Molecular Screening of Echinococcus spp. and Other Cestodes in Wild Carnivores from Central Italy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Conservation
2.2. DNA Extraction and PCR Amplification
2.3. Sequencing and Taxonomical Identification
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eckert, J.; Deplazes, P. Biological, Epidemiological, and Clinical Aspects of Echinococcosis, a Zoonosis of Increasing Concern. Clin. Microbiol. Rev. 2004, 17, 107–135. [Google Scholar] [CrossRef]
- Carmena, D.; Cardona, G.A. Echinococcosis in Wild Carnivorous Species: Epidemiology, Genotypic Diversity, and Implications for Veterinary Public Health. Vet. Parasitol. 2014, 202, 69–94. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.C.A. Biology and Systematics of Echinococcus. In Advances in Parasitology; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; pp. 65–109. [Google Scholar]
- McManus, D.P.; Gray, D.J.; Zhang, W.; Yang, Y. Diagnosis, Treatment, and Management of Echinococcosis. BMJ 2012, 344, e3866. [Google Scholar] [CrossRef] [PubMed]
- Craig, P.S.; McManus, D.P.; Lightowlers, M.W.; Chabalgoity, J.A.; Garcia, H.H.; Gavidia, C.M.; Gilman, R.H.; Gonzalez, A.E.; Lorca, M.; Naquira, C.; et al. Prevention and Control of Cystic Echinococcosis. Lancet Infect. Dis. 2007, 7, 385–394. [Google Scholar] [CrossRef]
- WHO. Accelerating Work to Overcome the Global Impact of Neglected Tropical Diseases: A Roadmap for Implementation: Executive Summary; WHO Press: Geneva, Switzerland, 2012.
- Vuitton, D.A.; McManus, D.P.; Rogan, M.T.; Romig, T.; Gottstein, B.; Naidich, A.; Tuxun, T.; Wen, H.; Menezes da Silva, A.; Vuitton, D.A.; et al. International Consensus on Terminology to Be Used in the Field of Echinococcoses. Parasite 2020, 27, 41. [Google Scholar] [CrossRef]
- Thompson, R.C.A. The Taxonomy, Phylogeny and Transmission of Echinococcus. Exp. Parasitol. 2008, 119, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Romig, T.; Ebi, D.; Wassermann, M. Taxonomy and Molecular Epidemiology of Echinococcus Granulosus Sensu Lato. Vet. Parasitol. 2015, 213, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Bowles, J.; Blair, D.; McManus, D.P. Molecular Genetic Characterization of the Cervid Strain (‘Northern Form’) of Echinococcus Granulosus. Parasitology 1994, 109, 215–221. [Google Scholar] [CrossRef]
- Scott, J.C.; Stefaniak, J.; Pawlowski, Z.S.; McManus, D.P. Molecular Genetic Analysis of Human Cystic Hydatid Cases from Poland: Identification of a New Genotypic Group (G9) of Echinococcus Granulosus. Parasitology 1997, 114, 37–43. [Google Scholar] [CrossRef]
- Lavikainen, A.; Lehtinen, M.J.; Meri, T.; Hirvela-Koski, V.; Meri, S. Molecular Genetic Characterization of the Fennoscandian Cervid Strain, a New Genotypic Group (G10) of Echinococcus Granulosus. Parasitology 2003, 127, 207–215. [Google Scholar] [CrossRef]
- Hüttner, M.; Nakao, M.; Wassermann, T.; Siefert, L.; Boomker, J.D.F.; Dinkel, A.; Sako, Y.; Mackenstedt, U.; Romig, T.; Ito, A. Genetic Characterization and Phylogenetic Position of Echinococcus Felidis (Cestoda: Taeniidae) from the African Lion. Int. J. Parasitol. 2008, 38, 861–868. [Google Scholar] [CrossRef]
- Wen, H.; Vuitton, L.; Tuxun, T.; Li, J.; Vuitton, D.A.; Zhang, W.; McManus, D.P. Echinococcosis: Advances in the 21st Century. Clin. Microbiol. Rev. 2019, 32, e00075-18. [Google Scholar] [CrossRef] [PubMed]
