House Flies (Musca domestica) from Swine and Poultry Farms Carrying Antimicrobial Resistant Enterobacteriaceae and Salmonella
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Farms
2.2. Traps, Insects Collection, and Processing
2.3. Enterobacteriaceae Isolation
2.4. Salmonella Isolation and Identification
2.5. Antimicrobial Susceptibility Tests
2.6. Statistical Analyses
3. Results
3.1. Farms and Samples
3.2. Enterobacteriaceae
3.3. Salmonella spp.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef] [PubMed]
- Martens, E.; Demain, A.L. The antibiotic resistance crisis, with a focus on the United States. J. Antibiot. 2017, 70, 520–526. [Google Scholar] [CrossRef]
- World Health Organisation. Antimicrobial Resistance—A Manual For Developing National Action Plans; World Health Organisation: Geneva, Switzerland, 2016. [Google Scholar]
- Postma, M.; Backhans, A.; Collineau, L.; Loesken, S.; Sjölund, M.; Belloc, C.; Emanuelson, U.; Beilage, E.G.; Nielsen, E.O.; Stärk, K.D.C.; et al. Evaluation of the relationship between the biosecurity status, production parameters, herd characteristics and antimicrobial usage in farrow-to-finish pig production in four EU countries. Porc. Health Manag. 2016, 2, 9. [Google Scholar] [CrossRef] [PubMed]
- Raasch, S.; Postma, M.; Dewulf, J.; Stärk, K.D.C.; grosse Beilage, E. Association between antimicrobial usage, biosecurity measures as well as farm performance in German farrow-to-finish farms. Porc. Health Manag. 2018, 4, 30. [Google Scholar] [CrossRef] [PubMed]
- Mencía-Ares, O.; Argüello, H.; Puente, H.; Gómez-García, M.; Manzanilla, E.G.; Álvarez-Ordóñez, A.; Carvajal, A.; Rubio, P. Antimicrobial resistance in commensal Escherichia coli and Enterococcus spp. is influenced by production system, antimicrobial use, and biosecurity measures on Spanish pig farms. Porc. Health Manag. 2021, 7, 27. [Google Scholar] [CrossRef]
- Maye, D.; Chan, K.W.R. On-farm biosecurity in livestock production: Farmer behaviour, cultural identities and practices of care. Emerg. Top. Life Sci. 2020, 4, 521–530. [Google Scholar] [PubMed]
- Renault, V.; Humblet, M.F.; Pham, P.N.; Saegerman, C. Biosecurity at Cattle Farms: Strengths, Weaknesses, Opportunities and Threats. Pathogens 2021, 10, 1315. [Google Scholar] [CrossRef] [PubMed]
- Jahan, N.A.; Lindsey, L.L.; Kipp, E.J.; Reinschmidt, A.; Heins, B.J.; Runck, A.M.; Larsen, P.A. Nanopore-based surveillance of zoonotic bacterial pathogens in farm-dwelling peridomestic rodents. Pathogens 2021, 10, 1183. [Google Scholar] [CrossRef]
- Royden, A.; Wedley, A.; Merga, J.Y.; Rushton, S.; Hald, B.; Humphrey, T.; Williams, N.J. A role for flies (Diptera) in the transmission of Campylobacter to broilers? Epidemiol. Infect. 2016, 144, 3326. [Google Scholar] [CrossRef]
- Pusterla, N.; Bowers, J.; Barnum, S.; Hall, J.A. Molecular detection of Streptococcus equi subspecies equi in face flies (Musca autumnalis) collected during a strangles outbreak on a Thoroughbred farm. Med. Vet. Entomol. 2020, 34, 120–122. [Google Scholar] [CrossRef]
- Ebani, V.V.; Guardone, L.; Bertelloni, F.; Perrucci, S.; Poli, A.; Mancianti, F. Survey on the Presence of Bacterial and Parasitic Zoonotic Agents in the Feces of Wild Birds. Vet. Sci. 2021, 8, 171. [Google Scholar] [CrossRef] [PubMed]
- Liebana, E.; Garcia-Migura, L.; Clouting, C.; Clifton-Hadley, F.A.; Breslin, M.; Davies, R.H. Molecular fingerprinting evidence of the contribution of wildlife vectors in the maintenance of Salmonella Enteritidis infection in layer farms. J. Appl. Microbiol. 2003, 94, 1024–1029. [Google Scholar] [CrossRef]
