Urinary 15-F2t-Isoprostane Concentrations in Dogs with Liver Disease
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Sample Collection and Processing
2.3. Statistical Analysis
3. Results
3.1. Study Population
3.2. Urinary 15-F2t-Isoprostane Concentrations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.P.; Bayir, H.; Belousov, V.; Chang, C.J.; Davies, K.J.A.; Davies, M.J.; Dick, T.P.; Finkel, T.; Forman, H.J.; Janssen-Heininger, Y.; et al. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat. Metab. 2022, 4, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Xu, L.; Porter, N.A. Free radical lipid peroxidation: Mechanisms and analysis. Chem. Rev. 2011, 111, 5944–5972. [Google Scholar] [CrossRef] [PubMed]
- Montuschi, P.; Barnes, P.; Jackson Roberts, L. Insights into oxidative stress: The isoprostanes. Curr. Med. Chem. 2007, 14, 703–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milne, G.L.; Musiek, E.S.; Morrow, J.D. F2-Isoprostanes as markers of oxidative stress in vivo: An overview. Biomarkers 2005, 10, 10–23. [Google Scholar] [CrossRef]
- van’t Erve, T.J.; Kadiiska, M.B.; London, S.J.; Mason, R.P. Classifying oxidative stress by F2-isoprostane levels across human diseases: A meta-analysis. Redox Biol. 2017, 12, 582–599. [Google Scholar] [CrossRef]
- Cederbaum, A.I.; Lu, Y.; Wu, D. Role of oxidative stress in alcohol-induced liver injury. Arch. Toxicol. 2009, 83, 519–548. [Google Scholar] [CrossRef]
- Ceni, E.; Mello, T.; Galli, A. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism. World J. Gastroenterol. 2014, 20, 17756–17772. [Google Scholar] [CrossRef]
- Yang, Y.M.; Cho, Y.E.; Hwang, S. Crosstalk between oxidative stress and inflammatory liver injury in the pathogenesis of alcoholic liver disease. Int. J. Mol. Sci. 2022, 23, 774. [Google Scholar] [CrossRef]
- Seki, S.; Kitada, T.; Yamada, T.; Sakaguchi, H.; Nakatani, K.; Wakasa, K. In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases. J. Hepatol. 2002, 37, 56–62. [Google Scholar] [CrossRef]
- Videla, L.A.; Rodrigo, R.; Orellana, M.; Fernandez, V.; Tapia, G.; Quiñones, L.; Varela, N.; Contreras, J.; Lazarte, R.; Csendes, A.; et al. Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients. Clin. Sci. 2004, 106, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Rolo, A.P.; Teodoro, J.S.; Palmeira, C.M. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free. Rad. Biol. Med. 2012, 52, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Ou, J.-H.J. Mechanisms of Liver Injury. III. Oxidative stress in the pathogenesis of hepatitis C virus. Am. J. Physiol. Gastrointest Liver Physiol. 2006, 290, G847–G851. [Google Scholar] [CrossRef] [PubMed]
- Paracha, U.Z.; Fatima, K.; Alqahtani, M.; Chaudhary, A.; Abuzenadah, A.; Damanhouri, G.; Qadri, I. Oxidative stress and hepatitis C virus. Virol. J. 2013, 10, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salomone, F.; Petta, S.; Micek, A.; Pipitone, R.M.; Distefano, A.; Castruccio Castracani, C.; Rini, F.; Di Rosa, M.; Gardi, C.; Calvaruso, V.; et al. Hepatitis C virus eradication by direct antiviral agents abates oxidative stress in patients with advanced liver fibrosis. Liver Int. 2020, 40, 2820–2827. [Google Scholar] [CrossRef] [PubMed]
- Norenberg, M.D.; Jayakumar, A.R.; Rama Rao, K.V. Oxidative stress in the pathogenesis of hepatic encephalopathy. Metab. Brain Dis. 2004, 19, 313–329. [Google Scholar] [CrossRef]
- Seyan, A.S.; Hughes, R.D.; Shawcross, D.L. Changing face of hepatic encephalopathy: Role of inflammation and oxidative stress. World J. Gastroenterol. 2010, 16, 3347–3357. [Google Scholar] [CrossRef]
