An Evaluation of Temporal Distributions of High, Low, and Zero Cohort Morbidity of Cumulative First Treatment Bovine Respiratory Disease and Their Associations with Demographic, Health, and Performance Outcomes in US Feedlot Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Management: Variable Creation
2.2. Cluster Analysis
2.3. Descriptive Statistics and Association Analysis
3. Results
3.1. Cluster Analysis
3.2. Risk Association Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, K.K.; Pendell, D.L. Market Impacts of Reducing the Prevalence of Bovine Respiratory Disease in United States Beef Cattle Feedlots. Front. Vet. Sci. 2017, 4, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galyean, M.L.; Duff, G.C.; Rivera, J.D. Galyean Appreciation Club Review: Revisiting Nutrition and Health of Newly Received Cattle-What Have We Learned in the Last 15 Years? J. Anim. Sci. 2022, 100, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Griffin, D. Economic Impact Associated with Respiratory Disease in Beef Cattle. Vet. Clin. North America. Food Anim. Pract. 1997, 13, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Miles, D.G. Overview of the North American Beef Cattle Industry and the Incidence of Bovine Respiratory Disease (BRD). Anim. Health Res. Rev. 2009, 10, 101–103. [Google Scholar] [CrossRef] [PubMed]
- USDA. Feedlot 2011 Part IV: Health and health management on U.S. Feedlots with a capacity of 1000 or more head. USDA:APHIS:VS:CEAH. Fort Collins, CO. 2011. Available online: https://www.aphis.usda.gov/animal_health/nahms/feedlot/downloads/feedlot2011/Feed11_dr_PartIV_1.pdf (accessed on 1 July 2022).
- Vogel, G.J.; Bokenkroger, C.D.; Rutten-Ramos, S.C.; Bargen, J.L. A Retrospective Evaluation of Animal Mortality in US Feedlots: Rate, Timing, and Cause of Death. Bov. Pract. 2015, 49, 113–123. [Google Scholar]
- Theurer, M.E.; Johnson, M.D.; Fox, T.; McCarty, T.M.; McCollum, R.M.; Jones, T.M.; Alkire, D.O. Bovine Respiratory Disease during the Mid-Portion of the Feeding Period: Observations of Frequency, Timing, and Population from the Field. Appl. Anim. Sci. 2021, 37, 52–58. [Google Scholar] [CrossRef]
- Smith, K.J.; Amrine, D.E.; Larson, R.L.; Theurer, M.E.; White, B.J. Determining Relevant Risk Factors Associated with Mid- and Late-Feeding-Stage Bovine Respiratory Disease Morbidity in Cohorts of Beef Feedlot Cattle. Appl. Anim. Sci. 2022, 38, 373–379. [Google Scholar] [CrossRef]
- Edwards, A. Respiratory Diseases of Feedlot Cattle in Central USA. Bov. Pract. 1996, 1996, 5–7. [Google Scholar]
- Babcock, A.H.; Renter, D.G.; White, B.J.; Dubnicka, S.R.; Scott, H.M. Temporal Distributions of Respiratory Disease Events within Cohorts of Feedlot Cattle and Associations with Cattle Health and Performance Indices. Prev. Vet. Med. 2010, 97, 198–219. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing 2021. MSOR Connect. 2014, 1. [Google Scholar]
- Rojas, H.A.; White, B.J.; Amrine, D.E.; Larson, R.L. Predicting Bovine Respiratory Disease Risk in Feedlot Cattle in the First 45 Days Post Arrival. Pathogens 2022, 11, 442. [Google Scholar] [CrossRef]
- Joe, H.; Ward, J. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Dohoo, I.R.; Martin, S.W.; Stryhn, H. Methods in Epidemiologic Research; McPike, M.S., Ed.; VER Inc.: Charlottetown, PEI, Canada, 2012; ISBN 978-0-919013-73-5. [Google Scholar]
- Lüdecke, D.; Ben-Shachar, M.; Patil, I.; Waggoner, P.; Makowski, D. Performance: An R Package for Assessmet, Comparison and Testing of Statistical Models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar] [CrossRef]
- Lenth, R.V. Emmean: Estimated Marginal Means, Aka Least-Squares Means 2022. Available online: https://cran.microsoft.com/snapshot/2022-01-01/web/packages/emmeans/emmeans.pdf (accessed on 1 July 2022).