- Marchino, M.; Rizzo, F.; Barzanti, P.; Sparasci, O.A.; Bottino, P.; Vicari, N.; Rigamonti, S.; Braghin, S.; Aaziz, R.; Vorimore, F.; et al. Chlamydia Species and Related Risk Factors in Poultry in North-Western Italy: Possible Bird-to-Human Transmission for C. gallinacea. Int. J. Environ. Res. Public Health 2022, 19, 2174. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.Q.; Ahmad, H.; Jaal, Z.; Rus, A.; Fadzlah, F.H.M. Comparison of Intrinsic Rate of Different House Fly Densities in a Simulated Condition: A Prediction for House Fly Population and Control Threshold. J. Med. Entomol. 2017, 54, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, P.E.; Rutz, D.A.; Frisch, S. Large Sticky Traps for Capturing House Flies and Stable Flies in Dairy Calf Greenhouse Facilities. J. Dairy Sci. 2005, 88, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Pezzi, M.; Lanfredi, M.; Chicca, M.; Tedeschi, P.; Brandolini, V.; Leis, M. Preliminary evaluation of insecticide resistance in a strain of Musca domestica (Diptera: Muscidae) from an intensive chicken farm of Northern Italy. J. Environ. Sci. Health B 2011, 46, 480–485. [Google Scholar] [PubMed]
- Thomson, J.L.; Cernicchiaro, N.; Zurek, L.; Nayduch, D. Cantaloupe Facilitates Salmonella Typhimurium Survival Within and Transmission Among Adult House Flies (Musca domestica L.). Foodborne Pathog. Dis. 2021, 18, 49–55. [Google Scholar] [CrossRef]
- Pava-Ripoll, M.; Pearson, R.E.G.; Miller, A.K.; Tall, B.D.; Keys, C.E.; Ziobro, G.C. Ingested Salmonella enterica, Cronobacter sakazakii, Escherichia coli O157:H7, and Listeria monocytogenes: Transmission dynamics from adult house flies to their eggs and first filial (F1) generation adults. BMC Microbiol. 2015, 15, 150. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N.; Muisa-Zikali, N.; Teta, C.; Musvuugwa, T.; Rzymski, P.; Abia, A.L.K. Insects, Rodents, and Pets as Reservoirs, Vectors, and Sentinels of Antimicrobial Resistance. Antibiotics 2021, 10, 68. [Google Scholar] [CrossRef]
- Dos Alves, T.S.; Lara, G.H.B.; Maluta, R.P.; Ribeiro, M.G.; Leite, D.D.S. Carrier flies of multidrug-resistant Escherichia coli as potential dissemination agent in dairy farm environment. Sci. Total Environ. 2018, 633, 1345–1351. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, A.; Usui, M.; Okamura, M.; Dong-Liang, H.; Tamura, Y. Role of Flies in the Maintenance of Antimicrobial Resistance in Farm Environments. Microb. Drug Resist. 2019, 25, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Sobur, M.A.; Ievy, S.; Haque, Z.F.; Nahar, A.; Zaman, S.B.; Rahman, M.T. Emergence of colistin-resistant Escherichia coli in poultry, house flies, and pond water in Mymensingh, Bangladesh. J. Adv. Vet. Anim. Res. 2019, 6, 50. [Google Scholar] [PubMed]
- Bakry, N.; Awad, W.; Ahmed, S.; Kamel, M. The role of Musca domestica and milk in transmitting pathogenic multidrug-resistant Escherichia coli and associated phylogroups to neonatal calves. Environ. Sci. Pollut. Res. 2022, 1, 39593–39609. [Google Scholar] [CrossRef] [PubMed]
- Poudel, A.; Hathcock, T.; Butaye, P.; Kang, Y.; Price, S.; Macklin, K.; Walz, P.; Cattley, R.; Kalalah, A.; Adekanmbi, F.; et al. Multidrug-Resistant Escherichia coli, Klebsiella pneumoniae and Staphylococcus spp. in Houseflies and Blowflies from Farms and Their Environmental Settings. Int. J. Environ. Res. Public Health 2019, 16, 3583. [Google Scholar] [CrossRef]
- Encyclopedia of Insects, 2nd ed.; Resh, V.; Carde, R. (Eds.) Academic Press: Waltham, MA, USA, 2009; ISBN 9780123741448. [Google Scholar]
- Bertelloni, F.; Chemaly, M.; Cerri, D.; Le Gall, F.; Ebani, V.V. Salmonella infection in healthy pet reptiles: Bacteriological isolation and study of some pathogenic characters. Acta Microbiol. Immunol. Hung. 2016, 63, 203–216. [Google Scholar] [CrossRef]
- Bhowmick, P.P.; Devegowda, D.; Karunasagar, I. Virulotyping of seafood associated Salmonella enterica subsp. enterica isolated from Southwest coast of India. Res. Artic. Biotechnol. Bioinf. Bioeng. 2011, 1, 63–69. [Google Scholar]
- M02-A12; Performance Standards for Antimicrobial Disk Susceptibility Tests. Approved Standard—Twelfth Edition; CLSI (Clinical and Laboratory Standards Institute): Wayne, PA, USA, 2015.