- Peregrine, A.S.; Jenkins, E.J.; Barnes, B.; Johnson, S.; Polley, L.; Barker, I.K.; De Wolf, B.; Gottstein, B. Alveolar Hydatid Disease (Echinococcus Multilocularis) in the Liver of a Canadian Dog in British Columbia, a Newly Endemic Region. Can. Vet. J. La Rev. Vet. Can. 2012, 53, 870–874. [Google Scholar]
- Liu, C.-N.; Xu, Y.-Y.; Cadavid-Restrepo, A.M.; Lou, Z.-Z.; Yan, H.-B.; Li, L.; Fu, B.-Q.; Gray, D.J.; Clements, A.A.; Barnes, T.S.; et al. Estimating the Prevalence of Echinococcus in Domestic Dogs in Highly Endemic for Echinococcosis. Infect. Dis. Poverty 2018, 7, 77. [Google Scholar] [CrossRef] [PubMed]
- Cerda, J.R.; Buttke, D.E.; Ballweber, L.R. Echinococcus Spp. Tapeworms in North America. Emerg. Infect. Dis. 2018, 24, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Messier, F.; Rau, M.E.; McNeill, M.A. Echinococcus Granulosus (Cestoda: Taeniidae) Infections and Moose—Wolf Population Dynamics in Southwestern Quebec. Can. J. Zool. 1989, 67, 216–219. [Google Scholar] [CrossRef]
- Nakao, M.; Lavikainen, A.; Iwaki, T.; Haukisalmi, V.; Konyaev, S.; Oku, Y.; Okamoto, M.; Ito, A. Molecular Phylogeny of the Genus Taenia (Cestoda: Taeniidae): Proposals for the Resurrection of Hydatigera Lamarck, 1816 and the Creation of a New Genus Versteria. Int. J. Parasitol. 2013, 43, 427–437. [Google Scholar] [CrossRef]
- Mariaux, J.; Tkach, V.; Vasileva, G.P.; Waeschenbach, A.; Beveridge, I.; Dimitrova, Y.D.; Haukisalmi, V.; Greiman, S.; Littlewood, D.T.J.; Makarikov, A.; et al. Cyclophyllidea van Beneden in Braun, 1900. In Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth; Caira, J.N., Jensen, K., Eds.; University of North Dakota: Lawrence, KS, USA, 2017; pp. 77–148. [Google Scholar]
- Waeschenbach, A.; Webster, B.L.; Bray, R.A.; Littlewood, D.T.J. Added Resolution among Ordinal Level Relationships of Tapeworms (Platyhelminthes: Cestoda) with Complete Small and Large Subunit Nuclear Ribosomal RNA Genes. Mol. Phylogenet. Evol. 2007, 45, 311–325. [Google Scholar] [CrossRef]
- Caira, J.N.; Jensen, K.; Waeschenbach, A.; Olson, P.D.; Littlewood, D.T.J. Orders out of Chaos—Molecular Phylogenetics Reveals the Complexity of Shark and Stingray Tapeworm Relationships. Int. J. Parasitol. 2014, 44, 55–73. [Google Scholar] [CrossRef] [PubMed]
- Buńkowska-Gawlik, K.; Hildebrand, J.; Popiołek, M.; Merta, D.; Perec-Matysiak, A. Copro-Molecular Identification of Tapeworms in Introduced Invasive Carnivores in Poland. Pathogens 2022, 11, 110. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Vargas, F.; Solorzano-Scott, T.; Baldi, M.; Barquero-Calvo, E.; Jiménez-Rocha, A.; Jiménez, C.; Piche-Ovares, M.; Dolz, G.; León, B.; Corrales-Aguilar, E.; et al. Passive Epidemiological Surveillance in Wildlife in Costa Rica Identifies Pathogens of Zoonotic and Conservation Importance. PLoS ONE 2022, 17, e0262063. [Google Scholar] [CrossRef]
- Citterio, C.V.; Obber, F.; Trevisiol, K.; Dellamaria, D.; Celva, R.; Bregoli, M.; Ormelli, S.; Sgubin, S.; Bonato, P.; Da Rold, G.; et al. Echinococcus Multilocularis and Other Cestodes in Red Foxes (Vulpes Vulpes) of Northeast Italy, 2012–2018. Parasit. Vectors 2021, 14, 29. [Google Scholar] [CrossRef] [PubMed]
