Urinary 15-F2t-Isoprostane Concentrations in Dogs with Liver Disease
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Sample Collection and Processing
2.3. Statistical Analysis
3. Results
3.1. Study Population
3.2. Urinary 15-F2t-Isoprostane Concentrations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.P.; Bayir, H.; Belousov, V.; Chang, C.J.; Davies, K.J.A.; Davies, M.J.; Dick, T.P.; Finkel, T.; Forman, H.J.; Janssen-Heininger, Y.; et al. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat. Metab. 2022, 4, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Xu, L.; Porter, N.A. Free radical lipid peroxidation: Mechanisms and analysis. Chem. Rev. 2011, 111, 5944–5972. [Google Scholar] [CrossRef] [PubMed]
- Montuschi, P.; Barnes, P.; Jackson Roberts, L. Insights into oxidative stress: The isoprostanes. Curr. Med. Chem. 2007, 14, 703–717. [Google Scholar] [CrossRef] [PubMed]
- Milne, G.L.; Musiek, E.S.; Morrow, J.D. F2-Isoprostanes as markers of oxidative stress in vivo: An overview. Biomarkers 2005, 10, 10–23. [Google Scholar] [CrossRef]
- van’t Erve, T.J.; Kadiiska, M.B.; London, S.J.; Mason, R.P. Classifying oxidative stress by F2-isoprostane levels across human diseases: A meta-analysis. Redox Biol. 2017, 12, 582–599. [Google Scholar] [CrossRef]
- Cederbaum, A.I.; Lu, Y.; Wu, D. Role of oxidative stress in alcohol-induced liver injury. Arch. Toxicol. 2009, 83, 519–548. [Google Scholar] [CrossRef]
- Ceni, E.; Mello, T.; Galli, A. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism. World J. Gastroenterol. 2014, 20, 17756–17772. [Google Scholar] [CrossRef]
- Yang, Y.M.; Cho, Y.E.; Hwang, S. Crosstalk between oxidative stress and inflammatory liver injury in the pathogenesis of alcoholic liver disease. Int. J. Mol. Sci. 2022, 23, 774. [Google Scholar] [CrossRef]
- Seki, S.; Kitada, T.; Yamada, T.; Sakaguchi, H.; Nakatani, K.; Wakasa, K. In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases. J. Hepatol. 2002, 37, 56–62. [Google Scholar] [CrossRef]
- Videla, L.A.; Rodrigo, R.; Orellana, M.; Fernandez, V.; Tapia, G.; Quiñones, L.; Varela, N.; Contreras, J.; Lazarte, R.; Csendes, A.; et al. Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients. Clin. Sci. 2004, 106, 261–268. [Google Scholar] [CrossRef]
- Rolo, A.P.; Teodoro, J.S.; Palmeira, C.M. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free. Rad. Biol. Med. 2012, 52, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Ou, J.-H.J. Mechanisms of Liver Injury. III. Oxidative stress in the pathogenesis of hepatitis C virus. Am. J. Physiol. Gastrointest Liver Physiol. 2006, 290, G847–G851. [Google Scholar] [CrossRef] [PubMed]
- Paracha, U.Z.; Fatima, K.; Alqahtani, M.; Chaudhary, A.; Abuzenadah, A.; Damanhouri, G.; Qadri, I. Oxidative stress and hepatitis C virus. Virol. J. 2013, 10, 251. [Google Scholar] [CrossRef] [PubMed]
- Salomone, F.; Petta, S.; Micek, A.; Pipitone, R.M.; Distefano, A.; Castruccio Castracani, C.; Rini, F.; Di Rosa, M.; Gardi, C.; Calvaruso, V.; et al. Hepatitis C virus eradication by direct antiviral agents abates oxidative stress in patients with advanced liver fibrosis. Liver Int. 2020, 40, 2820–2827. [Google Scholar] [CrossRef] [PubMed]
- Norenberg, M.D.; Jayakumar, A.R.; Rama Rao, K.V. Oxidative stress in the pathogenesis of hepatic encephalopathy. Metab. Brain Dis. 2004, 19, 313–329. [Google Scholar] [CrossRef]
- Seyan, A.S.; Hughes, R.D.; Shawcross, D.L. Changing face of hepatic encephalopathy: Role of inflammation and oxidative stress. World J. Gastroenterol. 2010, 16, 3347–3357. [Google Scholar] [CrossRef]
