Fetal Programming and Its Effects on Meat Quality of Nellore Bulls
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Ethics Statement
2.2. Experimental Design
2.3. Slaughter and Carcass Traits
2.4. Meat Quality Analyses
2.4.1. Marbling Score
2.4.2. Total Intramuscular Lipid
2.4.3. Shelf Life
2.5. Maturation, Cooking Loss, and Warner–Bratzler Shear Force
2.6. Statistical Analysis
3. Results
3.1. Carcass Traits
3.2. Meat Quality
3.2.1. Marbling Score and Total Lipids
3.2.2. pH and Color in Shelf Life
3.2.3. pH and Color at Maturation
3.2.4. Cooking Loss and Shear Force
4. Discussion
4.1. Carcass Weight and Rib Eye Area
4.2. Subcutaneous Fat Thickness
4.3. pH Level
4.4. Meat Color
4.5. Warner–Bratzler Shear Force
4.6. Cooking Weight Loss
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greenwood, P.L. Review: An Overview of Beef Production from Pasture and Feedlot Globally, as Demand for Beef and the Need for Sustainable Practices Increase. Animal 2021, 15, 100295. [Google Scholar] [CrossRef] [PubMed]
- Alemneh, T.; Getabalew, M. Factors Influencing the Growth and Development of Meat Animals. Int. J. Anim. Sci. 2019, 3, 1048. [Google Scholar]
- Costa, T.C.; Gionbelli, M.P.; Duarte, M.d.S. Fetal Programming in Ruminant Animals: Understanding the Skeletal Muscle Development to Improve Meat Quality. Anim. Front. 2021, 11, 66–73. [Google Scholar] [CrossRef]
- Uezumi, A.; Fukada, S.I.; Yamamoto, N.; Takeda, S.; Tsuchida, K. Mesenchymal Progenitors Distinct from Satellite Cells Contribute to Ectopic Fat Cell Formation in Skeletal Muscle. Nat. Cell Biol. 2010, 12, 143–152. [Google Scholar] [CrossRef]
- Du, M.; Ford, S.P.; Zhu, M.J. Optimizing Livestock Production Efficiency through Maternal Nutritional Management and Fetal Developmental Programming. Anim. Front. 2017, 7, 5–11. [Google Scholar] [CrossRef]
- Du, M.; Tong, J.; Zhao, J.; Underwood, K.R.; Zhu, M.; Ford, S.P.; Nathanielsz, P.W. Fetal Programming of Skeletal Muscle Development in Ruminant Animals. J. Anim. Sci. 2010, 88, E51–E60. [Google Scholar] [CrossRef]
- Du, M.; Huang, Y.; Das, A.K.; Yang, Q.; Duarte, M.S.; Dodson, M.V.; Zhu, M.J. Meat science and muscle biology symposium: Manipulating Mesenchymal Progenitor Cell Differentiation to Optimize Performance and Carcass Value of Beef Cattle. J. Anim. Sci. 2013, 91, 1419–1427. [Google Scholar] [CrossRef]
- Greenwood, P.L.; Cafe, L.M.; Hearnshaw, H.; Hennessy, D.W.; Morris, S.G. Consequences of Prenatal and Preweaning Growth for Yield of Beef Primal Cuts from 30-Month-Old Piedmontese- and Wagyu-Sired Cattle. Anim. Prod. Sci. 2009, 49, 468–478. [Google Scholar] [CrossRef]
- Oksbjerg, N.; Therkildsen, M. Myogenesis and Muscle Growth and Meat Quality. New Asp. Meat Qual. 2017, 33–62. [Google Scholar] [CrossRef]
- Rehfeldt, C.; Fiedler, I.; Stickland, N.C. Number and Size of Muscle Fibres in Relation to Meat Production. Muscle Dev. Livest. Anim. Physiol. Genet. Meat Qual. 2004, 1–38. [Google Scholar] [CrossRef]
- Stickland, N.C.; Bayol, S.; Ashton, C.; Rehfeldt, C. Manipulation of Muscle Fibre Number during Prenatal Development. Muscle Dev. Livest. Anim. Physiol. Genet. Meat Qual. 2004, 69–82. [Google Scholar] [CrossRef]
- Vonnahme, K.A. Placental Plasticity: Understanding How Nutrition and Management Alters Uteroplacental Blood Flow. J. Anim. Sci. 2018, 96, 199. [Google Scholar] [CrossRef]
- Funston, R.N.; Larson, D.M.; Vonnahme, K.A. Effects of Maternal Nutrition on Conceptus Growth and Offspring Performance: Implications for Beef Cattle Production. J. Anim. Sci. 2010, 88, E205–E215. [Google Scholar] [CrossRef] [PubMed]