- Simicic, D.; Cudalbu, C.; Pierzchala, K. Overview of oxidative stress findings in hepatic encephalopathy: From cellular and ammonium-based animal models to human data. Anal. Biochem. 2022, 654, 114795. [Google Scholar] [CrossRef]
- Webb, C.; Twedt, D. Oxidative stress and liver disease. Vet. Clin. N. Am. Small Anim. Pract. 2008, 38, 125–135. [Google Scholar] [CrossRef]
- Barry-Heffernan, C.; Ekena, J.; Dowling, S.; Pinkerton, M.E.; Viviano, K. Biomarkers of oxidative stress as an assessment of the redox status of the liver in dogs. J. Vet. Intern. Med. 2019, 33, 611–617. [Google Scholar] [CrossRef]
- Milne, G.L.; Sanchez, S.C.; Musiek, E.S.; Morrow, J.D. Quantification of F2-isoprostanes as a biomarker of oxidative stress. Nat. Protoc. 2007, 2, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Soffler, C.; Campbell, V.L.; Hassel, D.M. Measurement of urinary F2-isoprostanes as markers of in vivo lipid peroxidation: A comparison of enzyme immunoassays with gas chromatography–mass spectrometry in domestic animal species. J. Vet. Diagn. Investig. 2010, 22, 200–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, S.A. Ammonia, a causative factor in meat poisoning in Eck-fistula dogs. In: Proceedings of the American Physiological Society. Am. J. Physiol. 1922, 59, 459–460. [Google Scholar] [CrossRef] [Green Version]
- Bessman, S.P.; Bessman, A.N. The cerebral and peripheral uptake of ammonia in liver disease with an hypothesis for the mechanism of hepatic coma. J. Clin. Investig. 1955, 34, 622–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Görg, B.; Qvartskhava, N.; Bidmon, H.-J.; Palomero-Gallagher, N.; Kircheis, G.; Zilles, K.; Häussinger, D. Oxidative stress markers in the brain of patients with cirrhosis and hepatic encephalopathy. Hepatology 2010, 52, 256–265. [Google Scholar] [CrossRef] [Green Version]
- Carbonero-Aguilar, P.; Diaz-Herrero, M.d.M.; Cremades, O.; Romero-Gómez, M.; Bautista, J. Brain biomolecules oxidation in portacaval-shunted rats. Liver Int. 2011, 31, 964–969. [Google Scholar] [CrossRef]
- Montoliu, C.; Cauli, O.; Urios, A.; ElMlili, N.; Serra, M.A.; Giner-Duran, R.; González-Lopez, O.; Del Olmo, J.A.; Wassel, A.; Rodrigo, J.M.; et al. 3-nitro-tyrosine as a peripheral biomarker of minimal hepatic encephalopathy in patients with liver cirrhosis. Am. J. Gastroenterol. 2011, 106, 1629–1637. [Google Scholar] [CrossRef]
- Yamkate, P.; Lidbury, J.A.; Steiner, J.M.; Suchodolski, J.S.; Giaretta, P.R. Immunohistochemical expression of oxidative stress and apoptosis markers in archived liver specimens from dogs with chronic hepatitis. J. Comp. Pathol. 2022, 193, 25–36. [Google Scholar] [CrossRef]
- Lidbury, J.A.; Cook, A.K.; Steiner, J.M. Hepatic encephalopathy in dogs and cats. J. Vet. Emerg. Crit. Car. 2016, 26, 471–487. [Google Scholar] [CrossRef]
- Ide, T.; Tsutsui, H.; Ohashi, N.; Hayashidani, S.; Suematsu, N.; Tsuchihashi, M.; Tamai, H.; Takeshita, A. Greater oxidative stress in healthy young men compared with premenopausal women. Arter. Thromb. Vasc. Biol. 2002, 22, 438–442. [Google Scholar] [CrossRef]
- Borrás, C.; Sastre, J.; García-Sala, D.; Lloret, A.; Pallardó, F.V.; Viña, J. Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free. Rad. Biol. Med. 2003, 34, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Gambino, R.; Musso, G.; Cassader, M. Redox balance in the pathogenesis of nonalcoholic fatty liver disease: Mechanisms and therapeutic opportunities. Antioxid. Redox Signal. 2010, 15, 1325–1365. [Google Scholar] [CrossRef] [PubMed]