- VET01S; Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals. 5th ed. CLSI (Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020.
- CLSI. M100 Performance Standards for Antimicrobial Susceptibility Testing A CLSI Supplement for Global Application, 28th ed.; CLSI (Clinical and Laboratory Standards Institute): Wayne, PA, USA, 2018. [Google Scholar]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Dahshan, H.; Shahada, F.; Chuma, T.; Moriki, H.; Okamoto, K. Genetic analysis of multidrug-resistant Salmonella enterica serovars Stanley and Typhimurium from cattle. Vet. Microbiol. 2010, 145, 76–83. [Google Scholar] [CrossRef]
- Hasman, H.; Mevius, D.; Veldman, K.; Olesen, I.; Aarestrup, F.M. β-Lactamases among extended-spectrum β-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in The Netherlands. J. Antimicrob. Chemother. 2005, 56, 115–121. [Google Scholar] [CrossRef]
- Gude, M.J.; Seral, C.; Sáenz, Y.; González-Domínguez, M.; Torres, C.; Castillo, F.J. Evaluation of four phenotypic methods to detect plasmid-mediated AmpC β-lactamases in clinical isolates. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2037–2043. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khamesipour, F.; Lankarani, K.B.; Honarvar, B.; Kwenti, T.E. A systematic review of human pathogens carried by the housefly (Musca domestica L.). BMC Public Health 2018, 18, 1049. [Google Scholar] [CrossRef] [PubMed]
- Halkman, H.B.D.; Halkman, A.K. Indicator Organisms. In Encyclopedia of Food Microbiology, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 358–363. [Google Scholar]
- Jenkins, C.; Rentenaar, R.J.; Landraud, L.; Brisse, S. Enterobacteriaceae. In Infectious Diseases, 2-Volume Set; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1565–1578.e2. ISBN 9780702062858. [Google Scholar]
- Cervelin, V.; Fongaro, G.; Pastore, J.B.; Engel, F.; Reimers, M.A.; Viancelli, A. Enterobacteria associated with houseflies (Musca domestica) as an infection risk indicator in swine production farms. Acta Trop. 2018, 185, 13–17. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2019 and 2020; European Medicines Agency: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Akter, S.; Sabuj, A.A.M.; Haque, Z.F.; Rahman, M.T.; Kafi, M.A.; Saha, S. Detection of antibiotic-resistant bacteria and their resistance genes from houseflies. Vet. World 2020, 13, 266. [Google Scholar] [CrossRef]
- Odetoyin, B.; Adeola, B.; Olaniran, O. Frequency and Antimicrobial Resistance Patterns of Bacterial Species Isolated from the Body Surface of the Housefly (Musca domestica) in Akure, Ondo State, Nigeria. J. Arthropod Borne Dis. 2020, 14, 88. [Google Scholar] [CrossRef]
- Rubin, J.E.; Pitout, J.D.D. Extended-spectrum β-lactamase, carbapenemase and AmpC producing Enterobacteriaceae in companion animals. Vet. Microbiol. 2014, 170, 10–18. [Google Scholar] [CrossRef]
- Ghafourian, S.; Sadeghifard, N.; Soheili, S.; Sekawi, Z. Extended Spectrum Beta-lactamases: Definition, Classification and Epidemiology. Curr. Issues Mol. Biol. 2015, 17, 11–22. [Google Scholar]