- Simicic, D.; Cudalbu, C.; Pierzchala, K. Overview of oxidative stress findings in hepatic encephalopathy: From cellular and ammonium-based animal models to human data. Anal. Biochem. 2022, 654, 114795. [Google Scholar] [CrossRef]
- Webb, C.; Twedt, D. Oxidative stress and liver disease. Vet. Clin. N. Am. Small Anim. Pract. 2008, 38, 125–135. [Google Scholar] [CrossRef]
- Barry-Heffernan, C.; Ekena, J.; Dowling, S.; Pinkerton, M.E.; Viviano, K. Biomarkers of oxidative stress as an assessment of the redox status of the liver in dogs. J. Vet. Intern. Med. 2019, 33, 611–617. [Google Scholar] [CrossRef]
- Milne, G.L.; Sanchez, S.C.; Musiek, E.S.; Morrow, J.D. Quantification of F2-isoprostanes as a biomarker of oxidative stress. Nat. Protoc. 2007, 2, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Soffler, C.; Campbell, V.L.; Hassel, D.M. Measurement of urinary F2-isoprostanes as markers of in vivo lipid peroxidation: A comparison of enzyme immunoassays with gas chromatography–mass spectrometry in domestic animal species. J. Vet. Diagn. Investig. 2010, 22, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Matthews, S.A. Ammonia, a causative factor in meat poisoning in Eck-fistula dogs. In: Proceedings of the American Physiological Society. Am. J. Physiol. 1922, 59, 459–460. [Google Scholar] [CrossRef][Green Version]
- Bessman, S.P.; Bessman, A.N. The cerebral and peripheral uptake of ammonia in liver disease with an hypothesis for the mechanism of hepatic coma. J. Clin. Investig. 1955, 34, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Görg, B.; Qvartskhava, N.; Bidmon, H.-J.; Palomero-Gallagher, N.; Kircheis, G.; Zilles, K.; Häussinger, D. Oxidative stress markers in the brain of patients with cirrhosis and hepatic encephalopathy. Hepatology 2010, 52, 256–265. [Google Scholar] [CrossRef]
- Carbonero-Aguilar, P.; Diaz-Herrero, M.d.M.; Cremades, O.; Romero-Gómez, M.; Bautista, J. Brain biomolecules oxidation in portacaval-shunted rats. Liver Int. 2011, 31, 964–969. [Google Scholar] [CrossRef]
- Montoliu, C.; Cauli, O.; Urios, A.; ElMlili, N.; Serra, M.A.; Giner-Duran, R.; González-Lopez, O.; Del Olmo, J.A.; Wassel, A.; Rodrigo, J.M.; et al. 3-nitro-tyrosine as a peripheral biomarker of minimal hepatic encephalopathy in patients with liver cirrhosis. Am. J. Gastroenterol. 2011, 106, 1629–1637. [Google Scholar] [CrossRef]
- Yamkate, P.; Lidbury, J.A.; Steiner, J.M.; Suchodolski, J.S.; Giaretta, P.R. Immunohistochemical expression of oxidative stress and apoptosis markers in archived liver specimens from dogs with chronic hepatitis. J. Comp. Pathol. 2022, 193, 25–36. [Google Scholar] [CrossRef]
- Lidbury, J.A.; Cook, A.K.; Steiner, J.M. Hepatic encephalopathy in dogs and cats. J. Vet. Emerg. Crit. Car. 2016, 26, 471–487. [Google Scholar] [CrossRef]
- Ide, T.; Tsutsui, H.; Ohashi, N.; Hayashidani, S.; Suematsu, N.; Tsuchihashi, M.; Tamai, H.; Takeshita, A. Greater oxidative stress in healthy young men compared with premenopausal women. Arter. Thromb. Vasc. Biol. 2002, 22, 438–442. [Google Scholar] [CrossRef]
- Borrás, C.; Sastre, J.; García-Sala, D.; Lloret, A.; Pallardó, F.V.; Viña, J. Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free. Rad. Biol. Med. 2003, 34, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Gambino, R.; Musso, G.; Cassader, M. Redox balance in the pathogenesis of nonalcoholic fatty liver disease: Mechanisms and therapeutic opportunities. Antioxid. Redox Signal. 2010, 15, 1325–1365. [Google Scholar] [CrossRef] [PubMed]