- Taylor, J.D.; Fulton, R.W.; Lehenbauer, T.W.; Step, D.L.; Confer, A.W. The Epidemiology of Bovine Respiratory Disease: What Is the Evidence for Predisposing Factors? Can. Vet. J. 2010, 51, 1095–1102. [Google Scholar]
- Hay, K.E.; Morton, J.M.; Clements, A.C.A.; Mahony, T.J.; Barnes, T.S. Population-Level Effects of Risk Factors for Bovine Respiratory Disease in Australian Feedlot Cattle. Prev. Vet. Med. 2017, 140, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Cusack, P.; McMENIMAN, N.; Lean, I. Feedlot Entry Characteristics and Climate: Their Relationship with Cattle Growth Rate, Bovine Respiratory Disease and Mortality. J. Compil. Aust. Vet. J. 2007, 85, 311–316. [Google Scholar] [CrossRef]
- Baruch, J.; Cernicchiaro, N.; Cull, C.A.; Lechtenberg, K.F.; Nickell, J.S.; Renter, D.G. Performance of Multiple Diagnostic Methods in Assessing the Progression of Bovine Respiratory Disease in Calves Challenged with Infectious Bovine Rhinotracheitis Virus and Mannheimia Haemolytica1. J. Anim. Sci. 2019, 97, 2357–2367. [Google Scholar] [CrossRef]
- Toaff-Rosenstein, R.L.; Gershwin, L.J.; Tucker, C.B. Fever, Feeding, and Grooming Behavior around Peak Clinical Signs in Bovine Respiratory Disease1. J. Anim. Sci. 2016, 94, 3918–3932. [Google Scholar] [CrossRef]
- Carlos-Valdez, L.; Wilson, B.K.; Burciaga-Robles, L.O.; Step, D.L.; Holland, B.P.; Richards, C.J.; Montelongo, M.A.; Confer, A.W.; Fulton, R.W.; Krehbiel, C.R. Effect of Timing of Challenge Following Short-Term Natural Exposure to Bovine Viral Diarrhea Virus Type 1b on Animal Performance and Immune Response in Beef Steers. J. Anim. Sci. 2016, 94, 4799–4808. [Google Scholar] [CrossRef]
- Smith, R.A. Impact of Disease on Feedlot Performance: A Review. J. Anim. Sci. 1998, 76, 272–274. [Google Scholar] [CrossRef] [PubMed]
- Horton, L.M.; Depenbusch, B.E.; Pendell, D.L.; Renter, D.G. Description of Feedlot Animals Culled for Slaughter, Revenue Received, and Associations with Reported US Beef Market Prices. Bov. Pract. 2021, 55, 65–77. [Google Scholar]
- Babcock, A.H.; White, B.J.; Dritz, S.S.; Thomson, D.U.; Renter, D.G. Feedlot Health and Performance Effects Associated with the Timing of Respiratory Disease Treatment. J. Anim. Sci. 2009, 87, 314–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theurer, M.E.; Johnson, M.D.; Fox, T.; McCarty, T.M.; McCollum, R.M.; Jones, T.M.; Alkire, D.O. Bovine Respiratory Disease during the Mid-Portion of the Feeding Period: Observations from Vaccination History, Viral and Bacterial Prevalence, and Rate of Gain in Feedlot Cattle. Appl. Anim. Sci. 2021, 37, 59–67. [Google Scholar] [CrossRef]
- Dohoo, I.R. Bias-Is It a Problem, and What Should We Do? Prev. Vet. Med. 2014, 113, 331–337. [Google Scholar] [CrossRef]