- The European Food Safety Authority—BIOHAZ Panel (EFSA Panel on Biological Hazards). Scientific Opinion on the public health risks of bacterial strains producing extended-spectrum β-lactamases and/or AmpC β-lactamases in food and food-producing animals. EFSA J. 2011, 9, 2322. [Google Scholar] [CrossRef]
- The European Food Safety Authority—BIOHAZ Panel (EFSA Panel on Biological Hazards). Scientific Opinion on Carbapenem resistance in food animal ecosystems. EFSA J. 2013, 11, 3501. [Google Scholar]
- Bush, K.; Bradford, P.A. Epidemiology of β-Lactamase-Producing Pathogens. Clin. Microbiol. Rev. 2020, 33, e00047. [Google Scholar] [CrossRef]
- Onwugamba, F.C.; Mellmann, A.; Nwaugo, V.O.; Süselbeck, B.; Schaumburg, F. Antimicrobial resistant and enteropathogenic bacteria in ‘filth flies’: A cross-sectional study from Nigeria. Sci. Rep. 2020, 10, 16990. [Google Scholar] [CrossRef] [PubMed]
- EFSA, (European Food Safety Authority); ECDC, (European Centre for Disease Prevention and Control). The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, e05926. [Google Scholar]
- Bonardi, S.; Alpigiani, I.; Bruini, I.; Barilli, E.; Brindani, F.; Morganti, M.; Cavallini, P.; Bolzoni, L.; Pongolini, S. Detection of Salmonella enterica in pigs at slaughter and comparison with human isolates in Italy. Int. J. Food Microbiol. 2016, 218, 44–50. [Google Scholar] [CrossRef]
- Nguyen Thi, H.; Pham, T.-T.-T.; Turchi, B.; Fratini, F.; Virginia Ebani, V.; Cerri, D.; Bertelloni, F. Characterization of Salmonella spp. Isolates from Swine: Virulence and Antimicrobial Resistance. Animals 2020, 10, 2418. [Google Scholar] [CrossRef]
- Leati, M.; Zaccherini, A.; Ruocco, L.; D’Amato, S.; Busani, L.; Villa, L.; Barco, L.; Ricci, A.; Cibin, V. The challenging task to select Salmonella target serovars in poultry: The Italian point of view. Epidemiol. Infect. 2021, 149, E160. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority); ECDC (European Centre for Disease Prevention and Control). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/2019. EFSA J. 2021, 19, 179. [Google Scholar]
- Diaconu, E.L.; Alba, P.; Feltrin, F.; Di Matteo, P.; Iurescia, M.; Chelli, E.; Donati, V.; Marani, I.; Giacomi, A.; Franco, A.; et al. Emergence of IncHI2 Plasmids With Mobilized Colistin Resistance (mcr)-9 Gene in ESBL-Producing, Multidrug-Resistant Salmonella Typhimurium and Its Monophasic Variant ST34 From Food-Producing Animals in Italy. Front. Microbiol. 2021, 12, 705230. [Google Scholar] [CrossRef]
- Fernández, J.; Guerra, B.; Rodicio, M.R. Resistance to Carbapenems in Non-Typhoidal Salmonella enterica Serovars from Humans, Animals and Food. Vet. Sci. 2018, 5, 40. [Google Scholar] [CrossRef] [Green Version]
Farm | Farmed Animals | Traps ID | Number of Positive Traps to Enterobacteriaceae | Positive Samples to Enterobacteriaceae | Number of Positive Traps to Salmonella | ||
---|---|---|---|---|---|---|---|
A | B | C | |||||
1 | Poultry | 1 | 2/2 | + | + | + | 0/2 |
2 | + | - | - | ||||
2 | Swine | 3 | 1/1 | + | + | + | 0/1 |
3 | Swine | 4 | 1/1 | + | + | + | 0/1 |
4 | Poultry | 5 | 1/1 | + | + | + | 0/1 |