- Bauman, D.E.; Eisemann, J.H.; Currie, W.B. Hormonal Effects on Partitioning of Nutrients for Tissue Growth: Role of Growth Hormone and Prolactin. Fed. Proc. 1982, 41, 2538–2544. [Google Scholar]
- Blair, A.D.; Gubbels, E.R.; Block, J.J.; Olson, K.C.; Grubbs, J.K.; Underwood, K.R.; Blair, A.D.; Gubbels, E.R.; Block, J.J.; Olson, K.C.; et al. Maternal Nutrition and Meat Quality of Progeny. Meat Muscle Biol. 2021, 5, 1–9. [Google Scholar] [CrossRef]
- Millen, D.D.; Pacheco, R.D.L.; Meyer, P.M.; Rodrigues, P.H.M.; Arrigoni, M.D.B. Current Outlook and Future Perspectives of Beef Production in Brazil. Anim. Front. 2011, 1, 46–52. [Google Scholar] [CrossRef]
- da Silva, S.C.; Nascimento Júnior, D.d. Avanços Na Pesquisa Com Plantas Forrageiras Tropicais Em Pastagens: Características Morfofisiológicas e Manejo Do Pastejo. Rev. Bras. Zootec. 2007, 36, 122–138. [Google Scholar] [CrossRef]
- Silva, M.C.; Boaventura, V.M.; Fioravanti, M.C.S. História do povoamento bovino no Brasil Central. Rev. UFG 2012, 13, 34–41. [Google Scholar]
- Mousquer, C.J.; Simioni, T.A. Desempenho Reprodutivo de Matrizes Nelore Pesquisa Científica View Project Revisão Bibliográfica View Project. Pubvet 2014, 8, 0230–0339. [Google Scholar] [CrossRef]
- Barker, D.J.P. Fetal Origins of Coronary Heart Disease. BMJ 1995, 311, 171–174. [Google Scholar] [CrossRef]
- Cracco, R.C.; Bussiman, F.d.O.; Polizel, G.H.G.; Furlan, É.; Garcia, N.P.; Poit, D.A.S.; Pugliesi, G.; Santana, M.H.D.A. Effects of Maternal Nutrition on Female Offspring Weight Gain and Sexual Development. Front. Genet. 2021, 12, 2059. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Beef Cattle: Seventh Revised Edition: Update 2000, 7th ed.; The National Academies Press: Washington, DC, USA, 2000; pp. 1–248. [Google Scholar]
- Junior, F.J.S.; Polizel, G.H.G.; Cançado, F.A.C.Q.; Fernandes, A.C.; Mortari, I.; Pires, P.R.L.; Fukumasu, H.; Santana, M.H.d.A.; Netto, A.S. Prenatal Supplementation in Beef Cattle and Its Effects on Plasma Metabolome of Dams and Calves. Metabolites 2022, 12, 347. [Google Scholar] [CrossRef] [PubMed]
- Cracco, R.C.; Ruy, I.M.; Polizel, G.H.G.; Fernandes, A.C.; Furlan, É.; Baldin, G.C.; Santos, G.E.C.; Santana, M.H.D.A. Evaluation of Maternal Nutrition Effects in the Lifelong Performance of Male Beef Cattle Offspring. Vet. Sci. 2023, 10, 443. [Google Scholar] [CrossRef]
- Polizel, G.H.G.; Cançado, F.A.C.Q.; Dias, E.F.F.; Fernandes, A.C.; Cracco, R.C.; Carmona, B.T.; Castellar, H.H.; Poleti, M.D.; Santana, M.H.D.A. Effects of Different Prenatal Nutrition Strategies on the Liver Metabolome of Bulls and Its Correlation with Body and Liver Weight. Metabolites 2022, 12, 441. [Google Scholar] [CrossRef] [PubMed]
- Santana, M.H.A.; Ventura, R.V.; Utsunomiya, Y.T.; Neves, H.H.R.; Alexandre, P.A.; Oliveira Junior, G.A.; Gomes, R.C.; Bonin, M.N.; Coutinho, L.L.; Garcia, J.F.; et al. A Genomewide Association Mapping Study Using Ultrasound-Scanned Information Identifies Potential Genomic Regions and Candidate Genes Affecting Carcass Traits in Nellore Cattle. J. Anim. Breed. Genet. 2015, 132, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Bligh, E.G.; Dyer, W.J. Canadian Journal of Biochemistry and Physiology. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Vatansever, L.; Kurt, E.; Enser, M.; Nute, G.R.; Scollan, N.D.; Wood, J.D.; Richardson, R.I. Shelf Life and Eating Quality of Beef from Cattle of Different Breeds given Diets Differing in N-3 Polyunsaturated Fatty Acid Composition. Anim. Sci. 2000, 71, 471–482. [Google Scholar] [CrossRef]