- Steenland, K.; Schubauer-Berigan, M.K.; Vermeulen, R.; Lunn, R.M.; Straif, K.; Zahm, S.; Stewart, P.; Arroyave, W.D.; Mehta, S.S.; Pearce, N. Risk of Bias Assessments and Evidence Syntheses for Observational Epidemiologic Studies of Environmental and Occupational Exposures: Strengths and Limitations. Environ. Health Perspect. 2020, 128, 1–10. [Google Scholar] [CrossRef]
- Hammer, G.P.; Du Prel, J.B.; Blettner, M. Avoiding Bias in Observational Studies. Dtsch. Arztebl. 2009, 106, 664–668. [Google Scholar] [CrossRef]
- Christman, M.C.; Leone, E.H. Statistical Aspects of the Analysis of Group Size Effects in Confined Animals. Appl. Anim. Behav. Sci. 2007, 103, 265–283. [Google Scholar] [CrossRef]
HIGH | LOW | ZERO | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cluster Class | H1 | H2 | H3 | H4 | H5 | H6 | L1 | L2 | L3 | L4 | L5 | L6 | L7 | 0 |
Lots (n) | 352 | 437 | 246 | 225 | 267 | 70 | 1163 | 1428 | 734 | 1392 | 385 | 717 | 84 | 235 |
heifers | 201 | 278 | 160 | 155 | 164 | 42 | 696 | 897 | 471 | 857 | 232 | 503 | 58 | 120 |
steers | 151 | 159 | 86 | 70 | 103 | 28 | 467 | 531 | 263 | 535 | 153 | 214 | 26 | 115 |
Average Arrival Wt, kg | 318 | 316 | 312 | 303 | 322 | 305 | 347 | 341 | 351 | 349 | 337 | 345 | 364 | 387 |
SD | 49 | 47 | 42 | 45 | 41 | 48 | 51 | 44 | 43 | 44 | 45 | 47 | 38 | 42 |
Average Shrink, % | 3.49 | 3.16 | 3.21 | 3 | 2.86 | 1.76 | 2.05 | 2 | 2 | 1.92 | 1.32 | 1.54 | 1.39 | 1.04 |
SD | 2.72 | 2.33 | 2.32 | 2.57 | 2.18 | 2.21 | 2.46 | 2.43 | 2.48 | 3.64 | 2.81 | 2.47 | 2.38 | 2.28 |
Average number Cattle received | 111 | 116 | 119 | 120 | 117 | 105 | 130 | 145 | 133 | 139 | 138 | 139 | 117 | 84 |
SD | 49 | 54 | 48 | 47 | 52 | 46 | 77 | 65 | 63 | 72 | 59 | 64 | 56 | 34 |
Received Cattle | ||||||||||||||
<75 cattle | 109 | 129 | 56 | 50 | 80 | 19 | 342 | 273 | 187 | 296 | 65 | 147 | 29 | 135 |
76 to 129 | 122 | 136 | 90 | 76 | 72 | 31 | 317 | 339 | 187 | 371 | 115 | 204 | 28 | 70 |
130 to 167 | 76 | 97 | 63 | 57 | 66 | 13 | 213 | 304 | 144 | 285 | 82 | 142 | 11 | 20 |
>167 | 45 | 75 | 37 | 42 | 49 | 7 | 291 | 512 | 216 | 440 | 123 | 224 | 16 | 10 |
Arrival Quarter | ||||||||||||||
Quarter 1 | 71 | 99 | 61 | 63 | 87 | 17 | 331 | 351 | 193 | 326 | 118 | 175 | 30 | 54 |
Quarter 2 | 37 | 90 | 54 | 60 | 78 | 24 | 228 | 433 | 244 | 394 | 123 | 238 | 24 | 60 |
Quarter 3 | 88 | 92 | 64 | 62 | 60 | 19 | 329 | 385 | 215 | 456 | 68 | 200 | 18 | 73 |
Quarter 4 | 156 | 156 | 67 | 40 | 42 | 10 | 275 | 259 | 82 | 216 | 76 | 104 | 12 | 48 |
Average Death Loss, % | 4.17 | 4.21 | 2.93 | 2.84 | 3.06 | 2.09 | 1.24 | 1.44 | 1.28 | 1.3 | 1.38 | 1.26 | 1.23 | 0.51 |
SD | 4.86 | 4.45 | 2.28 | 2.29 | 2.56 | 1.57 | 1.37 | 1.3 | 1.34 | 1.32 | 1.26 | 1.21 | 1.48 | 0.83 |
