, A. Deep Learning for Medical Image Processing: Overview, Challenges and the Future. In Classification in BioApps: Automation of Decision Making; Springer: Cham, Switzerland, 2018; Volume 26, pp. 323–350. [Google Scholar] [CrossRef] [Green Version]
- Shen, D.; Wu, G.; Suk, H.-I. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do, S.; Song, K.D.; Chung, J.W. Basics of Deep Learning: A Radiologist’s Guide to Understanding Published Radiology Articles on Deep Learning. Korean J. Radiol. 2020, 21, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Giger, M.L. Machine Learning in Medical Imaging. J. Am. Coll. Radiol. 2018, 15, 512–520. [Google Scholar] [CrossRef]
- Chan, H.P.; Samala, R.K.; Hadjiiski, L.M.; Zhou, C. Advances in Experimental Medicine and Biology. In Deep Learning in Medical Image Analysis; Springer: Berlin/Heidelberg, Germany, 2020; Volume 1213, pp. 3–21. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Le, W.T.; Maleki, F.; Romero, F.P.; Forghani, R.; Kadoury, S. Overview of Machine Learning: Part 2: Deep Learning for Medical Image Analysis. Neuroimaging Clin. N. Am. 2020, 30, 417–431. [Google Scholar] [CrossRef] [PubMed]
- Maier, A.; Syben, C.; Lasser, T.; Riess, C. A Gentle Introduction to Deep Learning in Medical Image Processing. Z. Med. Phys. 2019, 29, 86–101. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, H.; Wang, S.-H.; Zhang, Y.-D. A Review of Deep Learning on Medical Image Analysis. Mob. Netw. Appl. 2021, 26, 351–380. [Google Scholar] [CrossRef]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional Neural Networks: An Overview and Application in Radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasaka, K.; Akai, H.; Kunimatsu, A.; Kiryu, S.; Abe, O. Deep Learning with Convolutional Neural Network in Radiology. Jpn. J. Radiol. 2018, 36, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Chlap, P.; Min, H.; Vandenberg, N.; Dowling, J.; Holloway, L.; Haworth, A. A Review of Medical Image Data Augmentation Techniques for Deep Learning Applications. J. Med. Imaging Radiat. Oncol. 2021, 65, 545–563. [Google Scholar] [CrossRef] [PubMed]
- Moreira da Silva, D.E.; Gonçalves, L.; Franco-Gonçalo, P.; Colaço, B.; Alves-Pimenta, S.; Ginja, M.; Ferreira, M.; Filipe, V. Active Learning for Data Efficient Semantic Segmentation of Canine Bones in Radiographs. Front. Artif. Intell. 2022, 5, 939967. [Google Scholar] [CrossRef] [PubMed]
- Yasaka, K.; Abe, O. Deep Learning and Artificial Intelligence in Radiology: Current Applications and Future Directions. PLoS Med. 2018, 15, e1002707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hesamian, M.H.; Jia, W.; He, X.; Kennedy, P. Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges. J. Digit. Imaging 2019, 32, 582–596. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.-Q.; Zheng, P.; Xu, S.-T.; Wu, X. Object Detection with Deep Learning: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Siddique, N.; Paheding, S.; Elkin, C.P.; Devabhaktuni, V. U-Net and Its Variants for Medical Image Segmentation: A Review of Theory and Applications. IEEE Access 2021, 9, 82031–82057. [Google Scholar] [CrossRef]
- Akula, S.P.; Akula, P.; Kamati, N. Detection and Classification of Canine Hip Dysplasia According to FCI Grading System Using 3D CNN’s. In Proceedings of the 2022 First International Conference on Artificial Intelligence Trends and Pattern Recognition (ICAITPR), Hyderabad, India, 10–12 March 2022; Volume 109, pp. 1–6. [Google Scholar] [CrossRef]