- CIE Technical Committee. CIE 15: Technical Report: Colorimetry; CIE Technical Committee: Carlton, VIC, Australia, 2004; Volume 15, ISBN 3901906339. [Google Scholar]
- Wheeler, T.L.; Papadopoulos, L.S.; Miller, R.K.; Belk, K.E.; Dikeman, M.E.; Calkins, C.R.; Andy King, D.; Miller, M.F.; Shackelford, S.D.; Wasser, B.; et al. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat; American Meat Science Association: Savoy, IL, USA, 2015; pp. 1–104. ISBN 8005172672. [Google Scholar]
- Crowder, M.J.; Hand, D.J. Analysis of Repeated Measures; Routledge: New York, NY, USA, 2017; pp. 1–256. [Google Scholar] [CrossRef]
- Nunes, J.L.; Piquerez, M.; Pujadas, L.; Armstrong, E.; Fernández, A.; Lecumberry, F. Beef Quality Parameters Estimation Using Ultrasound and Color Images. BMC Bioinform. 2015, 16, 1–12. [Google Scholar] [CrossRef]
- Zhu, M.J.; Ford, S.P.; Means, W.J.; Hess, B.W.; Nathanielsz, P.W.; Du, M. Maternal Nutrient Restriction Affects Properties of Skeletal Muscle in Offspring. J. Physiol. 2006, 575, 241–250. [Google Scholar] [CrossRef]
- Marquez, D.C.; Paulino, M.F.; Rennó, L.N.; Villadiego, F.C.; Ortega, R.M.; Moreno, D.S.; Martins, L.S.; De Almeida, D.M.; Gionbelli, M.P.; Manso, M.R.; et al. Supplementation of Grazing Beef Cows during Gestation as a Strategy to Improve Skeletal Muscle Development of the Offspring. Animal 2017, 11, 2184–2192. [Google Scholar] [CrossRef] [PubMed]
- Mossa, F.; Carter, F.; Walsh, S.W.; Kenny, D.A.; Smith, G.W.; Ireland, J.L.H.; Hildebrandt, T.B.; Lonergan, P.; Ireland, J.J.; Evans, A.C.O. Maternal Undernutrition in Cows Impairs Ovarian and Cardiovascular Systems in Their Offspring. Biol. Reprod. 2013, 88, 92–93. [Google Scholar] [CrossRef] [PubMed]
- Micke, G.C.; Sullivan, T.M.; Gatford, K.L.; Owens, J.A.; Perry, V.E.A. Nutrient Intake in the Bovine during Early and Mid-Gestation Causes Sex-Specific Changes in Progeny Plasma IGF-I, Liveweight, Height and Carcass Traits. Anim. Reprod. Sci. 2010, 121, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Mohrhauser, D.A.; Taylor, A.R.; Underwood, K.R.; Pritchard, R.H.; Wertz-Lutz, A.E.; Blair, A.D. The Influence of Maternal Energy Status during Midgestation on Beef Offspring Carcass Characteristics and Meat Quality. J. Anim. Sci. 2015, 93, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.B.; Long, N.M.; Faulkner, D.B.; Shike, D.W. Influence of Excessive Dietary Protein Intake during Late Gestation on Drylot Beef Cow Performance and Progeny Growth, Carcass Characteristics, and Plasma Glucose and Insulin Concentrations. J. Anim. Sci. 2016, 94, 2035–2046. [Google Scholar] [CrossRef]
- Underwood, K.R.; Tong, J.F.; Price, P.L.; Roberts, A.J.; Grings, E.E.; Hess, B.W.; Means, W.J.; Du, M. Nutrition during Mid to Late Gestation Affects Growth, Adipose Tissue Deposition, and Tenderness in Cross-Bred Beef Steers. Meat Sci. 2010, 86, 588–593. [Google Scholar] [CrossRef]
- Ramírez, M.; Testa, L.M.; López Valiente, S.; Latorre, M.E.; Long, N.M.; Rodriguez, A.M.; Pavan, E.; Maresca, S. Maternal Energy Status during Late Gestation: Effects on Growth Performance, Carcass Characteristics and Meat Quality of Steers Progeny. Meat Sci. 2020, 164, 108095. [Google Scholar] [CrossRef]