- Macchioni, F.; Coppola, F.; Furzi, F.; Gabrielli, S.; Baldanti, S.; Boni, C.B.; Felicioli, A. Taeniid Cestodes in a Wolf Pack Living in a Highly Anthropic Hilly Agro-Ecosystem. Parasite 2021, 28, 10. [Google Scholar] [CrossRef] [PubMed]
- Bandelj, P.; Blagus, R.; Vengušt, G.; Žele Vengušt, D. Wild Carnivore Survey of Echinococcus Species in Slovenia. Animals 2022, 12, 2223. [Google Scholar] [CrossRef] [PubMed]
- Varcasia, A.; Dessì, G.; Lattanzio, S.; Marongiu, D.; Cuccuru, C.; Carta, S.; Meloni, M.P.; Tamponi, C.; Scala, A. Cystic Echinococcosis in the Endemic Island of Sardinia (Italy): Has Something Changed? Parasitol. Res. 2020, 119, 2207–2215. [Google Scholar] [CrossRef] [PubMed]
- Loi, F.; Berchialla, P.; Masu, G.; Masala, G.; Scaramozzino, P.; Carvelli, A.; Caligiuri, V.; Santi, A.; Bona, M.C.; Maresca, C.; et al. Prevalence Estimation of Italian Ovine Cystic Echinococcosis in Slaughterhouses: A Retrospective Bayesian Data Analysis, 2010–2015. PLoS ONE 2019, 14, e0214224. [Google Scholar] [CrossRef] [PubMed]
- Romig, T.; Dinkel, A.; Mackenstedt, U. The Present Situation of Echinococcosis in Europe. Parasitol. Int. 2006, 55, S187–S191. [Google Scholar] [CrossRef] [PubMed]
- Giannetto, S.; Poglayen, G.; Brianti, E.; Sorgi, C.; Gaglio, G.; Canu, S.; Virga, A. An Epidemiological Updating on Cystic Echinococcosis in Cattle and Sheep in Sicily, Italy. Parassitologia 2004, 46, 423–424. [Google Scholar]
- Garippa, G.; Kogkos, A.; Giobbe, M.; Pipia, A.P.; Varcasia, A.; Mula, P.; Merella, P.; Scala, A. Updates on Cystic Echinococcosis in Animals in Sardinia. Parassitologia 2008, 50, 234. [Google Scholar]
- Garippa, G.; Manfredi, M.T. Cystic Echinococcosis in Europe and in Italy. Vet. Res. Commun. 2009, 33, 35–39. [Google Scholar] [CrossRef]
- Guberti, V.; Bolognini, M.; Lanfranchi, P.; Battelli, G. Echinococcus Granulosus in the Wolf in Italy. Parassitologia 2004, 46, 425–427. [Google Scholar]
- Gori, F.; Armua-Fernandez, M.T.; Milanesi, P.; Serafini, M.; Magi, M.; Deplazes, P.; Macchioni, F. The Occurrence of Taeniids of Wolves in Liguria (Northern Italy). Int. J. Parasitol. Parasites Wildl. 2015, 4, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Poglayen, G.; Gori, F.; Morandi, B.; Galuppi, R.; Fabbri, E.; Caniglia, R.; Milanesi, P.; Galaverni, M.; Randi, E.; Marchesi, B.; et al. Italian Wolves ( Canis Lupus Italicus Altobello, 1921) and Molecular Detection of Taeniids in the Foreste Casentinesi National Park, Northern Italian Apennines. Int. J. Parasitol. Parasites Wildl. 2017, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, M.T.; Genchi, C.; Deplazes, P.; Trevisiol, K.; Fraquelli, C. Echinococcus Muftilocularis Infection in Red Foxes in Italy. Vet. Rec. 2002, 150, 757. [Google Scholar] [CrossRef]
- Casulli, A.; Bart, J.M.; Knapp, J.; La Rosa, G.; Dusher, G.; Gottstein, B.; Di Cerbo, A.; Manfredi, M.T.; Genchi, C.; Piarroux, R.; et al. Multi-Locus Microsatellite Analysis Supports the Hypothesis of an Autochthonous Focus of Echinococcus Multilocularis in Northern Italy. Int. J. Parasitol. 2009, 39, 837–842. [Google Scholar] [CrossRef]
- Eckert, J.; Gemmell, M.A.; Meslin, F.-X.; Pawlowski, Z.S. WHO/OIE Manual on Echinococcosis in Humans and Animals: A Public Health Problem of Global Concern; World Organization for Animal Health: Paris, France, 2001; p. 286.