- Anwar, S.M.; Majid, M.; Qayyum, A.; Awais, M.; Alnowami, M.; Khan, M.K. Medical Image Analysis Using Convolutional Neural Networks: A Review. J. Med. Sys. 2018, 42, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, A.; Chong, D.; Batarseh, F.A. Foundations of Data Imbalance and Solutions for a Data Democracy. In Data Democracy: At the Nexus of Artificial Intelligence, Software Development, and Knowledge Engineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 83–106. [Google Scholar] [CrossRef]
- Banzato, T.; Wodzinski, M.; Burti, S.; Osti, V.L.; Rossoni, V.; Atzori, M.; Zotti, A. Automatic Classification of Canine Thoracic Radiographs Using Deep Learning. Sci. Rep. 2021, 11, 3964. [Google Scholar] [CrossRef]
- Moreira da Silva, D.E.; Filipe, V.; Franco-Gonçalo, P.; Colaço, B.; Alves-Pimenta, S.; Ginja, M.; Gonçalves, L. Semantic Segmentation of Dog’s Femur and Acetabulum Bones with Deep Transfer Learning in X-Ray Images. In Intelligent Systems Design and Applications, Proceedings of the 21st International Conference on Intelligent Systems Design and Applications (ISDA 2021), 13–15 December 2021; Springer: Cham, Switzerland, 2022; pp. 461–475. [Google Scholar] [CrossRef]
- McEvoy, F.J.; Amigo, J.M. Using Machine Learning to Classify Image Features from Canine Pelvic Radiographs: Evaluation of Partial Least Squares Discriminant Analysis and Artificial Neural Network Models. Vet. Radiol. Ultrasound 2013, 54, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Lalande, V.; Chen, L.; Azzabou, N.; Larcher, T.; De Certaines, J.D.; Shu, H.; Coatrieux, J.L. MRI Texture Analysis of GRMD Dogs Using Orthogonal Moments: A Preliminary Study. IRBM 2015, 36, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Duda, D.; Azzabou, N.; de Certaines, J.D. Multi-Muscle Texture Analysis for Dystrophy Development Identification in Golden Retriever Muscular Dystrophy Dogs. In Computer Information Systems and Industrial Management, Proceedings of the 17th International Conference, CISIM 2018, Olomouc, Czech Republic, 27–29 September 2018; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2018; Volume 11127, pp. 3–15. [Google Scholar] [CrossRef]
- Gomes, D.A.; Alves-Pimenta, M.S.; Ginja, M.; Filipe, V. Predicting Canine Hip Dysplasia in X-Ray Images Using Deep Learning. In Optimization, Learning Algorithms and Applications, Proceedings of the First International Conference, OL2A 2021, Bragança, Portugal, 19–21 July 2021; Springer: Cham, Switzerland, 2021; pp. 393–400. [Google Scholar] [CrossRef]
- Ergun, G.B.; Guney, S. Classification of Canine Maturity and Bone Fracture Time Based on X-Ray Images of Long Bones. IEEE Access 2021, 9, 109004–109011. [Google Scholar] [CrossRef]
- Ye, Y.; Sun, W.W.; Xu, R.X.; Selmic, L.E.; Sun, M. Intraoperative Assessment of Canine Soft Tissue Sarcoma by Deep Learning Enhanced Optical Coherence Tomography. Vet. Comp. Oncol. 2021, 19, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Marschner, C.B.; Kokla, M.; Amigo, J.M.; Rozanski, E.A.; Wiinberg, B.; McEvoy, F.J. Texture Analysis of Pulmonary Parenchymateous Changes Related to Pulmonary Thromboembolism in Dogs—A Novel Approach Using Quantitative Methods. BMC Vet. Res. 2017, 13, 219. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Hwang, T.; Lee, H. Prediction of Radiographic Abnormalities by the Use of Bag-of-Features and Convolutional Neural Networks. Vet. J. 2018, 237, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Arsomngern, P.; Numcharoenpinij, N.; Piriyataravet, J.; Teerapan, W.; Hinthong, W.; Phunchongharn, P. Computer-Aided Diagnosis for Lung Lesion in Companion Animals from X-Ray Images Using Deep Learning Techniques. In Proceedings of the 2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST), Morioka, Japan, 23–25 October 2019; pp. 1–6. [Google Scholar]