- Aghemo, A.; Alekseeva, O.P.; Angelico, F.; Bakulin, I.G.; Bakulina, N.V.; Bordin, D.; Bueverov, A.O.; Drapkina, O.M.; Gillessen, A.; Kagarmanova, E.M.; et al. Role of silymarin as antioxidant in clinical management of chronic liver diseases: A narrative review. Ann. Med. 2022, 54, 1548–1560. [Google Scholar] [CrossRef]
- Cichoż-Lach, H.; Michalak, A. Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol. 2014, 20, 8082–8091. [Google Scholar] [CrossRef]
- Viviano, K.R.; VanderWielen, B. Effect of N-acetylcysteine supplementation on intracellular glutathione, urine isoprostanes, clinical score, and survival in hospitalized ill dogs. J. Vet. Intern. Med. 2013, 27, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Lv, Z.; Zhang, Y.; Wang, Y.; Qiao, X.; Sun, C.; Chen, Y.; Guo, M.; Han, W.; Ye, A.; et al. Precision redox: The key for antioxidant pharmacology. Antioxid. Redox Signal. 2020, 34, 1069–1082. [Google Scholar] [CrossRef] [PubMed]
- Helmersson, J.; Basu, S. F2-isoprostane and prostaglandin F2α metabolite excretion rate and day-to-day variation in healthy humans. Prostaglandins Leukot. Essent. Fat. Acids 2001, 65, 99–102. [Google Scholar] [CrossRef]
Variable | HC | CH | SH | CPSS |
---|---|---|---|---|
Number (n=) | 21 | 25 | 7 | 8 |
Age (years) | 4 [1.5–9] | 8.6 [1–13] | 9.4 [6–11] | 2 [1–6] |
Weight (kg) | 29.5 [12.7–43.6] | 21.8 [2.9–51.2] | 17.6 [3.3–53.4] | 6.2 [4.4–24.6] |
Male (N/I) | 11 (9/2) | 11 (11/0) | 3 (3/0) | 2 (1/1) |
Female (S/I) | 10 (8/2) | 14 (13/1) | 4 (4/0) | 6 (5/1) |
Purebred/Mix | 12/9 | 18/7 | 5/2 | 7/1 |
AOS, Yes/No | 0/21 | 16/9 | 2/5 | 1/7 |
HC | CH | SH | CPSS | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Med. | Range | p-Value | n | Med. | Range | p-Value | n | Med. | Range | p-Value | n | Med. | Range | p-Value | ||
AOS | Yes | 0 | n.d. a | n.d. a | n.d. a | 16 | 6.77 | 2.42–11.29 | 0.677 | 2 | 3.48 | 3.07–3.88 | 0.381 | 1 | 17.55 | 17.55–17.55 | 0.500 |
No | 21 | 3.56 | 2.17–12.43 | 9 | 5.55 | 2.81–9.06 | 5 | 5.96 | 2.39–8.61 | 7 | 12.42 | 2.92–22.90 | |||||
BW | <25 kg | 7 | 3.63 | 3.24–5.58 | 0.443 | 10 b | 6.19 | 2.78–10.22 | 0.860 b | 5 | 3.88 | 2.39–8.61 | 0.381 | 8 | 12.49 | 7.3–22.9 | n.d. c |
≥25 kg | 14 | 3.39 | 2.17–12.43 | 5 b | 5.55 | 2.81–8.53 | 2 | 6.83 | 5.96–7.70 | 0 | n.d. c | n.d. c | |||||
Sex | M | 11 | 3.29 | 2.17–4.78 | 0.051 | 11 | 5.55 | 2.81–11.29 | 0.536 | 3 | 3.88 | 2.39–4.84 | 0.229 | 2 | 5.11 | 2.92–7.30 | 0.071 |
F | 10 | 3.76 | 2.48–12.43 | 14 | 5.95 | 2.42–9.06 | 4 | 6.83 | 3.07–8.61 | 6 | 12.89 | 11.29–22.90 | |||||
Age | <6 yr. | 18 | 3.58 | 2.17–12.43 | 0.534 | 7 | 6.18 | 2.78–11.29 | 0.883 | 0 | n.d. d | n.d. d | n.d. d | 7 | 12.49 | 2.92–22.9 | 1.000 |
≥6 yr. | 3 | 3.56 | 2.48–3.63 | 18 | 5.63 | 2.42–10.22 | 7 | 4.84 | 2.39–8.61 | 1 | 12.42 | 12.42–12.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phillips, R.K.; Steiner, J.M.; Suchodolski, J.S.; Lidbury, J.A. Urinary 15-F2t-Isoprostane Concentrations in Dogs with Liver Disease. Vet. Sci. 2023, 10, 82. https://doi.org/10.3390/vetsci10020082
Phillips RK, Steiner JM, Suchodolski JS, Lidbury JA. Urinary 15-F2t-Isoprostane Concentrations in Dogs with Liver Disease. Veterinary Sciences. 2023; 10(2):82. https://doi.org/10.3390/vetsci10020082
Chicago/Turabian StylePhillips, Robert Kyle, Jörg M. Steiner, Jan S. Suchodolski, and Jonathan A. Lidbury. 2023. "Urinary 15-F2t-Isoprostane Concentrations in Dogs with Liver Disease" Veterinary Sciences 10, no. 2: 82. https://doi.org/10.3390/vetsci10020082
APA StylePhillips, R. K., Steiner, J. M., Suchodolski, J. S., & Lidbury, J. A. (2023). Urinary 15-F2t-Isoprostane Concentrations in Dogs with Liver Disease. Veterinary Sciences, 10(2), 82. https://doi.org/10.3390/vetsci10020082