Average Morbidity | 31.03 | 27.86 | 24.15 | 22.05 | 25.3 | 20.25 | 6.08 | 6.83 | 5.69 | 6.56 | 5.08 | 4.89 | 2.33 | 0 |
SD | 13.25 | 11.79 | 8.39 | 6.76 | 9.97 | 4.79 | 4.18 | 3.49 | 3.76 | 3.95 | 2.98 | 3.3 | 1.75 | 0 |
Average BRD to 50% | 9.76 | 21.57 | 21.25 | 40.8 | 34.38 | 61.33 | 13.22 | 31.22 | 44.37 | 27.65 | 64.55 | 61.79 | 110.76 | 0 |
Median BRD to 50% | 10 | 21 | 22 | 41 | 34 | 57 | 13 | 31 | 44 | 28 | 61 | 61 | 109 | 0 |
SD | 3.52 | 4.96 | 7.24 | 7.91 | 4.74 | 19.09 | 5.92 | 13.31 | 7.45 | 7.65 | 27.63 | 14.9 | 19 | 0 |
Mean Railers per cohort | 1.78 | 2.42 | 1.62 | 1.56 | 1.68 | 0.77 | 0.64 | 0.82 | 0.66 | 0.78 | 0.57 | 0.48 | 0.25 | 0.18 |
Median Railers per cohort | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
SD | 2.34 | 7.33 | 2.15 | 1.75 | 1.94 | 1.14 | 1.18 | 1.96 | 1.24 | 1.39 | 1.15 | 0.88 | 0.56 | 0.44 |
Mean days on feed, DOF | 169 | 157 | 176 | 183 | 171 | 181 | 145 | 162 | 153 | 152 | 168 | 156 | 148 | 137 |
Median DOF | 168 | 161 | 173 | 179 | 168 | 178 | 146 | 158 | 151 | 151 | 160 | 151 | 145 | 137 |
SD | 37 | 38 | 31 | 33 | 31 | 29 | 32 | 27 | 27 | 26 | 31 | 28 | 25 | 18 |
Mean ADG | 1.55 | 1.63 | 1.69 | 1.54 | 1.64 | 1.44 | 1.61 | 1.61 | 1.58 | 1.56 | 1.61 | 1.62 | 1.61 | 1.58 |
SD | 0.84 | 1.50 | 1.66 | 0.65 | 1.52 | 0.26 | 1.85 | 1.06 | 0.67 | 0.50 | 1.10 | 0.86 | 0.49 | 0.20 |
BRD Status | HIGH | LOW | ZERO | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cluster | H1 | H2 | H3 | H4 | H5 | H6 | L1 | L2 | L3 | L4 | L5 | L6 | L7 | 0 |
Cattle received 1 | 114 b | 119 b | 121 bcd | 123 bcde | 120 bc | 103 ab | 134 cde | 145 g | 135 defg | 143 fg | 137 cdefg | 137 efg | 117 abcde | 93 a |
SE | 7.86 | 7.71 | 8.16 | 8.25 | 8.07 | 10.30 | 7.34 | 7.31 | 7.48 | 7.31 | 7.81 | 7.50 | 9.85 | 8.22 |
Shrink, % 2 | 3.65 f | 3.26 ef | 3.47 f | 3.08 ef | 2.96 ef | 2.13 abcde | 2.27 cd | 2.30 d | 2.24 bcd | 2.19 bcd | 1.68 ab | 1.90 abc | 1.74 abcd | 1.24 a |
SE | 0.32 | 0.30 | 0.30 | 0.32 | 0.32 | 0.31 | 0.41 | 0.28 | 0.28 | 0.29 | 0.28 | 0.30 | 0.29 | 0.39 |
Arrival weight, kg | 309 bc | 315 c | 302 ab | 295 a | 312 bc | 295 ab | 340 ef | 333 d | 341 fg | 341 f | 332 de | 338 def | 358 gh | 376 h |
SE | 8.3 | 8.1 | 8.0 | 8.3 | 8.3 | 8.2 | 9.4 | 7.9 | 7.9 | 7.9 | 7.9 | 8.1 | 7.9 | 9.1 |
Prob of being Steer 3 | 0.40 b | 0.35 b | 0.31 ab | 0.28 ab | 0.35 ab | 0.36 ab | 0.35 b | 0.33 ab | 0.32 ab | 0.35 ab | 0.35 ab | 0.27 a | 0.27 ab | 0.41 b |
SE | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.06 | 0.03 | 0.03 | 0.03 | 0.03 | 0.04 | 0.03 | 0.05 | 0.04 |
BRD Status | High | Low | Zeros | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cluster | H1 | H2 | H3 | H4 | H5 | H6 | L1 | L2 | L3 | L4 | L5 | L6 | L7 | 0 |