- Maresca, S.; Valiente, S.L.; Rodriguez, A.M.; Testa, L.M.; Long, N.M.; Quintans, G.I.; Pavan, E. The Influence of Protein Restriction during Mid- to Late Gestation on Beef Offspring Growth, Carcass Characteristic and Meat Quality. Meat Sci. 2019, 153, 103–108. [Google Scholar] [CrossRef]
- Zago, D.; Canozzi, M.E.A.; Barcellos, J.O.J. Pregnant Beef Cow’s Nutrition and Its Effects on Postnatal Weight and Carcass Quality of Their Progeny. PLoS ONE 2020, 15, e0237941. [Google Scholar] [CrossRef]
- Larson, D.M.; Martin, J.L.; Adams, D.C.; Funston, R.N. Winter Grazing System and Supplementation during Late Gestation Influence Performance of Beef Cows and Steer Progeny. J. Anim. Sci. 2009, 87, 1147–1155. [Google Scholar] [CrossRef]
- Long, N.M.; Tousley, C.B.; Underwood, K.R.; Paisley, S.I.; Means, W.J.; Hess, B.W.; Du, M.; Ford, S.P. Effects of Early- to Mid-Gestational Undernutrition with or without Protein Supplementation on Offspring Growth, Carcass Characteristics, and Adipocyte Size in Beef Cattle. J. Anim. Sci. 2012, 90, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Stalker, L.A.; Adams, D.C.; Klopfenstein, T.J.; Feuz, D.M.; Funston, R.N. Effects of Pre- and Postpartum Nutrition on Reproduction in Spring Calving Cows and Calf Feedlot Performance. J. Anim. Sci. 2006, 84, 2582–2589. [Google Scholar] [CrossRef] [PubMed]
- Polizel, G.H.G.; de Francisco Strefezzi, R.; Cracco, R.C.; Fernandes, A.C.; Zuca, C.B.; Castellar, H.H.; Baldin, G.C.; Santana, M.H.D.A. Effects of Different Maternal Nutrition Approaches on Weight Gain and on Adipose and Muscle Tissue Development of Young Bulls in the Rearing Phase. Trop. Anim. Health Prod. 2021, 53, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Savell, J.W.; Mueller, S.L.; Baird, B.E. The Chilling of Carcasses. Meat Sci. 2005, 70, 449–459. [Google Scholar] [CrossRef]
- Oksbjerg, N.; Nissen, P.M.; Therkildsen, M.; Møller, H.S.; Larsen, L.B.; Andersen, M.; Young, J.F. Meat Science And Muscle Biology Symposium: In Utero Nutrition Related to Fetal Development, Postnatal Performance, and Meat Quality of Pork. J. Anim. Sci. 2013, 91, 1443–1453. [Google Scholar] [CrossRef]
- Lugarà, R.; Realini, L.; Kreuzer, M.; Giller, K. Effects of Maternal High-Energy Diet and Spirulina Supplementation in Pregnant and Lactating Sows on Performance, Quality of Carcass and Meat, and Its Fatty Acid Profile in Male and Female Offspring. Meat Sci. 2022, 187, 108769. [Google Scholar] [CrossRef]
- Meale, S.J.; Ruiz-Sanchez, A.L.; Dervishi, E.; Roy, B.C.; Paradis, F.; Juárez, M.; Aalhus, J.; López-Campos, Ó.; Das, C.; Li, C.; et al. Impact of Genetic Potential for Residual Feed Intake and Diet Fed during Early- to Mid-Gestation in Beef Heifers on Carcass Characteristics and Meat Quality Attributes of Their Castrated Male Offspring. Meat Sci. 2021, 182, 108637. [Google Scholar] [CrossRef]
- Sañudo, C.; Alfonso, M.; Sánchez, A.; Delfa, R.; Teixeira, A. Carcass and Meat Quality in Light Lambs from Different Fat Classes in the EU Carcass Classification System. Meat Sci. 2000, 56, 89–94. [Google Scholar] [CrossRef]
- Ribeiro, E.L.D.A.; Hernandez, J.A.; Zanella, E.L.; Shimokomaki, M.; Prudêncio-Ferreira, S.H.; Youssef, E.; Ribeiro, H.J.S.S.; Bogden, R.; Reeves, J.J. Growth and Carcass Characteristics of Pasture Fed LHRH Immunocastrated, Castrated and Intact Bos Indicus Bulls. Meat Sci. 2004, 68, 285–290. [Google Scholar] [CrossRef]
