A Systematic Review of Current Applications of Fecal Microbiota Transplantation in Horses
Abstract
:Simple Summary
Abstract
1. Introduction
2. Method
2.1. Data Sources and Search Strategy
2.2. Data Extraction
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Methodology of FMT Process
3.3.1. Fecal Collection
3.3.2. Fecal Preparation
3.3.3. Donor Selection and Screening
3.4. The Efficacy and Safety of FMT in Horses
3.5. The Effect of FMT on Gut Microbiota
4. Discussion
4.1. The Selection of Recipients
4.2. The Screening Process for Donors
4.3. Methods for Fecal Collection and Preparation
4.4. Stool Bank Establishment
4.5. The Frequency and Amount for Fecal Transplant
4.6. Efficacy and Safety of FMT
4.7. Other Factors in FMT
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sugahara, H.; Odamaki, T.; Hashikura, N.; Abe, F.; Xiao, J.-Z. Differences in Folate Production by Bifidobacteria of Different Origins. Biosci. Microbiota Food Health 2015, 34, 87–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garber, A.; Hastie, P.; Murray, J.-A. Factors Influencing Equine Gut Microbiota: Current Knowledge. J. Equine Vet. Sci. 2020, 88, 102943. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.C.; Arroyo, L.G.; Allen-Vercoe, E.; Stämpfli, H.R.; Kim, P.T.; Sturgeon, A.; Weese, J.S. Comparison of the Fecal Microbiota of Healthy Horses and Horses with Colitis by High Throughput Sequencing of the V3-V5 Region of the 16S RRNA Gene. PLoS ONE 2012, 7, e41484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graness, N.; Swidsinski, A.; Krüger, M.; Ehlers, K.; Arnold, C.; Schusser, G.F. Analysis of the Fecal Microbiome in Horses in Association with Antibiotic and Prebiotic Treatment. Berl. Und Münchener Tierärztliche Wochenschr. 2018, 131, 224–238. [Google Scholar] [CrossRef]
- Cohen, N.D.; Woods, A.M. Characteristics and Risk Factors for Failure of Horses with Acute Diarrhea to Survive: 122 Cases (1990–1996). J. Am. Vet. Med. Assoc. 1999, 214, 382–390. [Google Scholar]
- Nicco, C.; Paule, A.; Konturek, P.; Edeas, M. From Donor to Patient: Collection, Preparation and Cryopreservation of Fecal Samples for Fecal Microbiota Transplantation. Diseases 2020, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Mullen, K.R.; Yasuda, H.; Gr, K.; Divers, T.J. 4.6 Microbiota Transplantation for Equine Colitis: Revisiting an Old Treatment with New Technology. Abstract 2014. [Google Scholar]
- McKinney, C.A.; Bedenice, D.; Pacheco, A.P.; Oliveira, B.C.M.; Paradis, M.-R.; Mazan, M.; Widmer, G. Assessment of Clinical and Microbiota Responses to Fecal Microbial Transplantation in Adult Horses with Diarrhea. PLoS ONE 2021, 16, e0244381. [Google Scholar] [CrossRef]
- Dias, D.P.M.; Sousa, S.S.; Molezini, F.A.; Ferreira, H.S.D.; de Campos, R. Efficacy of Faecal Microbiota Transplantation for Treating Acute Colitis in Horses Undergoing Colic Surgery. Pesqui. Vet. Bras. 2018, 38, 1564–1569. [Google Scholar] [CrossRef]
- McKinney, C.A.; Oliveira, B.C.M.; Bedenice, D.; Paradis, M.-R.; Mazan, M.; Sage, S.; Sanchez, A.; Widmer, G. The Fecal Microbiota of Healthy Donor Horses and Geriatric Recipients Undergoing Fecal Microbial Transplantation for the Treatment of Diarrhea. PLoS ONE 2020, 15, e0230148. [Google Scholar] [CrossRef]
- Di Pietro, R. Development of a Protocol with Concentrated Bacteria for Fecal Microbiota Transplantation and Impact on the Equine Fecal Microbiota after Antibiotic-Induced Dysbiosis. 2021. Available online: https://papyrus.bib.umontreal.ca/xmlui/handle/1866/24704 (accessed on 13 January 2023).
