Application of Multiparametric Flow Cytometry Panels to Study Lymphocyte Subpopulations in Tuberculin-Positive Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Culture Filtrate Protein Extract of M. bovis AN5
2.3. Isolation and Culture of PBMCs
2.4. Monoclonal Antibodies
2.5. Staining for FC
2.6. Statistical Analysis
3. Results
Lymphocyte Subpopulations in Tuberculin-Positive and -Negative Animals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suĉić, M.; Kolevska, T.; Kopjar, B.; Kosanović, M.; Drobnjak, M.; Zalud, I.; Marusić, M. Accuracy of routine flow-cytometric bitmap selection for three leucocyte populations. Cytometry 1989, 10, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Steinkamp, J.A.; Romero, A.; Van Dilla, M.A. Multiparameter cell sorting: Identification of human leukocytes by acridine orange fluorescence. Acta Cytol. 1973, 17, 113–117. [Google Scholar] [PubMed]
- McKinnon, K.M. Flow Cytometry: An Overview. Curr. Protoc. Immunol. 2018, 120, 5.1.1–5.1.11. [Google Scholar] [CrossRef] [PubMed]
- Roederer, M.; Bigos, M.; Nozaki, T.; Stovel, R.T.; Parks, D.R.; Herzenberg, L.A. Heterogeneous calcium flux in peripheral T cell subsets revealed by five-color flow cytometry using log-ratio circuitry. Cytometry 1995, 21, 187–196. [Google Scholar] [CrossRef]
- Roederer, M.; De Rosa, S.; Gerstein, R.; Anderson, M.; Bigos, M.; Stovel, R.; Nozaki, T.; Parks, D.; Herzenberg, L.; Herzenberg, L. 8 Color, 10-parameter flow cytometry to elucidate complex leukocyte heterogeneity. Cytometry 1997, 29, 328–339. [Google Scholar] [CrossRef]
- Bigos, M.; Baumgarth, N.; Jager, G.C.; Herman, O.C.; Nozaki, T.; Stovel, R.T.; Parks, D.R.; Herzenberg, L.A. Nine color eleven parameter immunophenotyping using three laser flow cytometry. Cytometry 1999, 36, 36–45. [Google Scholar] [CrossRef]
- Liechti, T.; Roederer, M. OMIP-051—28-color flow cytometry panel to characterize B cells and myeloid cells. Cytometry 2019, 95, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Laguado, J. Aplicaciones de la citometría de flujo en microbiología, veterinaria y agricultura. Rev. MVZ Córdoba 2007, 12, 1077–1095. [Google Scholar] [CrossRef]
- Liu, C.J.; Paape, M.J.; Peters, R.R. Flow cytometric leucocyte counts. Comp. Haematol. Int. 1993, 3, 237–240. [Google Scholar] [CrossRef]
- McClenahan, D.J.; Fagliari, J.J.; Evanson, O.A.; Weiss, D.J. Evaluation of structural and functional alterations of circulating neutrophils in heifers with experimentally induced Pneumonic pasteurellosis. Am. J. Vet. Res. 1999, 60, 1307–1311. [Google Scholar]
- Dosogne, H.; Burvenich, C.; van Werven, T.; Roets, E.; Noordhuizen-Stassen, E.N.; Goddeeris, B. Increased surface expression of CD11b receptors on polymorphonuclear leukocytes is not sufficient to sustain phagocytosis during Escherichia coli mastitis in early postpartum diary cows. Vet. Immunol. Immunopathol. 1997, 60, 47–59. [Google Scholar] [CrossRef]
- Waters, W.R.; Rahner, T.E.; Palmer, M.V.; Cheng, D.; Nonnecke, B.J.; Whipple, D.L. Expression of L-Selectin (CD62L), CD44, and CD25 on activated bovine T cells. Infect. Immun. 2003, 71, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Whelan, A.O.; Villarreal-Ramos, B.; Vordermeier, H.M.; Hogarth, P.J. Development of an antibody to bovine IL-2 reveals multifunctional CD4 TEM cells in cattle naturally infected with bovine tuberculosis. PLoS ONE 2011, 6, e29194. [Google Scholar] [CrossRef]