- Gómez, J.F.M.; Netto, A.S.; Antonelo, D.S.; Silva, J.; Sene, G.A.; Silva, H.B.; Dias, N.P.; Leme, P.R.; Silva, S.L.; Gómez, J.F.M.; et al. Effects of Immunocastration on the Performance and Meat Quality Traits of Feedlot-Finished Bos Indicus (Nellore) Cattle. Anim. Prod. Sci. 2017, 59, 183–190. [Google Scholar] [CrossRef]
- Long, N.M.; Prado-Cooper, M.J.; Krehbiel, C.R.; Desilva, U.; Wettemann, R.P. Effects of Nutrient Restriction of Bovine Dams during Early Gestation on Postnatal Growth, Carcass and Organ Characteristics, and Gene Expression in Adipose Tissue and Muscle. J. Anim. Sci. 2010, 88, 3251–3261. [Google Scholar] [CrossRef] [PubMed]
- Noya, A.; Ripoll, G.; Casasús, I.; Sanz, A. Long-Term Effects of Early Maternal Undernutrition on the Growth, Physiological Profiles, Carcass and Meat Quality of Male Beef Offspring. Res. Vet. Sci. 2022, 142, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Shoup, L.M.; Wilson, T.B.; González-Peña, D.; Ireland, F.A.; Rodriguez-Zas, S.; Felix, T.L.; Shike, D.W. Beef Cow Prepartum Supplement Level and Age at Weaning: II. Effects of Developmental Programming on Performance and Carcass Composition of Steer Progeny. J. Anim. Sci. 2015, 93, 4936–4947. [Google Scholar] [CrossRef] [PubMed]
- Mulliniks, J.T.; Mathis, C.P.; Cox, S.H.; Petersen, M.K. Supplementation Strategy during Late Gestation Alters Steer Progeny Health in the Feedlot without Affecting Cow Performance. Anim. Feed Sci. Technol. 2013, 185, 126–132. [Google Scholar] [CrossRef]
- Du, M.; Zhao, J.X.; Yan, X.; Huang, Y.; Nicodemus, L.V.; Yue, W.; Mccormick, R.J.; Zhu, M.J. Fetal Muscle Development, Mesenchymal Multipotent Cell Differentiation, and Associated Signaling Pathways. J. Anim. Sci. 2011, 89, 583–590. [Google Scholar] [CrossRef]
- Du, M.; Yin, J.; Zhu, M.J. Cellular Signaling Pathways Regulating the Initial Stage of Adipogenesis and Marbling of Skeletal Muscle. Meat Sci. 2010, 86, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Wang, B.; Fu, X.; Yang, Q.; Zhu, M.J. Fetal Programming in Meat Production. Meat Sci. 2015, 109, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Yang, Q.; Zhang, L.; Maricelli, J.W.; Rodgers, B.D.; Zhu, M.J.; Du, M. Maternal High-Fat Diet during Lactation Impairs Thermogenic Function of Brown Adipose Tissue in Offspring Mice. Sci. Rep. 2016, 6, 34345. [Google Scholar] [CrossRef]
- Bonnet, M.; Cassar-Malek, I.; Chilliard, Y.; Picard, B. Ontogenesis of Muscle and Adipose Tissues and Their Interactions in Ruminants and Other Species. Animal 2010, 4, 1093–1109. [Google Scholar] [CrossRef]
- Fuente-Garcia, C.; Sentandreu, E.; Aldai, N.; Oliván, M.; Sentandreu, M.Á. Characterization of the Myofibrillar Proteome as a Way to Better Understand Differences in Bovine Meats Having Different Ultimate PH Values. Proteomics 2020, 20, 2000012. [Google Scholar] [CrossRef]
- Mach, N.; Bach, A.; Velarde, A.; Devant, M. Association between Animal, Transportation, Slaughterhouse Practices, and Meat PH in Beef. Meat Sci. 2008, 78, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, T.I.R.C.; Copping, K.J.; Han, X.; Clayton, E.H.; Meyer, R.J.; Rodgers, R.J.; McMillen, I.C.; Perry, V.E.A.; Geesink, G. The Influence of Peri-Conception and First Trimester Dietary Restriction of Protein in Cattle on Meat Quality Traits of Entire Male Progeny. Meat Sci. 2016, 121, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Holman, B.W.B.; Hopkins, D.L. The Use of Conventional Laboratory-Based Methods to Predict Consumer Acceptance of Beef and Sheep Meat: A Review. Meat Sci. 2021, 181, 108586. [Google Scholar] [CrossRef]