- Costa, M.; Di Pietro, R.; Bessegatto, J.A.; Pereira, P.F.V.; Stievani, F.C.; Gomes, R.G.; Lisbôa, J.A.N.; Weese, J.S. Evaluation of Changes in Microbiota after Fecal Microbiota Transplantation in 6 Diarrheic Horses. Can. Vet. J. 2021, 62, 1123–1130. [Google Scholar]
- Laustsen, L.; Edwards, J.E.; Hermes, G.D.A.; Lúthersson, N.; van Doorn, D.A.; Okrathok, S.; Kujawa, T.J.; Smidt, H. Free Faecal Water: Analysis of Horse Faecal Microbiota and the Impact of Faecal Microbial Transplantation on Symptom Severity. Animals 2021, 11, 2776. [Google Scholar] [CrossRef]
- Kinoshita, Y.; Niwa, H.; Uchida-Fujii, E.; Nukada, T.; Ueno, T. Simultaneous Daily Fecal Microbiota Transplantation Fails to Prevent Metronidazole-Induced Dysbiosis of Equine Gut Microbiota. J. Equine Vet. Sci. 2022, 114, 104004. [Google Scholar] [CrossRef]
- Martin de Bustamante, M.; Plummer, C.; MacNicol, J.; Gomez, D. Impact of Ambient Temperature Sample Storage on the Equine Fecal Microbiota. Animals 2021, 11, 819. [Google Scholar] [CrossRef] [PubMed]
- Staley, C.; Hamilton, M.J.; Vaughn, B.P.; Graiziger, C.T.; Newman, K.M.; Kabage, A.J.; Sadowsky, M.J.; Khoruts, A. Successful Resolution of Recurrent Clostridium difficile Infection Using Freeze-Dried, Encapsulated Fecal Microbiota; Pragmatic Cohort Study. Am. J. Gastroenterol. 2017, 112, 940–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheiman, J.; Luber, J.M.; Chavkin, T.A.; MacDonald, T.; Tung, A.; Pham, L.-D.; Wibowo, M.C.; Wurth, R.C.; Punthambaker, S.; Tierney, B.T.; et al. Meta-Omics Analysis of Elite Athletes Identifies a Performance-Enhancing Microbe That Functions via Lactate Metabolism. Nat. Med. 2019, 25, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
- Mach, N.; Moroldo, M.; Rau, A.; Lecardonnel, J.; Le Moyec, L.; Robert, C.; Barrey, E. Understanding the Holobiont: Crosstalk between Gut Microbiota and Mitochondria during Long Exercise in Horse. Front. Mol. Biosci. 2021, 8, 656204. [Google Scholar] [CrossRef]
- Biddle, A.S.; Black, S.J.; Blanchard, J.L. An in Vitro Model of the Horse Gut Microbiome Enables Identification of Lactate-Utilizing Bacteria That Differentially Respond to Starch Induction. PLoS ONE 2013, 8, e77599. [Google Scholar] [CrossRef] [Green Version]
- Plancade, S.; Clark, A.; Philippe, C.; Helbling, J.-C.; Moisan, M.-P.; Esquerré, D.; Le Moyec, L.; Robert, C.; Barrey, E.; Mach, N. Publisher Correction: Unraveling the Effects of the Gut Microbiota Composition and Function on Horse Endurance Physiology. Sci. Rep. 2020, 10, 15880. [Google Scholar] [CrossRef]
- Thatcher, C.D.; Pleasant, R.S.; Geor, R.J.; Elvinger, F. Prevalence of Overconditioning in Mature Horses in Southwest Virginia during the Summer. J. Vet. Intern. Med. 2012, 26, 1413–1418. [Google Scholar] [CrossRef]
- Potter, S.J.; Bamford, N.J.; Harris, P.A.; Bailey, S.R. Prevalence of Obesity and Owners’ Perceptions of Body Condition in Pleasure Horses and Ponies in South-Eastern Australia. Aust. Vet. J. 2016, 94, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Robin, C.A.; Ireland, J.L.; Wylie, C.E.; Collins, S.N.; Verheyen, K.L.P.; Newton, J.R. Prevalence of and Risk Factors for Equine Obesity in Great Britain Based on Owner-Reported Body Condition Scores. Equine Vet. J. 2015, 47, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Walshe, N.; Cabrera-Rubio, R.; Collins, R.; Puggioni, A.; Gath, V.; Crispie, F.; Cotter, P.D.; Brennan, L.; Mulcahy, G.; Duggan, V. A Multiomic Approach to Investigate the Effects of a Weight Loss Program on the Intestinal Health of Overweight Horses. Front. Vet. Sci. 2021, 8, 668120. [Google Scholar] [CrossRef] [PubMed]