- Trachsel, D.; Deplazes, P.; Mathis, A. Identification of Taeniid Eggs in the Faeces from Carnivores Based on Multiplex PCR Using Targets in Mitochondrial DNA. Parasitology 2007, 134, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Kinkar, L.; Laurimäe, T.; Acosta-Jamett, G.; Andresiuk, V.; Balkaya, I.; Casulli, A.; Gasser, R.B.; González, L.M.; Haag, K.L.; Zait, H.; et al. Distinguishing Echinococcus Granulosus Sensu Stricto Genotypes G1 and G3 with Confidence: A Practical Guide. Infect. Genet. Evol. 2018, 64, 178–184. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- GenBank Database. Available online: http://www.ncbi.nlm.nih.gov/genbank/ (accessed on 15 March 2023).
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Obber, F.; Celva, R.; Da Rold, G.; Trevisiol, K.; Ravagnan, S.; Danesi, P.; Cenni, L.; Rossi, C.; Bonato, P.; Capello, K.; et al. A Highly Endemic Area of Echinococcus Multilocularis Identified through a Comparative Re-Assessment of Prevalence in the Red Fox (Vulpes Vulpes), Alto Adige (Italy: 2019–2020). PLoS ONE 2022, 17, e0268045. [Google Scholar] [CrossRef]
- Di Francesco, C.E.; Smoglica, C.; Paoletti, B.; Angelucci, S.; Innocenti, M.; Antonucci, A.; Di Domenico, G.; Marsilio, F. Detection of Selected Pathogens in Apennine Wolf (Canis Lupus Italicus) by a Non-Invasive GPS-Based Telemetry Sampling of Two Packs from Majella National Park, Italy. Eur. J. Wildl. Res. 2019, 65, 84. [Google Scholar] [CrossRef] [PubMed]
- Di Paolo, A.; Piseddu, T.; Sebastianelli, M.; Manuali, E.; Corneli, S.; Paniccià, M.; Papa, P.; Viali, S.; Mazzone, P. Detection of Echinococcus Granulosus G3 in a Wild Boar (Sus Scrofa ) in Central Italy Using PCR and Sequencing. J. Wildl. Dis. 2017, 53, 399–401. [Google Scholar] [CrossRef] [PubMed]
- Al-Sabi, M.; Halasa, T.; Kapel, C. Infections with Cardiopulmonary and Intestinal Helminths and Sarcoptic Mange in Red Foxes from Two Different Localities in Denmark. Acta Parasitol. 2014, 59, 110–113. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, H.; Himonas, C.; Papazahariadou, M.; Antoniadou-Sotiriadou, K. Helminths of Foxes and Other Wild Carnivores from Rural Areas in Greece. J. Helminthol. 1997, 71, 227–232. [Google Scholar] [CrossRef]
- Lahmar, S.; Boufana, B.; Ben Boubaker, S.; Landolsi, F. Intestinal Helminths of Golden Jackals and Red Foxes from Tunisia. Vet. Parasitol. 2014, 204, 297–303. [Google Scholar] [CrossRef]
- Cerqueira, D.; Delattre, P.; De Sousa, B.; Gabrion, C.; Morand, S.; Quere, J.P. Numerical Response of a Helminth Community in the Course of a Multi-Annual Abundance Cycle of the Water Vole (Arvicola Terrestris). Parasitology 2006, 134, 705–711. [Google Scholar] [CrossRef]