5 | Poultry | 6 | 2/2 | + | + | + | 0/2 |
7 | * | + | + | ||||
6 | Poultry | 8 | 1/1 | + | + | + | 0/1 |
7 | Poultry | 9 | 1/1 | + | + | + | 0/1 |
8 | Swine | 10 | 2/2 | + | + | + | 1/2 |
11 | - | - | + | ||||
9 | Swine | 12 | 0/1 | * | - | - | 1/1 |
10 | Swine | 13 | 1/1 | - | + | + | 1/1 |
11 | Poultry | 14 | 2/2 | + | + | - | 1/2 |
15 | * | * | + | ||||
12 | Swine | 16 | 1/1 | + | + | + | 0/1 |
13 | Swine | 17 | 1/2 | - | - | - | 0/2 |
18 | + | - | + | ||||
14 | Swine | 19 | 1/1 | - | + | + | 0/1 |
15 | Swine | 20 | 0/1 | - | - | - | 0/1 |
16 | Swine | 21 | 1/1 | + | + | - | 0/1 |
17 | Poultry | 22 | 1/1 | + | + | + | 0/1 |
18 | Swine | 23 | 3/3 | + | + | + | 0/3 |
24 | + | + | + | ||||
25 | + | - | + | ||||
19 | Swine | 26 | 2/2 | * | * | - | 1/2 |
27 | - | + | + | ||||
20 | Swine | 28 | 1/2 | * | * | - | 1/2 |
29 | - | - | - | ||||
21 | Swine | 30 | 3/3 | * | + | + | 2/3 |
31 | + | + | + | ||||
32 | + | - | - | ||||
22 | Swine | 33 | 3/3 | + | - | - | 1/3 |
34 | - | - | + | ||||
35 | - | - | + |
Antimicrobial | Susceptible | Intermediate | Resistant | |||
---|---|---|---|---|---|---|
N° of Isolates | % | N° of Isolates | % | N° of Isolates | % | |
Ampicillin | 17 | 21.25 | 14 | 17.50 | 49 | 61.25 |
Amoxicillin-clavulanate | 42 | 52.50 | 17 | 21.25 | 21 | 26.25 |
Cefoxitin | 52 | 65.00 | 9 | 11.25 | 19 | 23.75 |
Cefotaxime | 21 | 26.25 | 41 | 51.25 | 18 | 22.50 |
Ceftiofur | 39 | 48.75 | 32 | 40.00 | 9 | 11.25 |
Imipenem | 37 | 46.25 | 27 | 33.75 | 16 | 20.00 |
Ertapenem | 77 | 96.25 | 3 | 3.75 | 0 | 0.00 |
Aztreonam | 71 | 88.75 | 7 | 8.75 | 2 | 2.50 |
Chloramphenicol | 54 | 67.50 | 20 | 25.00 | 6 | 7.50 |
Tetracycline | 44 | 55.00 | 2 | 2.50 | 34 | 42.5 |
Enrofloxacin | 55 | 68.75 | 19 | 23.75 | 6 | 7.50 |
Ciprofloxacin | 68 | 85.00 | 12 | 15.00 | 0 | 0.00 |
Gentamicin | 68 | 85.00 | 6 | 7.50 | 6 | 7.50 |
Amikacin | 47 | 58.75 | 30 | 37.50 | 3 | 3.75 |
Trimethoprim-sulfamethoxazole | 73 | 91.25 | 1 | 1.25 | 6 | 7.50 |
Farm | Farmed Animals | Traps ID | Samples Type | Resistance Profile |
---|---|---|---|---|
1 | Poultry | 1 | B | AMP IMP C TE |
1 | Poultry | 2 | A | AMP TE ENR |
1 | Poultry | 2 | A | AMP FOX CTX TE ENR |
2 | Swine | 3 | A | AMP IMP TE SXT |
2 | Swine | 3 | B | AMP AMC ATM TE |
3 | Swine | 4 | C | FOX CTX EFT ATM TE |
4 | Poultry | 5 | A | AMP CTX EFT TE AK |
4 | Poultry | 5 | B | AMP IMP TE |
5 | Poultry s | 6 | C | AMP CTX EFT IMP TE ENR |
6 | Poultry | 8 | C | AMP AMC FOX IMP |
7 | Poultry | 9 | C | AMP FOX EFT ENR |
8 | Swine | 11 | C | AMP AMC FOX CTX TE |
10 | Swine | 13 | C | AMP AMC CTX IMP C TE SXT |
12 | Swine | 16 | B | IMP TE SXT |
12 | Swine | 16 | C | IMP TE SXT |
13 | Swine | 18 | A | AMP C TE SXT |
13 | Swine | 18 | C | CTX IMP TE |
16 | Swine | 21 | A | AMP AMC FOX IMP |
16 | Swine | 21 | B | AMP AMC IMP TE ENR |
17 | Poultry | 22 | A | AMP IMP C TE SXT |
18 | Swine | 25 | A | AMP AMC C TE |
19 | Swine | 27 | B | AMP CTX CN |
19 | Swine | 27 | C | AMP AMC FOX TE CN |
21 | Swine | 30 | B | AMP FOX ENR CN |
21 | Swine | 30 | B | AMP TE CN |
22 | Swine | 35 | C | AMP C TE |