- Keshteli, A.H.; Millan, B.; Madsen, K.L. Pretreatment with Antibiotics May Enhance the Efficacy of Fecal Microbiota Transplantation in Ulcerative Colitis: A Meta-Analysis. Mucosal Immunol. 2017, 10, 565–566. [Google Scholar] [CrossRef] [Green Version]
- Ji, S.K.; Yan, H.; Jiang, T.; Guo, C.Y.; Liu, J.J.; Dong, S.Z.; Yang, K.L.; Wang, Y.J.; Cao, Z.J.; Li, S.L. Preparing the Gut with Antibiotics Enhances Gut Microbiota Reprogramming Efficiency by Promoting Xenomicrobiota Colonization. Front. Microbiol. 2017, 8, 1208. [Google Scholar] [CrossRef]
- Millan, B.; Park, H.; Hotte, N. Others Antibiotics and Bowel Preparation Enhance the Ability of Fecal Microbial Transplantation to Reshape the Gut Microbiota in IL-10-/- Mice. Proc. Can. J. Gastroenterol. Hepatol. Conf. 2016. [Google Scholar]
- Weese, J.S.; Kaese, H.J.; Baird, J.D.; Kenney, D.G.; Staempfli, H.R. Suspected Ciprofloxacin-Induced Colitis in Four Horses. Equine Vet. Educ. 2010, 14, 182–189. [Google Scholar] [CrossRef]
- Gustafsson, A.; Båverud, V.; Gunnarsson, A.; Rantzien, M.H.; Lindholm, A.; Franklin, A. The Association of Erythromycin Ethylsuccinate with Acute Colitis in Horses in Sweden. Equine Vet. J. 1997, 29, 314–318. [Google Scholar] [CrossRef]
- Raisbeck, M.F.; Holt, G.R.; Osweiler, G.D. Lincomycin-Associated Colitis in Horses. J. Am. Vet. Med. Assoc. 1981, 179, 362–363. [Google Scholar]
- Staempfli, H.R.; Prescott, J.F.; Brash, M.L. Lincomycin-Induced Severe Colitis in Ponies: Association with Clostridium Cadaveris. Can. J. Vet. Res. 1992, 56, 168–169. [Google Scholar]
- Baker, J.R.; Leyland, A. Diarrhoea in the Horse Associated with Stress and Tetracycline Therapy. Vet. Rec. 1973, 93, 583–584. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.A.; MacFadden, K.E.; Green, E.M.; Crabill, M.; Frankeny, R.L.; Thorne, J.G. Case Control and Historical Cohort Study of Diarrhea Associated with Administration of Trimethoprim-Potentiated Sulphonamides to Horses and Ponies. J. Vet. Intern. Med. 1996, 10, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Haggett, E.F.; Wilson, W.D. Overview of the Use of Antimicrobials for the Treatment of Bacterial Infections in Horses. Equine Vet. Educ. 2008, 20, 433–448. [Google Scholar] [CrossRef]
- Basile, R.C.; Rivera, G.G.; Del Rio, L.A.; de Bonis, T.C.M.; do Amaral, G.P.D.; Giangrecco, E.; Ferraz, G.; Yoshinari, N.H.; Canola, P.A.; Queiroz Neto, A. Anaphylactoid Reaction Caused by Sodium Ceftriaxone in Two Horses Experimentally Infected by Borrelia burgdorferi. BMC Vet. Res. 2015, 11, 197. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.; Song, Y.; Liu, Y.; Wang, L. Randomized clinical trial: Efficacy and tolerability of two different split dose of low-volume polyethylene glycol electrolytes for bowel preparation before colonoscopy in hospitalized children. Pediatr. Res. 2021, 90, 171–175. [Google Scholar] [CrossRef]
- Wrzosek, L.; Ciocan, D.; Borentain, P.; Spatz, M.; Puchois, V.; Hugot, C.; Ferrere, G.; Mayeur, C.; Perlemuter, G.; Cassard, A.-M. Transplantation of Human Microbiota into Conventional Mice Durably Reshapes the Gut Microbiota. Sci. Rep. 2018, 8, 6854. [Google Scholar] [CrossRef] [Green Version]