- Burti, S.; Longhin Osti, V.; Zotti, A.; Banzato, T. Use of Deep Learning to Detect Cardiomegaly on Thoracic Radiographs in Dogs. Vet. J. 2020, 262, 105505. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Visser, L.C.; Wisner, E.R.; Cheng, H. Pilot Study: Application of Artificial Intelligence for Detecting Left Atrial Enlargement on Canine Thoracic Radiographs. Vet. Radiol. Ultrasound 2020, 61, 611–618. [Google Scholar] [CrossRef]
- Boissady, E.; de La Comble, A.; Zhu, X.; Hespel, A.M. Artificial Intelligence Evaluating Primary Thoracic Lesions Has an Overall Lower Error Rate Compared to Veterinarians or Veterinarians in Conjunction with the Artificial Intelligence. Vet. Radiol. Ultrasound 2020, 61, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Ott, J.; Bruyette, D.; Arbuckle, C.; Balsz, D.; Hecht, S.; Shubitz, L.; Baldi, P. Detecting Pulmonary Coccidioidomycosis with Deep Convolutional Neural Networks. Mach. Learn. Appl. 2021, 5, 100040. [Google Scholar] [CrossRef]
- Banzato, T.; Wodzinski, M.; Tauceri, F.; Donà, C.; Scavazza, F.; Müller, H.; Zotti, A. An AI-Based Algorithm for the Automatic Classification of Thoracic Radiographs in Cats. Front. Vet. Sci. 2021, 8, 731936. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, K.; Yu, D.; Xie, Q.; Liu, B.; Chen, D.; Xv, D.; Li, Z.; Liu, C. Computerized Assisted Evaluation System for Canine Cardiomegaly via Key Points Detection with Deep Learning. Prev. Vet. Med. 2021, 193, 105399. [Google Scholar] [CrossRef] [PubMed]
- Boissady, E.; De La Comble, A.; Zhu, X.; Abbott, J.; Adrien-Maxence, H. Comparison of a Deep Learning Algorithm vs. Humans for Vertebral Heart Scale Measurements in Cats and Dogs Shows a High Degree of Agreement Among Readers. Front. Vet. Sci. 2021, 8, 764570. [Google Scholar] [CrossRef]
- Jeong, Y.; Sung, J. An Automated Deep Learning Method and Novel Cardiac Index to Detect Canine Cardiomegaly from Simple Radiography. Sci. Rep. 2022, 12, 14494. [Google Scholar] [CrossRef] [PubMed]
- Dumortier, L.; Guépin, F.; Delignette-Muller, M.L.; Boulocher, C.; Grenier, T. Deep Learning in Veterinary Medicine, an Approach Based on CNN to Detect Pulmonary Abnormalities from Lateral Thoracic Radiographs in Cats. Sci. Rep. 2022, 12, 11418. [Google Scholar] [CrossRef] [PubMed]
- Hespel, A.-M.; Boissady, E.; De La Comble, A.; Acierno, M.; Alexander, K.; Mylene, A.; David, B.; de Marie, S.; Jason, F.; Eric, G.; et al. Comparison of Error Rates between Four Pretrained DenseNet Convolutional Neural Network Models and 13 Board-Certified Veterinary Radiologists When Evaluating 15 Labels of Canine Thoracic Radiographs. Vet. Radiol. Ultrasound 2022, 63, 456–468. [Google Scholar] [CrossRef]
- Kim, E.; Fischetti, A.J.; Sreetharan, P.; Weltman, J.G.; Fox, P.R. Comparison of Artificial Intelligence to the Veterinary Radiologist’s Diagnosis of Canine Cardiogenic Pulmonary Edema. Vet. Radiol. Ultrasound 2022, 63, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.R.; Solano, M.; Tsunemi, M.H. Accuracy of Artificial Intelligence Software for the Detection of Confirmed Pleural Effusion in Thoracic Radiographs in Dogs. Vet. Radiol. Ultrasound 2022, 63, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Banzato, T.; Bernardini, M.; Cherubini, G.B.; Zotti, A. Texture Analysis of Magnetic Resonance Images to Predict Histologic Grade of Meningiomas in Dogs. Am. J. Vet. Res. 2017, 78, 1156–1162. [Google Scholar] [CrossRef]