- Suchentrunk, F.; Sattmann, H. Prevalence of Intestinal Helminths in Austrian Red Foxes (Vulpes vulpes L.) (Cestoda, Nematoda). Ann. Nat. Mus. Wien. Ser. B Bot. Zool. 1994, 96, 29–38. [Google Scholar]
- Eira, C.; Vingada, J.; Torres, J.; Miquel, J. The Helminth Community of the Red Fox, Vulpes Vulpes, In Dunas de Mira (Portugal) and Its Effect on Host Condition. Wildl. Biol. Pract. 2006, 2, 26–36. [Google Scholar] [CrossRef]
- Sikò Barabàsi, S.; Fok, E.; Gubànyi, A.; Mészaros, F.; Cozma, V. Helminth Fauna of the Small Intestine in the European Red Fox, Vulpes Vulpes with Notes on the Morphological Identification of Echinococcus Multilocularis. Sci. Parasitol. 2010, 11, 141–151. [Google Scholar]
- Fiocchi, A.; Gustinelli, A.; Gelmini, L.; Rugna, G.; Renzi, M.; Fontana, M.C.; Poglayen, G. Helminth Parasites of the Red Fox Vulpes vulpes (L., 1758) and the Wolf Canis Lupus Italicus Altobello, 1921 in Emilia-Romagna, Italy. Ital. J. Zool. 2016, 83, 503–513. [Google Scholar] [CrossRef]
- Morandi, B.; Mazzone, A.; Gori, F.; Alvarez Rojas, C.A.; Galuppi, R.; Deplazes, P.; Poglayen, G. New Insights Into the Peculiar World of the Shepherd-Dog Parasites: An Overview From Maremma (Tuscany, Italy). Front. Vet. Sci. 2020, 7, 564164. [Google Scholar] [CrossRef]
- Craig, P.S.; Craig, H.L.; Craig, P.S. Helminth Parasites of Wolves (Canis Lupus): A Species List and an Analysis of Published Prevalence Studies in Nearctic and Palaearctic Populations. J. Helminthol. 2005, 79, 95–103. [Google Scholar] [CrossRef]
- Morandi, B.; Bazzucchi, A.; Gambini, S.; Crotti, S.; Cruciani, D.; Morandi, F.; Napoleoni, M.; Piseddu, T.; Di Donato, A.; Gavaudan, S. A Novel Intermediate Host for Taenia Serialis (Gervais, 1847): The European Roe Deer (Capreolus Capreolus L. 1758) from the Monti Sibillini National Park (MSNP), Italy. Int. J. Parasitol. Parasites Wildl. 2022, 17, 110–113. [Google Scholar] [CrossRef]
- Crotti, S.; Spina, S.; Cruciani, D.; Bonelli, P.; Felici, A.; Gavaudan, S.; Gobbi, M.; Morandi, F.; Piseddu, T.; Torricelli, M.; et al. Tapeworms Detected in Wolf Populations in Central Italy (Umbria and Marche Regions): A Long-Term Study. Int. J. Parasitol. Parasites Wildl. 2023, 21, 11–16. [Google Scholar] [CrossRef]