ADG, kg 1 | 1.41 ab | 1.46 abc | 1.46 abcd | 1.42 ab | 1.45 abc | 1.33 a | 1.51 bc | 1.57 de | 1.58 e | 1.57 de | 1.55 cde | 1.59 e | 1.63 cde | 1.66 e |
SE | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.06 | 0.05 |
BRD Morb, % 2 | 27.25 j | 25.37 i | 21.07 gh | 19.43 fg | 22.53 h | 17.69 f | 5.73 d | 6.47 e | 5.42 d | 6.29 e | 4.68 c | 4.73 c | 2.33 b | 0.01 a |
SE | 0.82 | 0.77 | 0.76 | 0.74 | 0.77 | 0.93 | 0.34 | 0.36 | 0.34 | 0.36 | 0.34 | 0.32 | 0.32 | 0.02 |
Death loss, % 3 | 4.19 e | 4.15 e | 2.94 cd | 2.76 cd | 3.06 d | 2.08 bc | 1.53 b | 1.65 b | 1.52 b | 1.54 b | 1.56 b | 1.54 b | 1.64 ab | 0.93 a |
SE | 0.26 | 0.25 | 0.26 | 0.27 | 0.26 | 0.33 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.32 | 0.27 |
Rails/Culls 4 | 11.9 gh | 13.6 h | 11.2 fhg | 9.9 fg | 6.6 f | 7.6 efg | 4.0 b | 5.1de | 4.2 bc | 4.4 bc | 5.3 cde | 3.6 b | 2.8 abcd | 1.8 a |
SE | 3.3 | 3.7 | 2.7 | 2.7 | 2.6 | 2.3 | 1.1 | 1.4 | 1.1 | 1.2 | 1.5 | 1.0 | 1.0 | 0.5 |
Days to 50% BRD 5 | 9.4 b | 21.3 d | 20.5 d | 40.3 h | 34.2 g | 59.8 j | 12.5 c | 29.5 f | 44.0i | 27.0 e | 61.2 j | 60.6 j | 109.8 k | 0.0 a |
SE | 0.33 | 0.45 | 0.57 | 0.84 | 0.71 | 1.77 | 0.24 | 0.34 | 0.53 | 0.33 | 0.82 | 0.63 | 2.19 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, B.; White, B.; Lancaster, P.; Larson, R. An Evaluation of Temporal Distributions of High, Low, and Zero Cohort Morbidity of Cumulative First Treatment Bovine Respiratory Disease and Their Associations with Demographic, Health, and Performance Outcomes in US Feedlot Cattle. Vet. Sci. 2023, 10, 89. https://doi.org/10.3390/vetsci10020089
Johnson B, White B, Lancaster P, Larson R. An Evaluation of Temporal Distributions of High, Low, and Zero Cohort Morbidity of Cumulative First Treatment Bovine Respiratory Disease and Their Associations with Demographic, Health, and Performance Outcomes in US Feedlot Cattle. Veterinary Sciences. 2023; 10(2):89. https://doi.org/10.3390/vetsci10020089
Chicago/Turabian StyleJohnson, Blaine, Brad White, Phillip Lancaster, and Robert Larson. 2023. "An Evaluation of Temporal Distributions of High, Low, and Zero Cohort Morbidity of Cumulative First Treatment Bovine Respiratory Disease and Their Associations with Demographic, Health, and Performance Outcomes in US Feedlot Cattle" Veterinary Sciences 10, no. 2: 89. https://doi.org/10.3390/vetsci10020089
APA StyleJohnson, B., White, B., Lancaster, P., & Larson, R. (2023). An Evaluation of Temporal Distributions of High, Low, and Zero Cohort Morbidity of Cumulative First Treatment Bovine Respiratory Disease and Their Associations with Demographic, Health, and Performance Outcomes in US Feedlot Cattle. Veterinary Sciences, 10(2), 89. https://doi.org/10.3390/vetsci10020089