- Banzato, T.; Cherubini, G.B.; Atzori, M.; Zotti, A. Development of a Deep Convolutional Neural Network to Predict Grading of Canine Meningiomas from Magnetic Resonance Images. Vet. J. 2018, 235, 90–92. [Google Scholar] [CrossRef]
- Banzato, T.; Bernardini, M.; Cherubini, G.B.; Zotti, A. A Methodological Approach for Deep Learning to Distinguish between Meningiomas and Gliomas on Canine MR-Images. BMC Vet. Res. 2018, 14, 317. [Google Scholar] [CrossRef] [Green Version]
- Spiteri, M.; Knowler, S.P.; Rusbridge, C.; Wells, K. Using Machine Learning to Understand Neuromorphological Change and Image-Based Biomarker Identification in Cavalier King Charles Spaniels with Chiari-like Malformation-Associated Pain and Syringomyelia. J. Vet. Int. Med. 2019, 33, 2665–2674. [Google Scholar] [CrossRef]
- Biercher, A.; Meller, S.; Wendt, J.; Caspari, N.; Schmidt-Mosig, J.; De Decker, S.; Volk, H.A. Using Deep Learning to Detect Spinal Cord Diseases on Thoracolumbar Magnetic Resonance Images of Dogs. Front. Vet. Sci. 2021, 8, 721167. [Google Scholar] [CrossRef] [PubMed]
- Wanamaker, M.W.; Vernau, K.M.; Taylor, S.L.; Cissell, D.D.; Abdelhafez, Y.G.; Zwingenberger, A.L. Classification of Neoplastic and Inflammatory Brain Disease Using MRI Texture Analysis in 119 Dogs. Vet. Radiol. Ultrasound 2021, 62, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Banzato, T.; Bonsembiante, F.; Aresu, L.; Gelain, M.E.; Burti, S.; Zotti, A. Use of Transfer Learning to Detect Diffuse Degenerative Hepatic Diseases from Ultrasound Images in Dogs: A Methodological Study. Vet. J. 2018, 233, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Shaker, R.; Wilke, C.; Ober, C.; Lawrence, J. Machine Learning Model Development for Quantitative Analysis of CT Heterogeneity in Canine Hepatic Masses May Predict Histologic Malignancy. Vet. Radiol. Ultrasound 2021, 62, 711–719. [Google Scholar] [CrossRef] [PubMed]
Body Region | ML Type | Image Dataset | Objective | Diagnostic Imaging | Reference |
---|---|---|---|---|---|
Musculoskeletal | Partial least squares discriminant analysis and an ANN | 256 images: 200 for training and 56 for testing | Identification of the hip region | X-ray | [36] |
Principal component analysis and support vector machine | 1993 images: 936 from diseased dogs and 1057 from healthy dogs | Identification of Golden Retriever Muscular Dystrophy | MRI | [37] | |
Support vector machine, Adaptive boosting, and Monte Carlo feature selection | 38 images: 5 from diseased and 5 from healthy dogs | Classification of Golden Retriever Muscular Dystrophy | MRI | [38] | |
YOLO network (YOLO v3 Tiny ConvNet) | 1835 images: 1686 for training and 149 for testing to the identification of the hip region | Identification of the hip region and hip dysplasia classification as normal or dysplastic | X-ray | [11] | |
CNN (Inception-V3) | 225 images: 165 images for training and 60 for testing | Hip dysplasia classification as normal or dysplastic | X-ray | [39] | |
CNN (AlexNet, GoogLeNet, and ResNet-50) and multi-class support vector machine | 1000 images to evaluate the dog’s maturity, 410 images for fracture dating, and 2027 for fracture detection | Determination of the dog’s maturity, fractures’ dating, and fractures’ detection in long bones | X-ray | [40] | |