- Maggioli, M.F.; Palmer, M.V.; Thacker, T.C.; Vordermeier, H.M.; Waters, W.R. Characterization of effector and memory T cell subsets in the immune response to bovine tuberculosis in cattle. PLoS ONE 2015, 10, e0122571. [Google Scholar] [CrossRef] [Green Version]
- Steinbach, S.; Vordermeier, H.M.; Jones, G.J. CD4+ and γδ T cells are the main producers of IL-22 and IL-17A in lymphocytes from Mycobacterium bovis-infected cattle. Sci. Rep. 2016, 6, 29990. [Google Scholar] [CrossRef] [Green Version]
- Panei, C.J.; Takeshima, S.N.; Omori, T.; Nunoya, T.; Davis, W.C.; Ishizaki, H.; Matoba, K.; Aida, Y. Estimation of bovine leukemia virus (BLV) proviral load harbored by lymphocyte subpopulations in BLV-infected cattle at the subclinical stage of enzootic bovine leucosis using BLV-CoCoMo-qPCR. BMC Vet. Res. 2013, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Dudek, K.; Bednarek, D.; Lisiecka, U.; Kycko, A.; Reichert, M.; Kostro, K.; Winiarczyk, S. Analysis of the leukocyte response in heifers suffered from Mycoplasma bovis pneumonia. Pathogens 2020, 9, 407. [Google Scholar] [CrossRef]
- González, X.E.; Jaramillo, L.; Lascurain, R.; Torres, J.; Quevillon, E.L.; Díaz, F. Evaluation of T lymphocyte subpopulations in cattle vaccinated against bovine tuberculosis: Longitudinal comparative study. Rev. Mex. Cienc. Pecu. 2012, 3, 137–154. [Google Scholar]
- Maggioli, M.F.; Palmer, M.V.; Thacker, T.C.; Vordermeier, H.M.; McGill, J.L.; Whelan, A.O.; Larsen, M.H.; Jacobs, W.R.; Waters, W.R. Increased TNF-α/IFN-γ/IL-2 and decreased TNF-α/IFN-γ production by central memory T cells are associated with protective responses against bovine tuberculosis following BCG vaccination. Front. Immunol. 2016, 7, 421. [Google Scholar] [CrossRef] [Green Version]
- Eschbaumer, M.; Stenfeldt, C.; Rekant, S.I.; Pacheco, J.M.; Hartwig, E.J.; Smoliga, G.R.; Kenney, M.A.; Golde, W.T.; Rodriguez, L.L.; Arzt, J. Systemic immune response and virus persistence after foot-and-mouth disease virus infection of naïve cattle and cattle vaccinated with a homologous adenovirus-vectored vaccine. BMC Vet. Res. 2016, 12, 205. [Google Scholar] [CrossRef] [Green Version]
- Jagtap, R.B.; Gupta, A.; Chaphalkar, S.R. Flow cytometry based profiling of leukocytes: A new method for diagnosis of tropical theileriosis in crossbred cattle. Vet. World 2015, 8, 1379–1385. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Tuberculosis Report 2018; World Health Organization: Geneva, Switzerland, 2018; 231p. [Google Scholar]
- Doherty, R.; Whiston, R.; Cormican, P. The CD4+ T cell methylome contributes to a distinct CD4+ T cell transcriptional signature in Mycobacterium bovis-infected cattle. Sci. Rep. 2016, 6, 31014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandel, A.; Li, L.; Hada, A.; Xiao, Z. Differential Expression of CD45RO and CD45RA in Bovine T Cells. Cells 2022, 11, 1844. [Google Scholar] [CrossRef] [PubMed]
- Centro Panamericano de Zoonosis. Preparación y Estandarización del Derivado Proteico Purificado (PPD) de la Tuberculina; OPS-OMS: Washington, DC, USA, 1972; Volume 17, pp. 1–25. [Google Scholar]