- Ng, S.C.; Kamm, M.A.; Yeoh, Y.K.; Chan, P.K.S.; Zuo, T.; Tang, W.; Sood, A.; Andoh, A.; Ohmiya, N.; Zhou, Y.; et al. Scientific Frontiers in Faecal Microbiota Transplantation: Joint Document of Asia-Pacific Association of Gastroenterology (APAGE) and Asia-Pacific Society for Digestive Endoscopy (APSDE). Gut 2020, 69, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Krajicek, E.; Fischer, M.; Allegretti, J.R.; Kelly, C.R. Nuts and Bolts of Fecal Microbiota Transplantation. Clin. Gastroenterol. Hepatol. 2019, 17, 345–352. [Google Scholar] [CrossRef]
- Guzior, D.V.; Quinn, R.A. Review: Microbial Transformations of Human Bile Acids. Microbiome 2021, 9, 140. [Google Scholar] [CrossRef]
- Theriot, C.M.; Bowman, A.A.; Young, V.B. Antibiotic-Induced Alterations of the Gut Microbiota Alter Secondary Bile Acid Production and Allow for Clostridium Difficile Spore Germination and Outgrowth in the Large Intestine. mSphere 2016, 1, e00045-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theriot, C.M.; Koenigsknecht, M.J.; Carlson, P.E., Jr.; Hatton, G.E.; Nelson, A.M.; Li, B.; Huffnagle, G.B.; Li, J.Z.; Young, V.B. Antibiotic-Induced Shifts in the Mouse Gut Microbiome and Metabolome Increase Susceptibility to Clostridium Difficile Infection. Nat. Commun. 2014, 5, 3114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author | Year | Country | Sample Size | Patient Characteristics | FMT Frequency | Fecal Preparation Methods |
---|---|---|---|---|---|---|
Dias et al. [9] | 2018 | Brazil | 4 | Colitis | Once | 1.5–2 kg of fresh stool mixed with 40 g of sodium bicarbonate in 4 L of water |
McKinne et al. [10] | 2020 | USA | 5 | Diarrhea | 3 consecutive days | 2.5 pounds of fresh manure mixed with 4 L of lukewarm water |
Di Pietro et al. [11] | 2021 | Canada | 9 | Antibiotic-induced intestinal dysbiosis | 3 consecutive days | 1, 1 kg of fresh stool mixed with 2 L of water and centrifuged 2, 1.6 kg of fresh stool mixed with 3.2 L of water |
McKinne et al. [8] | 2021 | USA | 22 | Diarrhea | 3 consecutive days | 2.5 pounds of fresh manure mixed with 4 L of lukewarm water |
Costa et al. [12] | 2021 | Canada | 6 | Diarrhea | Once | 1.5 kg of fresh stool mixed with 5 L of warm water |
Laustsen et al. [13] | 2021 | The Netherlands | 20 | Free fecal water | Once | 0.5 kg of fresh stool mixed with 5 L of non-sterile warm saline |
Kinoshita et al. [14] | 2022 | Japan | 9 | Antibiotic-induced intestinal dysbiosis | 5 consecutive days | 0.5 kg of fresh stool mixed with 1 L of warm water |
Reference | No. of Donor | Before Fecal Collection | After Fecal Collection | |
---|---|---|---|---|
Recorded Information | Exclusion Criteria | Included Examinations | ||
[9] | 1 | Physical examination, history of infectious diseases; history of antimicrobial therapy in recent 6 months; vaccination and deworming | Not specified | Not specified |
[10] | 3 | Complete diet history, medical history, and physical examination; breed, age, body condition score, heart rate, respiratory rate, rectal temperature, attitude, and borborygmi | Any recent gastrointestinal illness (colic, diarrhea), transport, medical treatment, or dietary supplementation with probiotics | Fecal egg count, coronavirus, Clostridium difficile toxins A and B, Clostridium perfringens antigens, Lawsonia intracellularis, Neorickettsia risticii, and Salmonella sp. |
[11] | 1 | Breed, age, body weight; history of antimicrobials or other medications in the last 3 months | Not specified | Salmonella enterica, Clostridium perfringens, Clostridioides difficile, and parasitic eggs |