- Galimberti, A.; Romano, D.F.; Genchi, M.; Paoloni, D.; Vercillo, F.; Bizzarri, L.; Sassera, D.; Bandi, C.; Genchi, C.; Ragni, B.; et al. Integrative Taxonomy at Work: DNA Barcoding of Taeniids Harboured by Wild and Domestic Cats. Mol. Ecol. Resour. 2012, 12, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Diakou, A.; Migli, D.; Dimzas, D.; Morelli, S.; Di Cesare, A.; Youlatos, D.; Lymberakis, P.; Traversa, D. Endoparasites of European Wildcats (Felis silvestris) in Greece. Pathogens 2021, 10, 594. [Google Scholar] [CrossRef] [PubMed]
- Krone, O.; Guminsky, O.; Meinig, H.; Herrmann, M.; Trinzen, M.; Wibbelt, G. Endoparasite Spectrum of Wild Cats (Felis Silvestris Schreber, 1777) and Domestic Cats (Felis catus L.) from the Eifel, Pfalz Region and Saarland, Germany. Eur. J. Wildl. Res. 2008, 54, 95–100. [Google Scholar] [CrossRef]
- Martinković, F.; Sindičić, M.; Lučinger, S.; Štimac, I.; Bujanić, M.; Živičnjak, T.; Stojčević Jan, D.; Šprem, N.; Popović, R.; Konjević, D. Endoparasites of Wildcats in Croatia. Vet. Arh. 2017, 87, 713–729. [Google Scholar] [CrossRef]
- Torres, J.; Miquel, J.; Motjé, M. Helminth Parasites of the Eurasian Badger (Meles meles L.) in Spain: A Biogeographic Approach. Parasitol. Res. 2001, 87, 259–263. [Google Scholar] [CrossRef]
- Priemer, J.; Lux, E. Atriotaenia Incisa (Cestoda), a Parasite of the Badger, Meles Meles, and the Raccoon, Procyon Lotor, in Brandenburg, Germany. Can. J. Zool. 1994, 72, 1848–1853. [Google Scholar] [CrossRef]
- Rosalino, L.M.; Torres, J.; Santos-Reis, M. A Survey of Helminth Infection in Eurasian Badgers (Meles Meles) in Relation to Their Foraging Behaviour in a Mediterranean Environment in Southwest Portugal. Eur. J. Wildl. Res. 2006, 52, 202–206. [Google Scholar] [CrossRef]
- Lapini, L.; Conte, D.; Zupan, M.; Kozlan, L. Italian Jackals 1984–2011: An Updated Review (Canis Aureus: Carnivora, Canidae). Boll. Mus. Civ. Stor. Nat. Venezia 2011, 62, 219–232. [Google Scholar]
- Bacci, F.; Lunghi, E. The Golden Jackal Canis Aureus L. 1758 (Carnivora: Canidae) on the Tuscan Apennines. Nat. Hist. Sci. 2022, 9, 59–62. [Google Scholar] [CrossRef]
- Beraldo, P.; Pesaro, S.; Saccà, E.; Dorigo, L.; Lapini, L.; Bregoli, M.; Filacorda, S. First Parasitological Data of Golden Jackal (Canis Aureus Moreoticus I. Goeffroy Sant Hilaire, 1835) in Friuli Venezia Giulia Region (FVG). In Proceedings of the Congresso Nazionale Società Italiana di Parassitologia, Napoli, Italy, 27–30 June 2022. [Google Scholar]
- Marinković, D.; Gavrilović, P.; Vidanović, D.; Ćirović, D.; Kuručki, M.; Vasković, N.; Aničić, M. First Report of Alveolar Hydatid Disease (Echinococcus multilocularis) in a Golden Jackal (Canis aureus). Acta Parasitol. 2022, 67, 1401–1406. [Google Scholar] [CrossRef] [PubMed]