- Aghemo, A.; Alekseeva, O.P.; Angelico, F.; Bakulin, I.G.; Bakulina, N.V.; Bordin, D.; Bueverov, A.O.; Drapkina, O.M.; Gillessen, A.; Kagarmanova, E.M.; et al. Role of silymarin as antioxidant in clinical management of chronic liver diseases: A narrative review. Ann. Med. 2022, 54, 1548–1560. [Google Scholar] [CrossRef]
- Cichoż-Lach, H.; Michalak, A. Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol. 2014, 20, 8082–8091. [Google Scholar] [CrossRef]
- Viviano, K.R.; VanderWielen, B. Effect of N-acetylcysteine supplementation on intracellular glutathione, urine isoprostanes, clinical score, and survival in hospitalized ill dogs. J. Vet. Intern. Med. 2013, 27, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Lv, Z.; Zhang, Y.; Wang, Y.; Qiao, X.; Sun, C.; Chen, Y.; Guo, M.; Han, W.; Ye, A.; et al. Precision redox: The key for antioxidant pharmacology. Antioxid. Redox Signal. 2020, 34, 1069–1082. [Google Scholar] [CrossRef] [PubMed]
- Helmersson, J.; Basu, S. F2-isoprostane and prostaglandin F2α metabolite excretion rate and day-to-day variation in healthy humans. Prostaglandins Leukot. Essent. Fat. Acids 2001, 65, 99–102. [Google Scholar] [CrossRef]
Variable | HC | CH | SH | CPSS |
---|---|---|---|---|
Number (n=) | 21 | 25 | 7 | 8 |
Age (years) | 4 [1.5–9] | 8.6 [1–13] | 9.4 [6–11] | 2 [1–6] |
Weight (kg) | 29.5 [12.7–43.6] | 21.8 [2.9–51.2] | 17.6 [3.3–53.4] | 6.2 [4.4–24.6] |
Male (N/I) | 11 (9/2) | 11 (11/0) | 3 (3/0) | 2 (1/1) |
Female (S/I) | 10 (8/2) | 14 (13/1) | 4 (4/0) | 6 (5/1) |
Purebred/Mix | 12/9 | 18/7 | 5/2 | 7/1 |
AOS, Yes/No | 0/21 | 16/9 | 2/5 | 1/7 |
HC | CH | SH | CPSS | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Med. | Range | p-Value | n | Med. | Range | p-Value | n | Med. | Range | p-Value | n | Med. | Range | p-Value | ||
AOS | Yes | 0 | n.d. a | n.d. a | n.d. a | 16 | 6.77 | 2.42–11.29 | 0.677 | 2 | 3.48 | 3.07–3.88 | 0.381 | 1 | 17.55 | 17.55–17.55 | 0.500 |
No | 21 | 3.56 | 2.17–12.43 | 9 | 5.55 | 2.81–9.06 | 5 | 5.96 | 2.39–8.61 | 7 | 12.42 | 2.92–22.90 | |||||
BW | <25 kg | 7 | 3.63 | 3.24–5.58 | 0.443 | 10 b | 6.19 | 2.78–10.22 | 0.860 b | 5 | 3.88 | 2.39–8.61 | 0.381 | 8 | 12.49 | 7.3–22.9 | n.d. c |
≥25 kg | 14 | 3.39 | 2.17–12.43 | 5 b | 5.55 | 2.81–8.53 | 2 | 6.83 | 5.96–7.70 | 0 | n.d. c | n.d. c | |||||
Sex | M | 11 | 3.29 | 2.17–4.78 | 0.051 | 11 | 5.55 | 2.81–11.29 | 0.536 | 3 | 3.88 | 2.39–4.84 | 0.229 | 2 | 5.11 | 2.92–7.30 | 0.071 |
F | 10 | 3.76 | 2.48–12.43 | 14 | 5.95 | 2.42–9.06 | 4 | 6.83 | 3.07–8.61 | 6 | 12.89 | 11.29–22.90 | |||||
Age | <6 yr. | 18 | 3.58 | 2.17–12.43 | 0.534 | 7 | 6.18 | 2.78–11.29 | 0.883 | 0 | n.d. d | n.d. d | n.d. d | 7 | 12.49 | 2.92–22.9 | 1.000 |
≥6 yr. | 3 | 3.56 | 2.48–3.63 | 18 | 5.63 | 2.42–10.22 | 7 | 4.84 | 2.39–8.61 | 1 | 12.42 | 12.42–12.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phillips, R.K.; Steiner, J.M.; Suchodolski, J.S.; Lidbury, J.A. Urinary 15-F2t-Isoprostane Concentrations in Dogs with Liver Disease. Vet. Sci. 2023, 10, 82. https://doi.org/10.3390/vetsci10020082
Phillips RK, Steiner JM, Suchodolski JS, Lidbury JA. Urinary 15-F2t-Isoprostane Concentrations in Dogs with Liver Disease. Veterinary Sciences. 2023; 10(2):82. https://doi.org/10.3390/vetsci10020082
Chicago/Turabian StylePhillips, Robert Kyle, Jörg M. Steiner, Jan S. Suchodolski, and Jonathan A. Lidbury. 2023. "Urinary 15-F2t-Isoprostane Concentrations in Dogs with Liver Disease" Veterinary Sciences 10, no. 2: 82. https://doi.org/10.3390/vetsci10020082
APA StylePhillips, R. K., Steiner, J. M., Suchodolski, J. S., & Lidbury, J. A. (2023). Urinary 15-F2t-Isoprostane Concentrations in Dogs with Liver Disease. Veterinary Sciences, 10(2), 82. https://doi.org/10.3390/vetsci10020082