- Díaz, F.; Massó, F.; Páez, A.; Varela, E.; Suaréz-Güemes, F.; Montaño, L.F. Secretion of IFN-gamma by bovine peripheral blood mononuclear cells stimulated with Mycobacterium bovis protein fractions obtained by isoelectric-focusing. Vet. Immunol. Immunopathol. 1999, 67, 203–212. [Google Scholar] [CrossRef]
- Hunka, J.; Riley, J.T.; Debes, G.F. Approaches to overcome flow cytometry limitations in the analysis of cells from veterinary relevant species. BMC Vet. Res. 2020, 16, 83. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, C.N.; Aasted, B.; Broe, M.K.; Petersen, J.L. Reactivities of 20 anti-human monoclonal antibodies with leucocytes from ten different animal species. Vet. Immunol. Immunopathol. 1993, 39, 461–466. [Google Scholar] [CrossRef]
- Galkowska, H.; Waldemar, L.O.; Wojewodzka, U. Reactivity of antibodies directed against human antigens with surface markers on canine leukocytes. Vet. Immunol. Immunopathol. 1996, 53, 329–334. [Google Scholar] [CrossRef]
- Flaminio, M.J.; Ibrahim, S.; Lunn, D.P.; Stark, R.; Steinbach, F. Further analysis of anti-human leukocyte mAbs with reactivity to equine leukocytes by two-colour flow cytometry and immunohistochemistry. Vet. Immunol. Immunopathol. 2007, 119, 92–99. [Google Scholar] [CrossRef]
- Matos, D.M. Steric hindrance: A practical (and frequently forgotten) problem in flow cytometry. Cytom. B Clin. Cytom. 2020, 100, 397–401. [Google Scholar] [CrossRef]
- Janeway, C.A., Jr.; Travers, P.; Walport, M.; Shlomchik, M.J. The interaction of the antibody molecule with specific antigen. In Immunobiology: The Immune System in Health and Disease, 5th ed.; Garland Science: New York, NY, USA, 2001. [Google Scholar]
- Beineke, A.; Siebert, U.; Wünschmann, A.; Stott, J.L.; Prengel, I.; Kremmer, E.; Baumgärtner, W. Immunohistochemical investigation of the cross-reactivity of selected cell markers from various species for characterization of lymphatic tissues in the harbour porpoise (Phocoena phocoena). J. Comp. Path. 2001, 125, 311–317. [Google Scholar] [CrossRef]
- Yang, J.; Fu, Z.; Feng, X.; Shi, Y.; Yuan, C.; Liu, J.; Hong, Y.; Li, H.; Lu, K.; Lin, J. Comparison of worm development and host immune responses in natural hosts of Schistosoma japonicum, yellow cattle and water buffalo. BMC Vet. Res. 2012, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Rütgen, B.C.; Konig, R.; Hammer, S.E.; Groiss, S.; Saalmuller, A.; Schwendenwein, I. Composition of lymphocyte subpopulations in normal canine lymph nodes. Vet. Clin. Pathol. 2015, 44, 58–69. [Google Scholar] [CrossRef]
- Malissen, B. CD3 ITAMs count! Nat. Immunol. 2008, 9, 583–584. [Google Scholar] [CrossRef]
- Guy, C.S.; Vignali, D.A. Organization of proximal signal initiation at the TCR:CD3 complex. Immunol. Rev. 2009, 232, 7–21. [Google Scholar] [CrossRef] [Green Version]
- Ayoub, I.A.; Yang, T.J. Age-dependent changes in peripheral blood lymphocyte subpopulations in cattle: A longitudinal study. Dev. Comp. Immunol. 1996, 20, 353–363. [Google Scholar] [CrossRef]
- Hogg, A.E.; Parsons, K.; Taylor, G.; Worth, A.; Beverley, P.; Howard, C.J.; Villarreal-Ramos, B. Characterization of age-related changes in bovine CD8+ T-cells. Vet. Immunol. Immunopathol. 2011, 140, 47–54. [Google Scholar] [CrossRef]