[8] | 3 | Complete diet history, medical history, physical examination; breed, age, body condition score, heart rate, respiratory rate, rectal temperature, attitude, and borborygmi | Any recent gastrointestinal illness (colic, diarrhea), transport, medical treatment, or dietary supplementation with probiotics | Coronavirus, Clostridium difficile toxins A and B, Clostridium perfringens antigens, Lawsonia intracellularis, Neorickettsia risticii, Salmonella sp., and quantitative fecal egg count |
[12] | 2 | Breed, age; history of antimicrobials or other medications in the last 6 months; history of intestinal diseases; history of deworming | Not specified | Salmonella enterica, Clostridium perfringens, Clostridioides difficile by culture, and negative for parasitic eggs |
[13] | 2 | Health status, history of digestive issues; history of medical treatments in the last 12 months; clinical history (>5 years) | Not specified | Not specified |
[14] | 1 | Breed, age, sex; history of antimicrobials in the last 3 months; history of intestinal issues in the last 3 months | Not specified | Clostridioides difficile, Clostridium perfringens, and Salmonella species by culture methods |
Reference | Pre-FMT | Post-FMT |
---|---|---|
[9] | NA | NA |
[10] | The fecal microbiota was significantly more variable in terms of β-diversity | The fecal microbiota had a higher α-diversity than prior to treatment and was phylogenetically more similar to that of the donor |
[11] | The fecal microbiota showed greater representation of the genus Intestinimonas, unclassified Lactobacillales, Lactobacillus, and Streptococcus | Simpson’s index was not significantly different comparing patients to each other |
[8] | The fecal microbiota showed lower α-diversity and greater beta β-diversity | Horses showed a lower mean UniFrac distance |
[12] | The Order Lactobacillales and the genera Lactobacillus, Intestinimonas, and Streptococcus were increased in the microbiota of diarrheic horses | No change in the fecal microbiota |
[13] | Compared to healthy controls, the fecal microbiota did not show significant differences | No effect on the fecal microbiota in terms of alpha or beta diversity |
[14] | NA | Changes in the ratios of bacterial families were similar between the metronidazole-treated group and the simultaneous metronidazole- and FMT-treated group, notably in the Clostridiaceae, Ruminococcaceae, and Enterobacteriaceae. Differences in fecal bacterial compositions were due mainly to metronidazole administration (p = 0.0003), but not to FMT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuniyazi, M.; Wang, W.; Zhang, N. A Systematic Review of Current Applications of Fecal Microbiota Transplantation in Horses. Vet. Sci. 2023, 10, 290. https://doi.org/10.3390/vetsci10040290
Tuniyazi M, Wang W, Zhang N. A Systematic Review of Current Applications of Fecal Microbiota Transplantation in Horses. Veterinary Sciences. 2023; 10(4):290. https://doi.org/10.3390/vetsci10040290
Chicago/Turabian StyleTuniyazi, Maimaiti, Wenqing Wang, and Naisheng Zhang. 2023. "A Systematic Review of Current Applications of Fecal Microbiota Transplantation in Horses" Veterinary Sciences 10, no. 4: 290. https://doi.org/10.3390/vetsci10040290
APA StyleTuniyazi, M., Wang, W., & Zhang, N. (2023). A Systematic Review of Current Applications of Fecal Microbiota Transplantation in Horses. Veterinary Sciences, 10(4), 290. https://doi.org/10.3390/vetsci10040290