- Breyer, I.; Georgieva, D.; Kurdova, R.; Gottstein, B. Echinococcus Granulosus Strain Typing in Bulgaria: The G1 Genotype is Predominant in Intermediate and Definitive Wild Hosts. Parasitol. Res. 2004, 93, 127–130. [Google Scholar] [CrossRef] [PubMed]
Target Species | Target Gene (Amplicon Size) | Primer (5′-3′) | Reference |
---|---|---|---|
E. multilocularis | nad1 (395 bp) | Cest1: 5′-TGCTGATTTGTTAAAGTTAGTGATC-3′ Cest2: 5′-CATAAATCAATGGAAACAACAACAAG-3′ | [40] |
Taenia spp. | rrnS (267 bp) | Cest3: 5′-YGAYTCTTTTTAGGGGAAGGTGTG-3′ Cest5: 5′-GCGGTGTGTACMTGAGCTAAAC-3′ | |
E. granulosus sensu lato (s.l.) | rrnS (117 bp) | Cest4: 5′-GTTTTTGTGTGTTACATTAATAAGGGTG-3′ Cest5: 5′-GCGGTGTGTACMTGAGCTAAAC-3′ | |
E. granulosus sensu stricto (s.s.) | nad5 (759 bp) | EGnd5F1: 5′-GTTGTTGAAGTTGATTGTTTTGTTTG-3′ EGnd5R1: 5′-GAACACCGGACAAACCAAGAA-3′ | [41] |
Sequencing Results | Animal Species: Total Samples (Frequency %, 95% Confidence Interval) | Total Positive Samples | |||||||
---|---|---|---|---|---|---|---|---|---|
Red Fox 135 | Apennine Wolf 97 | European Wildcat 11 | European Badger 19 | Stone Marten 6 | Pine Marten 8 | European Polecat 2 | Golden Jackal 1 | ||
Atriotaenia incisa | 0 (0, 0.0–2.7) | 0 (0, 0.0–3.7) | 0 (0, 0.0–28.5) | 2 (10.5, 1.3–33.1) | 0 (0, 0.0–45.9) | 0 (0, 0.0–36.9) | 0 (0, 0.0–84.2) | 0 (0, 0.0–97.5) | 2 (0.7, 0.1–2.6) |
Echinococcus granulosus s.s. (G3) | 0 (0, 0.0–2.7) | 1 (1, <0.1–5.6) | 0 (0, 0.0–28.5) | 0 (0, 0.0–17.6) | 0 (0, 0.0–45.9) | 0 (0, 0.0–36.9) | 0 (0, 0.0–84.2) | 0 (0, 0.0–97.5) | 1 (0.4, <0.1–2.0) |
Mesocestoides canislagopodis | 1 (0.7, <0.1–4.1) | 0 (0, 0.0–3.7) | 0 (0, 0.0–28.5) | 0 (0, 0.0–17.6) | 0 (0, 0.0–45.9) | 0 (0, 0.0–36.9) | 0 (0, 0.0–84.2) | 0 (0, 0.0–97.5) | 1 (0.4, <0.1–2.0) |
Mesocestoides corti (syn. M. vogae) | 33 (24.4, 17.5–32.6) | 1 (1, <0.1–5.6) | 2 (18.2, 2.3–51.8) | 0 (0, 0.0–17.6) | 0 (0, 0.0–45.9) | 0 (0, 0.0–36.9) | 0 (0, 0.0–84.2) | 0 (0, 0.0–97.5) | 36 (12.9, 9.2–17.4) |
Mesocestoides lineatus | 3 (2.2, 0.4–6.4) | 0 (0, 0.0–3.7) | 0 (0, 0.0–28.5) | 0 (0, 0.0–17.6) | 0 (0, 0.0–45.9) | 0 (0, 0.0–36.9) | 0 (0, 0.0–84.2) | 0 (0, 0.0–97.5) | 3 (1.1, 0.2–3.1) |
Mesocestoides litteratus | 30 (22.2, 15.5–30.2) | 0 (0, 0.0–3.7) | 0 (0, 0.0–28.5) | 0 (0, 0.0–17.6) | 0 (0, 0.0–45.9) | 0 (0, 0.0–36.9) | 0 (0, 0.0–84.2) | 0 (0, 0.0–97.5) | 30 (10.8, 7.4–15.0) |
Mesocestoides melesi | 0 (0, 0.0–2.7) | 0 (0, 0.0–3.7) | 0 (0, 0.0–28.5) | 0 (0, 0.0–17.6) | 2 (33.3, 4.3–77.7) | 0 (0, 0.0–36.9) | 0 (0, 0.0–84.2) | 0 (0, 0.0–97.5) | 2 (0.7, 0.1–2.6) |