- Maue, A.C.; Waters, W.R.; Davis, W.C.; Palmer, M.V.; Minion, F.C.; Estes, D.M. Analysis of immune responses directed toward a recombinant early secretory antigenic target six-kilodalton protein-culture filtrate protein 10 fusion protein in Mycobacterium bovis-infected cattle. Infect. Immun. 2005, 73, 6659–6667. [Google Scholar] [CrossRef] [Green Version]
- Michie, C.A.; McLean, A.; Alcock, C.; Beverley, P.C. Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature 1992, 360, 264–265. [Google Scholar] [CrossRef] [PubMed]
- Tucker, N.; Cunha, P.; Gilbert, F.; Rambault, M.; Santos, K.; Remot, A.; Germon, P.; Rainard, P.; Prado, P. Bovine blood and milk T-cell subsets in distinct states of activation and differentiation during subclinical Staphylococcus aureus mastitis. bioRxiv 2023. [Google Scholar] [CrossRef]
- Gillespie, A.; Yirsaw, A.; Kim, S.; Wilson, K.; McLaughlin, J.; Madigan, M.; Loonie, K.; Britton, E.; Zhang, F.; Damani-Yokota, P.; et al. Gene characterization and expression of the γδ T cell co-receptor WC1 in sheep. Dev. Comp. Immunol. 2021, 116, 103911. [Google Scholar] [CrossRef]
- Telfer, J.C.; Baldwin, C.L. Bovine gamma delta T cells and the function of gamma delta T cell specifc WC1 co-receptors. Cell. Immunol. 2015, 296, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, C.L.; Damani-Yokota, P.; Yirsaw, A.; Loonie, K.; Teixeira, A.F.; Gillespie, A. Special features of γδ T cells in ruminants. Mol. Immunol. 2021, 134, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Blanco, F.C.; Sabio, Y.; Garcia, J.; Bigi, F. Recent advances in non-specific immune memory against bovine tuberculosis. Comp. Immunol. Microbiol. Infect. Dis. 2021, 75, 101615. [Google Scholar] [CrossRef] [PubMed]
Specificity | Clone | Isotype | Conjugate | Source a |
---|---|---|---|---|
1 Bovine CD45 | CC1 | Mouse, IgG1 | FITC | Bio-rad |
1 Human CD3 | CD3-12 | Rat, IgG1 | Pacific Blue | Bio-rad |
1,2 Bovine CD4 | CC8 | Mouse, IgG2a | Alexa Fluor 647 | Bio-rad |
1,2 Bovine CD8 | CC63 | Mouse, IgG2a | Unconjugated | Bio-rad |
1,2 Bovine CD25 | IL-A111 | Mouse, IgG1 | RPE | Bio-rad |
2 Bovine CD3 | MM1A | Mouse, IgG1 | Unconjugated | VMRD |
2 Bovine CD45RO | GC42A1 | Mouse, IgG1 | Unconjugated | VMRD |
1,2 Mouse IgG2a | 344701 | Rat, IgG1 | PerCP | R&D Systems |
2 Mouse IgG1 | NA | Goat polyclonal IgG | FITC | Jackson ImmunoResearch |
1 Mouse IgG1 | RMG1-1 | Rat, IgG | Brilliant Violet 421 | BioLegend |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manzo-Sandoval, A.; Jaramillo-Meza, L.; Olguín-Alor, R.; Sánchez-Torres, L.E.; Díaz-Otero, F. Application of Multiparametric Flow Cytometry Panels to Study Lymphocyte Subpopulations in Tuberculin-Positive Cattle. Vet. Sci. 2023, 10, 197. https://doi.org/10.3390/vetsci10030197
Manzo-Sandoval A, Jaramillo-Meza L, Olguín-Alor R, Sánchez-Torres LE, Díaz-Otero F. Application of Multiparametric Flow Cytometry Panels to Study Lymphocyte Subpopulations in Tuberculin-Positive Cattle. Veterinary Sciences. 2023; 10(3):197. https://doi.org/10.3390/vetsci10030197
Chicago/Turabian StyleManzo-Sandoval, Anabelle, Laura Jaramillo-Meza, Roxana Olguín-Alor, Luvia Enid Sánchez-Torres, and Fernando Díaz-Otero. 2023. "Application of Multiparametric Flow Cytometry Panels to Study Lymphocyte Subpopulations in Tuberculin-Positive Cattle" Veterinary Sciences 10, no. 3: 197. https://doi.org/10.3390/vetsci10030197