- Savoia, S.; Albera, A.; Brugiapaglia, A.; Di Stasio, L.; Cecchinato, A.; Bittante, G. Heritability and Genetic Correlations of Carcass and Meat Quality Traits in Piemontese Young Bulls. Meat Sci. 2019, 156, 111–117. [Google Scholar] [CrossRef]
- Hughes, J.; Clarke, F.; Purslow, P.; Warner, R. High PH in Beef Longissimus Thoracis Reduces Muscle Fibre Transverse Shrinkage and Light Scattering Which Contributes to the Dark Colour. Food Res. Int. 2017, 101, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Listrat, A.; Lebret, B.; Louveau, I.; Astruc, T.; Bonnet, M.; Lefaucheur, L.; Picard, B.; Bugeon, J. How Muscle Structure and Composition Influence Meat and Flesh Quality. Sci. World J. 2016. [Google Scholar] [CrossRef]
- Cassar-Malek, I.; Picard, B.; Jurie, C.; Listrat, A.; Guillomot, M.; Chavatte-Palmer, P.; Heyman, Y. Myogenesis Is Delayed in Bovine Fetal Clones. Cell Reprogram. 2010, 12, 191–201. [Google Scholar] [CrossRef]
- Webb, M.J.; Block, J.J.; Funston, R.N.; Underwood, K.R.; Legako, J.F.; Harty, A.A.; Salverson, R.R.; Olson, K.C.; Blair, A.D. Influence of Maternal Protein Restriction in Primiparous Heifers during Mid- and/or Late-Gestation on Meat Quality and Fatty Acid Profile of Progeny. Meat Sci. 2019, 152, 31–37. [Google Scholar] [CrossRef]
- Ithurralde, J.; Pérez-Clariget, R.; Corrales, F.; Fila, D.; López-Pérez, Á.; Marichal, M.d.J.; Saadoun, A.; Bielli, A. Sex-Dependent Effects of Maternal Undernutrition on Growth Performance, Carcass Characteristics and Meat Quality of Lambs. Livest. Sci. 2019, 221, 105–114. [Google Scholar] [CrossRef]
- Bonin, M.d.N.; da Luz e Silva, S.; Bünger, L.; Ross, D.; Dias Feijó, G.L.; da Costa Gomes, R.; Palma Rennó, F.; de Almeida Santana, M.H.; Marcondes de Rezende, F.; Vinhas Ítavo, L.C.; et al. Predicting the Shear Value and Intramuscular Fat in Meat from Nellore Cattle Using Vis-NIR Spectroscopy. Meat Sci. 2020, 163, 108077. [Google Scholar] [CrossRef]
- Contreras-Castillo, C.J.; Lomiwes, D.; Wu, G.; Frost, D.; Farouk, M.M. The Effect of Electrical Stimulation on Post Mortem Myofibrillar Protein Degradation and Small Heat Shock Protein Kinetics in Bull Beef. Meat Sci. 2016, 113, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Devine, C.; Wells, R.; Lowe, T.; Waller, J. Pre-Rigor Temperature and the Relationship between Lamb Tenderisation, Free Water Production, Bound Water and Dry Matter. Meat Sci. 2014, 96, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Kim, J.H.; Seo, J.K.; Setyabrata, D.; Kim, Y.H.B. Effects of Aging/Freezing Sequence and Freezing Rate on Meat Quality and Oxidative Stability of Pork Loins. Meat Sci. 2018, 139, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Ouali, A.; Gagaoua, M.; Boudida, Y.; Becila, S.; Boudjellal, A.; Herrera-Mendez, C.H.; Sentandreu, M.A. Biomarkers of Meat Tenderness: Present Knowledge and Perspectives in Regards to Our Current Understanding of the Mechanisms Involved. Meat Sci. 2013, 95, 854–870. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Huang, Y.; Du, M. Farm Animals for Studying Muscle Development and Metabolism: Dual Purposes for Animal Production and Human Health. Anim. Front. 2019, 9, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Tornberg, E. Effects of Heat on Meat Proteins—Implications on Structure and Quality of Meat Products. Meat Sci. 2005, 70, 493–508. [Google Scholar] [CrossRef]
- Pathare, P.B.; Roskilly, A.P. Quality and Energy Evaluation in Meat Cooking. Food Eng. Rev. 2016, 8, 435–447. [Google Scholar] [CrossRef]