CNN (ResNet-50) | 200 images: 80 of tissue with cancerous margins and 80 of normal tissue for training; 20 of tissue with cancerous margins and 20 of normal tissue for validation | Classification of surgical tissue margins as healthy or cancerous | SDOCT | [41] | |
3D CNNs | 1400 images: 800 for training, 400 for validation, and 200 for testing | Hip dysplasia classification as normal or dysplastic | X-ray MRI | [31] | |
U-Net and Feature Pyramid Network (FPN) | 138 images normal and dysplastic: 70% for training, 15% for validation, and 15% for testing | Segmentation of the dog’s femur and acetabulum bones | X-ray | [35] | |
U-Net | 202 images: 70% for training, 15% for validation, and 15% for testing | Active learning in the segmentation of the dog’s femur and acetabulum bones | X-ray | [25] | |
Thorax | Principal component analysis, partial least square discriminant analysis, and support vectors machines | 35 images: 29 images from diseased dogs and 6 images from healthy dogs | Diagnosis of pulmonary thromboembolism in dogs | CT | [42] |
Bag of features and a CNN | 3142 images for cardiomegaly (1571 normal and 1571 abnormal); 2086 images for pulmonary patterns (1043 normal and 1043 abnormal); 892 images for mediastinal shift (446 normal and 446 abnormal); 940 images for pleural effusion (470 normal and 470 abnormal); and 78 images for pneumothorax (39 normal and 39 abnormal) | Identification of cardiomegaly, pneumothorax, pleural effusion, pulmonary patterns, and mediastinal shifts | X-ray | [43] | |
CNN (DenseNet-121) | 2862 images: 80% for training and 20% for validation | Pulmonary lesions identification | X-ray | [44] | |
CNN (Inception V3, Inception-ResNet V2, VGG-19, and ResNet-101) | 1468 images: 1153 images for training and 315 images for testing | Detection of cardiomegaly in thoracic radiographs | X-ray | [45] | |
CNN (Visual Geometry Group 16 network) | 792 images: 711 images for training and 81 for testing | Detection of left atrial enlargement | X-ray | [46] | |
CNN (DenseNet-“PicoxIA”—a commercial program) | 15780 images: 90% for training and 10% for validation | Identification of 15 types of primary thoracic lesions | X-ray | [47] | |
CNN (Inception, MobileNet, ResNet, VGG, and a four-layer network) | 1174 images (65% from healthy dogs and 35% from diseased dogs) and training and test sets sorted using ten-fold cross-validation | Detection of pulmonary coccidioidomycosis | X-ray | [48] | |
CNN (ResNet-50 and DenseNet-121) | 3839 images randomly divided into training, validation, and test sets in the ratio of 8:1:1 | Classification of dog’s thoracic radiographs as unremarkable, cardiomegaly, alveolar, bronchial, and interstitial patterns, presence of masses, pleural effusion, pneumothorax, and megaesophagus | X-ray | [34] | |
CNN (ResNet-50 and Inception V3) | 1062 images randomly divided into training, validation, and test sets in the ratio of 8:1:1 | Classification of cat’s thoracic radiographs | X-ray | [49] | |
CNN (HRNet) | 2643 images: 1875 for training, 399 for validation, and 369 for testing | Determination of the vertebral heart score to identify cardiomegaly | X-ray | [50] | |
CNN (DenseNet-121-“PicoxIA”—a commercial program) | 60 images: 30 canine and 30 feline | Calculation of the vertebral heart score to identify cardiomegaly | X-ray | [51] | |
U-Net (Improved Attention U-Net) | 1000 images: 800 for training, 100 for validation, and 100 for testing | New automated cardiac index to improve the vertebral heart score and identify cardiomegaly | X-ray | [52] | |