Farm | Farmed Animals | Traps ID | Samples Type | Salmonella Serotype | Antimicrobial Resistance Profile |
---|---|---|---|---|---|
8 | Swine | 10 | B | London | / |
9 | Swine | 12 | A | Rubislaw | AMP TE ENR CN SXT |
12 | A | Napoli | / | ||
12 | B | Rubislaw | AMP IMP TE ENR CIP CN SXT | ||
10 | Swine | 13 | A | Kisarawe | / |
13 | B | Rubislaw | AK | ||
13 | C | Rubislaw | / | ||
11 | Laying hens | 14 | C | Kentucky | EFT |
19 | Swine | 26 | B | Napoli | / |
20 | Swine | 28 | A | Napoli | AMP TE |
28 | B | R phase | AMP TE | ||
28 | C | Kentucky | / | ||
28 | C | R phase | / | ||
21 | Swine | 31 | B | R phase | AMP EFT TE |
32 | A | Rubislaw | / | ||
22 | Swine | 34 | A | London | / |
Antimicrobial | Susceptible | Intermediate | Resistant | |||
---|---|---|---|---|---|---|
N° of Isolates | % | N° of Isolates | % | N°. of Isolates | % | |
Ampicillin | 11 | 68.75 | 0 | 0.00 | 5 | 31.25 |
Amoxicillin-clavulanate | 15 | 93.75 | 1 | 6.25 | 0 | 0.00 |
Cefoxitin | 16 | 100.00 | 0 | 0.00 | 0 | 0.00 |
Cefotaxime | 12 | 75.00 | 4 | 25.00 | 0 | 0.00 |
Ceftiofur | 7 | 43.75 | 7 | 43.75 | 2 | 12.50 |
Imipenem | 12 | 75.00 | 3 | 18.75 | 1 | 6.25 |
Ertapenem | 16 | 100.00 | 0 | 0.00 | 0 | 0.00 |
Aztreonam | 16 | 100.00 | 0 | 0.00 | 0 | 0.00 |
Chloramphenicol | 16 | 100.00 | 0 | 0.00 | 0 | 0.00 |
Tetracycline | 11 | 68.75 | 0 | 0.00 | 5 | 31.25 |
Enrofloxacin | 13 | 81.25 | 1 | 6.25 | 2 | 12.50 |
Ciprofloxacin | 14 | 87.50 | 1 | 6.25 | 1 | 6.25 |
Gentamicin | 14 | 87.50 | 0 | 0.00 | 2 | 12.50 |
Amikacin | 12 | 75.00 | 3 | 18.75 | 1 | 6.25 |
Trimethoprim-sulfamethoxazole | 14 | 87.50 | 0 | 0.00 | 2 | 12.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertelloni, F.; Bresciani, F.; Cagnoli, G.; Scotti, B.; Lazzerini, L.; Marcucci, M.; Colombani, G.; Bilei, S.; Bossù, T.; De Marchis, M.L.; et al. House Flies (Musca domestica) from Swine and Poultry Farms Carrying Antimicrobial Resistant Enterobacteriaceae and Salmonella. Vet. Sci. 2023, 10, 118. https://doi.org/10.3390/vetsci10020118
Bertelloni F, Bresciani F, Cagnoli G, Scotti B, Lazzerini L, Marcucci M, Colombani G, Bilei S, Bossù T, De Marchis ML, et al. House Flies (Musca domestica) from Swine and Poultry Farms Carrying Antimicrobial Resistant Enterobacteriaceae and Salmonella. Veterinary Sciences. 2023; 10(2):118. https://doi.org/10.3390/vetsci10020118
Chicago/Turabian StyleBertelloni, Fabrizio, Flavio Bresciani, Giulia Cagnoli, Bruno Scotti, Luca Lazzerini, Marco Marcucci, Giuseppe Colombani, Stefano Bilei, Teresa Bossù, Maria Laura De Marchis, and et al. 2023. "House Flies (Musca domestica) from Swine and Poultry Farms Carrying Antimicrobial Resistant Enterobacteriaceae and Salmonella" Veterinary Sciences 10, no. 2: 118. https://doi.org/10.3390/vetsci10020118
APA StyleBertelloni, F., Bresciani, F., Cagnoli, G., Scotti, B., Lazzerini, L., Marcucci, M., Colombani, G., Bilei, S., Bossù, T., De Marchis, M. L., & Ebani, V. V. (2023). House Flies (Musca domestica) from Swine and Poultry Farms Carrying Antimicrobial Resistant Enterobacteriaceae and Salmonella. Veterinary Sciences, 10(2), 118. https://doi.org/10.3390/vetsci10020118