- Campo, M.M.; Muela, E.; Olleta, J.L.; Moreno, L.A.; Santaliestra-Pasías, A.M.; Mesana, M.I.; Sañudo, C. Influence of Cooking Method on the Nutrient Composition of Spanish Light Lamb. J. Food Compos. Anal. 2013, 31, 185–190. [Google Scholar] [CrossRef]
- Vergara, H.; Gallego, L. Effect of Type of Suckling and Length of Lactation Period on Carcass and Meat Quality in Intensive Lamb Production Systems. Meat Sci. 1999, 53, 211–215. [Google Scholar] [CrossRef]
- García-Segovia, P.; Andrés-Bello, A.; Martínez-Monzó, J. Effect of Cooking Method on Mechanical Properties, Color and Structure of Beef Muscle (M. pectoralis). J. Food Eng. 2007, 80, 813–821. [Google Scholar] [CrossRef]
- Naqvi, Z.B.; Thomson, P.C.; Ha, M.; Campbell, M.A.; McGill, D.M.; Friend, M.A.; Warner, R.D. Effect of Sous Vide Cooking and Ageing on Tenderness and Water-Holding Capacity of Low-Value Beef Muscles from Young and Older Animals. Meat Sci. 2021, 175, 108435. [Google Scholar] [CrossRef] [PubMed]
- Muchenje, V.; Dzama, K.; Chimonyo, M.; Strydom, P.E.; Hugo, A.; Raats, J.G. Some Biochemical Aspects Pertaining to Beef Eating Quality and Consumer Health: A Review. Food Chem. 2009, 112, 279–289. [Google Scholar] [CrossRef]
- Maggioni, D.; Do Prado, I.N.; Zawadzki, F.; Valero, M.V.; De Araújo Marques, J.; Bridi, A.M.; Moletta, J.L.; Dos Santos Abrahão, J.J. Grupos Genéticos e Graus de Acabamento Sobre Qualidade Da Carne de Bovinos. Semin. Agrar. 2012, 33, 391–402. [Google Scholar] [CrossRef]
- Robinson, D.L.; Cafe, L.M.; Greenwood, P.L. Meat Science And Muscle Biology Symposium: Developmental Programming in Cattle: Consequences for Growth, Efficiency, Carcass, Muscle, and Beef Quality Characteristics. J. Anim. Sci. 2013, 91, 1428–1442. [Google Scholar] [CrossRef] [PubMed]
- Ithurralde, J.; Pérez-Clariget, R.; Saadoun, A.; Genovese, P.; Cabrera, C.; López, Y.; Feed, O.; Bielli, A. Gestational Nutrient Restriction under Extensive Grazing Conditions: Effects on Muscle Characteristics and Meat Quality in Heavy Lambs. Meat Sci. 2021, 179, 108532. [Google Scholar] [CrossRef]
Ingredients (Dry Matter) | Mineral Supplement | Protein-Energy Supplement |
Corn (%) | 35.00 | 60.00 |
Soybean meal (%) | - | 30.00 |
Dicalcium phosphate (%) | 10.00 | - |
Urea 45% (%) | - | 2.50 |
Salt (%) | 30.00 | 5.00 |
Minerthal 160 MD (%) * | 25.00 | 2.50 |
Nutrients | Mineral Supplement | Protein-Energy Supplement |
Total digestible nutrients (%) | 26.76 | 67.55 |
Crude protein (%) | 2.79 | 24.78 |
Non-protein nitrogen (%) | - | 7.03 |
Acid detergent fiber (%) | 1.25 | 4.76 |
Neutral detergent fiber (%) | 4.29 | 11.24 |
Fat (%) | 1.26 | 2.61 |
Calcium (g/kg) | 74.11 | 6.20 |
Phosphorus (g/kg) | 59.38 | 7.24 |
Forage Nutrients | NP | PP | FP |
---|---|---|---|
CP% (crude protein) | 7.38 ± 0.70 | 7.82 ± 0.93 | 7.40 ± 0.93 |
TDN% (total digestible nutrients) | 63.1 ± 0.59 | 64.1 ± 0.95 | 61.4 ± 0.86 |
NDF% (neutral detergent fiber) | 59.0 ± 1.49 | 61.4 ± 2.06 | 58.4 ± 1.67 |
Ca% (calcium) | 0.38 ± 0.04 | 0.35 ± 0.02 | 0.39 ± 0.03 |
P% (phosphorus) | 0.19 ± 0.01 | 0.19 ± 0.01 | 0.17 ± 0.01 |
Traits | Treatments | |||
---|---|---|---|---|
NP | PP | FP | p-Value 1 | |
Hot carcass weight (kg) | 348.1 ± 4.61 | 352.7 ± 4.70 | 356.1 ± 4.73 | 0.61 |
Cold carcass weight (kg) | 344.2 ± 6.12 | 349.3 ± 4.79 | 353.9 ± 4.81 | 0.58 |
Rib eye area (cm2) | 97.6 ± 1.05 | 98.2 ± 0.96 | 97.4 ± 0.92 | 0.70 |
Subcutaneous fat thickness (mm) | 7.81 ± 0.28 | 8.21 ± 0.33 | 8.69 ± 0.39 | 0.08 |