CNN (ResNet-50 v2) | 500 images: 455 for training and validation and 45 for testing | Pulmonary patterns identification in cats | X-ray | [53] | |
CNN (DenseNet-121-“PicoxIA”—a commercial program) | 55780 images: 90% for training and 10% for testing | Classification of thoracic radiographs with 15 possible labels | X-ray | [54] | |
CNN (“Vetology”—a commercial program) | 481 images | Accuracy determination of the “Vetology” for cardiogenic pulmonary edema diagnosis | X-ray | [55] | |
CNN (“Vetology”—a commercial program with VGG-16 CNN architecture) | 4000 images: 2000 of pleural effusion and 2000 of normal patients for training | Accuracy determination of the “Vetology” for pleural effusion diagnosis | X-ray | [56] | |
Nervous system | Linear discriminant analysis | 58 sets of MRI scans of dogs with meningioma, 27 for training and 31 for testing | Prediction of the histological grade in dog’s meningiomas | MRI | [57] |
CNN (AlexNet and scrDNN) | 56 images: 60% for training, 10% for validation, and 30% for testing | Prediction of the histological grade in dog’s meningiomas | MRI | [58] | |
CNN (GoogleNet) | 80 images: 70% for training, 15% for validation, and 15% for testing | Distinction between canine glioma and meningioma | MRI | [59] | |
Sequential floating forward selection, support vector machine | 32 images: 10 normal, 11 with the malformation and clinical signs, and 11 with clinical signs without malformation | Identification of Cavalier King Charles dogs with Chiari-like malformation-associated pain and syringomyelia | MRI | [60] | |
CNN | 500 images: 375 images for training and 125 images for testing | Identification of thoracolumbar spinal cord pathologies in dogs | MRI | [61] | |
Random Forest classifier | 119 images: 80 images for training and 39 images for testing | Differentiation and identification of glial tumor cells and non-infectious inflammatory meningoencephalitis | MRI | [62] | |
Abdomen | CNN (AlexNet) | 48 images: 70% for training, 15% for validation, and 15% for testing | Detection of diffuse degenerative hepatic diseases | US | [63] |
Quadratic discriminant analysis | 40 images | Detecting canine hepatic masses and predicting malignancy | CT | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, A.I.; Franco-Gonçalo, P.; Leite, P.; Ribeiro, A.; Alves-Pimenta, M.S.; Colaço, B.; Loureiro, C.; Gonçalves, L.; Filipe, V.; Ginja, M. Artificial Intelligence in Veterinary Imaging: An Overview. Vet. Sci. 2023, 10, 320. https://doi.org/10.3390/vetsci10050320
Pereira AI, Franco-Gonçalo P, Leite P, Ribeiro A, Alves-Pimenta MS, Colaço B, Loureiro C, Gonçalves L, Filipe V, Ginja M. Artificial Intelligence in Veterinary Imaging: An Overview. Veterinary Sciences. 2023; 10(5):320. https://doi.org/10.3390/vetsci10050320
Chicago/Turabian StylePereira, Ana Inês, Pedro Franco-Gonçalo, Pedro Leite, Alexandrine Ribeiro, Maria Sofia Alves-Pimenta, Bruno Colaço, Cátia Loureiro, Lio Gonçalves, Vítor Filipe, and Mário Ginja. 2023. "Artificial Intelligence in Veterinary Imaging: An Overview" Veterinary Sciences 10, no. 5: 320. https://doi.org/10.3390/vetsci10050320
APA StylePereira, A. I., Franco-Gonçalo, P., Leite, P., Ribeiro, A., Alves-Pimenta, M. S., Colaço, B., Loureiro, C., Gonçalves, L., Filipe, V., & Ginja, M. (2023). Artificial Intelligence in Veterinary Imaging: An Overview. Veterinary Sciences, 10(5), 320. https://doi.org/10.3390/vetsci10050320