Taenia hydatigena | 0 (0, 0.0–2.7) | 18 (18.6, 11.4–27.7) | 0 (0, 0.0–28.5) | 0 (0, 0.0–17.6) | 0 (0, 0.0–45.9) | 0 (0, 0.0–36.9) | 0 (0, 0.0–84.2) | 0 (0, 0.0–97.5) | 18 (6.5, 3.9–10.0) |
Taenia ovis | 3 (2.2, 0.4–6.4) | 0 (0, 0.0–3.7) | 0 (0, 0.0–28.5) | 0 (0, 0.0–17.6) | 0 (0, 0.0–45.9) | 0 (0, 0.0–36.9) | 0 (0, 0.0–84.2) | 0 (0, 0.0–97.5) | 3 (1.1, 0.2–3.1) |
Taenia pisiformis | 2 (1.5, 0.2–5.2) | 1 (1, <0.1–5.6) | 0 (0, 0.0–28.5) | 1 (5.3, 0.1–26.0) | 0 (0, 0.0–45.9) | 0 (0, 0.0–36.9) | 0 (0, 0.0–84.2) | 0 (0, 0.0–97.5) | 4 (1.4, 0.4–3.6) |
Taenia polyacantha | 2 (1.5, 0.2–5.2) | 0 (0, 0.0–3.7) | 0 (0, 0.0–28.5) | 0 (0, 0.0–17.6) | 0 (0, 0.0–45.9) | 0 (0, 0.0–36.9) | 0 (0, 0.0–84.2) | 0 (0, 0.0–97.5) | 2 (0.7, 0.1–2.6) |
Taenia serialis | 1 (0.7, <0.1–4.1) | 25 (25.8, 17.4–35.7) | 0 (0, 0.0–28.5) | 0 (0, 0.0–17.6) | 0 (0, 0.0–45.9) | 0 (0, 0.0–36.9) | 0 (0, 0.0–84.2) | 0 (0, 0.0–97.5) | 26 (9.3, 6.2–13.4) |
Taenia taeniaeformis | 0 (0, 0.0–2.7) | 0 (0, 0.0–3.7) | 6 (54.5, 23.4–83.3) | 0 (0, 0.0–17.6) | 0 (0, 0.0-45.9) | 0 (0, 0.0–36.9) | 0 (0, 0.0–84.2) | 0 (0, 0.0–97.5) | 6 (2.2, 0.8–4.6) |
Total positive samples | 75 (55.6, 46.8–64.1) | 46 (47.4, 37.2–57.8) | 8 (72.7, 39.0–94.0) | 3 (15.8, 3.4–39.6) | 2 (33.3, 4.3-77.7) | 0 (0, 0.0–36.9) | 0 (0, 0.0–84.2) | 0 (0, 0.0–97.5) | 134 (48, 42.0–54.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crotti, S.; Brustenga, L.; Cruciani, D.; Bonelli, P.; D’Avino, N.; Felici, A.; Morandi, B.; Sebastiani, C.; Spina, S.; Gobbi, M. Molecular Screening of Echinococcus spp. and Other Cestodes in Wild Carnivores from Central Italy. Vet. Sci. 2023, 10, 318. https://doi.org/10.3390/vetsci10050318
Crotti S, Brustenga L, Cruciani D, Bonelli P, D’Avino N, Felici A, Morandi B, Sebastiani C, Spina S, Gobbi M. Molecular Screening of Echinococcus spp. and Other Cestodes in Wild Carnivores from Central Italy. Veterinary Sciences. 2023; 10(5):318. https://doi.org/10.3390/vetsci10050318
Chicago/Turabian StyleCrotti, Silvia, Leonardo Brustenga, Deborah Cruciani, Piero Bonelli, Nicoletta D’Avino, Andrea Felici, Benedetto Morandi, Carla Sebastiani, Sara Spina, and Marco Gobbi. 2023. "Molecular Screening of Echinococcus spp. and Other Cestodes in Wild Carnivores from Central Italy" Veterinary Sciences 10, no. 5: 318. https://doi.org/10.3390/vetsci10050318
APA StyleCrotti, S., Brustenga, L., Cruciani, D., Bonelli, P., D’Avino, N., Felici, A., Morandi, B., Sebastiani, C., Spina, S., & Gobbi, M. (2023). Molecular Screening of Echinococcus spp. and Other Cestodes in Wild Carnivores from Central Italy. Veterinary Sciences, 10(5), 318. https://doi.org/10.3390/vetsci10050318