Total lipids (%) | 1.79 ± 0.11 | 1.64 ± 0.08 | 1.69 ± 0.12 | 0.47 |
Marbling score | 3.18 ± 0.36 | 3.17 ± 0.32 | 4.10 ± 0.35 | 0.15 |
Shelf life | Treatments | |||||
---|---|---|---|---|---|---|
NP | PP | FP | p-Value 1 | p-Value 2 | p-Value 3 | |
pH | ||||||
D1 | 5.59 ± 0.03 | 5.57 ± 0.03 | 5.57 ± 0.03 | 0.89 | ||
D3 | 5.63 ± 0.02 | 5.63 ± 0.02 | 5.62 ± 0.02 | 0.64 | 0.61 | 0.97 |
D5 | 5.62 ± 0.02 | 5.63 ± 0.02 | 5.62 ± 0.02 | 0.65 | ||
L* | ||||||
D1 | 41.76 ± 0.35 | 41.82 ± 0.34 | 42.90 ± 0.45 | 0.10 | ||
D3 | 42.94 ± 0.39 | 43.12 ± 0.52 | 43.85 ± 0.41 | 0.38 | 0.01 * | 0.81 |
D5 | 42.62 ± 0.44 | 41.78 ± 0.50 | 43.31 ± 0.65 | 0.26 | ||
a* | ||||||
D1 | 24.34 ± 0.30 | 23.39 ± 0.22 | 23.90 ± 0.34 | 0.25 | ||
D3 | 22.68 ± 0.27 | 22.59 ± 0.29 | 22.65 ± 0.34 | 0.81 | 0.31 | 0.80 |
D5 | 20.83 ± 0.36 | 20.70 ± 0.30 | 21.02 ± 0.52 | 0.80 | ||
b* | ||||||
D1 | 17.23 ± 0.22 | 16.30 ± 0.21 | 16.62 ± 0.28 | 0.09 | ||
D3 | 17.80 ± 0.21 | 17.62 ± 0.20 | 17.82 ± 0.29 | 0.57 | 0.07 | 0.58 |
D5 | 16.72 ± 0.25 | 16.51 ± 0.23 | 16.75 ± 0.31 | 0.75 |
Maturation | Treatments | |||||
---|---|---|---|---|---|---|
NP | PP | FP | p-Value 1 | p-Value 2 | p-Value 3 | |
pH | ||||||
D0 | 5.68 ± 0.07 | 5.58 ± 0.03 | 5.57 ± 0.03 | 0.41 | ||
D7 | 5.61 ± 0.02 | 5.58 ± 0.02 | 5.59 ± 0.02 | 0.55 | 0.45 | 0.62 |
D14 | 5.64 ± 0.02 | 5.65 ± 0.02 | 5.64 ± 0.01 | 0.85 | ||
L* | ||||||
D0 | 42.30 ± 0.42 | 42.91 ± 0.40 | 42.70 ± 0.46 | 0.63 | ||
D7 | 45.11 ± 0.37 | 45.00 ± 0.37 | 45.61 ± 0.42 | 0.46 | 0.35 | 0.75 |
D14 | 46.19 ± 0.42 | 46.00 ± 0.51 | 46.81 ± 0.41 | 0.42 | ||
a* | ||||||
D0 | 23.54 ± 0.31 | 24.14 ± 0.25 | 23.53 ± 0.32 | 0.29 | ||
D7 | 26.11 ± 0.25 | 26.40 ± 0.22 | 25.95 ± 0.27 | 0.14 | 0.02 * | 0.97 |
D14 | 26.42 ± 0.24 | 26.75 ± 0.23 | 26.21 ± 0.30 | 0.23 | ||
b* | ||||||
D0 | 16.57 ± 0.24 | 16.87 ± 0.24 | 16.50 ± 0.32 | 0.61 | ||
D7 | 19.20 ± 0.25 | 19.35 ± 0.22 | 19.30 ± 0.24 | 0.45 | 0.36 | 0.97 |
D14 | 19.69 ± 0.15 | 19.87 ±0.20 | 19.65 ± 0.25 | 0.67 |
Traits | Treatments | |||||
---|---|---|---|---|---|---|
NP | PP | FP | p-Value 1 | p-Value 2 | p-Value 3 | |
CL (%) | ||||||
D0 | 27.67 ± 0.47 | 27.01 ± 0.51 | 28.39 ± 0.56 | 0.13 | ||
D7 | 29.69 ± 0.43 | 29.74 ± 0.45 | 29.06 ± 0.41 | 0.51 | 0.41 | 0.04 * |
D14 | 29.81 ± 0.92 | 31.76 ± 0.74 | 28.77 ± 0.70 | 0.08 | ||
WBSF (N) | ||||||
D0 | 79.11 ± 1.47 | 77.45 ± 1.81 | 78.75 ± 2.29 | 0.51 | ||
D7 | 63.07 ± 1.40 | 65.75 ± 1.56 | 61.45 ± 1.81 | 0.16 | 0.31 | 0.30 |
D14 | 56.29 ± 2.05 | 59.05 ± 1.84 | 53.94 ± 1.87 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christofaro Fernandes, A.; Beline, M.; Polizel, G.H.G.; Cavalcante Cracco, R.; Ferreira Dias, E.F.; Furlan, É.; da Luz e Silva, S.; de Almeida Santana, M.H. Fetal Programming and Its Effects on Meat Quality of Nellore Bulls. Vet. Sci. 2023, 10, 672. https://doi.org/10.3390/vetsci10120672
Christofaro Fernandes A, Beline M, Polizel GHG, Cavalcante Cracco R, Ferreira Dias EF, Furlan É, da Luz e Silva S, de Almeida Santana MH. Fetal Programming and Its Effects on Meat Quality of Nellore Bulls. Veterinary Sciences. 2023; 10(12):672. https://doi.org/10.3390/vetsci10120672
Chicago/Turabian StyleChristofaro Fernandes, Arícia, Mariane Beline, Guilherme Henrique Gebim Polizel, Roberta Cavalcante Cracco, Evandro Fernando Ferreira Dias, Édison Furlan, Saulo da Luz e Silva, and Miguel Henrique de Almeida Santana. 2023. "Fetal Programming and Its Effects on Meat Quality of Nellore Bulls" Veterinary Sciences 10, no. 12: 672. https://doi.org/10.3390/vetsci10120672