Animal Welfare in Radiation Research: The Importance of Animal Monitoring System
Abstract
:Simple Summary
Abstract
1. Introduction
2. A Brief History of Radiation Research
3. The Importance and Pitfalls of Radiation Dose Rate, Animal Strains, and Injection Sites for Bone Marrow Hematopoietic Stem-Cell Transplant
4. Monitoring System for a Humane Endpoint in Radiation Research
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Research Council (U.S.); Institute for Laboratory Animal Research (U.S.); National Academies Press (U.S.) (Eds.) Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academies Press: Washington, DC, USA, 2011; ISBN 978-0-309-15400-0. [Google Scholar]
- Hubrecht, R.; Kirkwood, J.K. The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals, 8th ed.; Wiley Online Library Books; Wiley-Blackwell: Chichester, UK; West Sussex Ames, IA, USA, 2010; ISBN 978-1-4443-1877-7. [Google Scholar]
- Russell, W.M.S.; Burch, R.L. The Principles of Humane Experimental Technique; Methuen: London, UK, 1959. [Google Scholar]
- Valentin, J.; International Commission on Radiological Protection (Eds.) The 2007 Recommendations of the International Commission on Radiological Protection; ICRP Publication; Elsevier: Oxford, UK, 2007; ISBN 978-0-7020-3048-2. [Google Scholar]
- Donya, M.; Radford, M.; ElGuindy, A.; Firmin, D.; Yacoub, M.H. Radiation in Medicine: Origins, Risks and Aspirations. Glob. Cardiol. Sci. Pract. 2014, 2014, 437–448. [Google Scholar] [CrossRef]
- White, J. Herschel and the Puzzle of Infrared. Am. Sci. 2012, 100, 218. [Google Scholar] [CrossRef]
- Frercks, J.; Weber, H.; Wiesenfeldt, G. Reception and Discovery: The Nature of Johann Wilhelm Ritter’s Invisible Rays. Stud. Hist. Philos. Sci. Part A 2009, 40, 143–156. [Google Scholar] [CrossRef]
- Grégoire, V.; Guckenberger, M.; Haustermans, K.; Lagendijk, J.J.W.; Ménard, C.; Pötter, R.; Slotman, B.J.; Tanderup, K.; Thorwarth, D.; van Herk, M.; et al. Image Guidance in Radiation Therapy for Better Cure of Cancer. Mol. Oncol. 2020, 14, 1470–1491. [Google Scholar] [CrossRef]
- Hall, E.J.; Wuu, C.-S. Radiation-Induced Second Cancers: The Impact of 3D-CRT and IMRT. Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Bentzen, S.M. Preventing or Reducing Late Side Effects of Radiation Therapy: Radiobiology Meets Molecular Pathology. Nat. Rev. Cancer 2006, 6, 702–713. [Google Scholar] [CrossRef] [PubMed]
- Ossetrova, N.I.; Ney, P.H.; Condliffe, D.P.; Krasnopolsky, K.; Hieber, K.P. Acute Radiation Syndrome Severity Score System in Mouse Total-Body Irradiation Model. Health Phys. 2016, 111, 134–144. [Google Scholar] [CrossRef]
- Waselenko, J.K.; MacVittie, T.J.; Blakely, W.F.; Pesik, N.; Wiley, A.L.; Dickerson, W.E.; Tsu, H.; Confer, D.L.; Coleman, C.N.; Seed, T.; et al. Medical Management of the Acute Radiation Syndrome: Recommendations of the Strategic National Stockpile Radiation Working Group. Ann. Intern. Med. 2004, 140, 1037–1051. [Google Scholar] [CrossRef]
- Williams, J.P.; Brown, S.L.; Georges, G.E.; Hauer-Jensen, M.; Hill, R.P.; Huser, A.K.; Kirsch, D.G.; Macvittie, T.J.; Mason, K.A.; Medhora, M.M.; et al. Animal Models for Medical Countermeasures to Radiation Exposure. Radiat. Res. 2010, 173, 557–578. [Google Scholar] [CrossRef]
- Cui, Y.-Z.; Hisha, H.; Yang, G.-X.; Fan, T.-X.; Jin, T.; Li, Q.; Lian, Z.; Ikehara, S. Optimal Protocol for Total Body Irradiation for Allogeneic Bone Marrow Transplantation in Mice. Bone Marrow Transplant. 2002, 30, 843–849. [Google Scholar] [CrossRef]
- Reddy, P.; Negrin, R.; Hill, G.R. Mouse Models of Bone Marrow Transplantation. Biol. Blood Marrow Transplant. 2008, 14, 129–135. [Google Scholar] [CrossRef]
- Duran-Struuck, R.; Dysko, R.C. Principles of Bone Marrow Transplantation (BMT): Providing Optimal Veterinary and Husbandry Care to Irradiated Mice in BMT Studies. J. Am. Assoc. Lab. Anim. Sci. 2009, 48, 11. [Google Scholar] [PubMed]
- Morton, D.B. A Systematic Approach for Establishing Humane Endpoints. Ilar J. 2000, 41, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, M.; Wolfensohn, S. Practical Use of Distress Scoring Systems in the Application of Humane Endpoints. In Humane Endpoints in Animal Experiments for Biomedical Research; Hendriksen, C.F.M., Morton, D.B., Eds.; Royal Society of Medicine Press: London, UK, 1999; pp. 48–53. [Google Scholar] [CrossRef]
- Paster, E.V.; Villines, K.A.; Hickman, D.L. Endpoints for Mouse Abdominal Tumor Models: Refinement of Current Criteria. Comp. Med. 2009, 48, 8. [Google Scholar]
- Nunamaker, E.A.; Artwohl, J.E.; Anderson, R.J.; Fortman, J.D. Endpoint Refinement for Total Body Irradiation of C57BL/6 Mice. Comp. Med. 2013, 63, 7. [Google Scholar]
- Cooke, K.; Kobzik, L.; Martin, T.; Brewer, J.; Delmonte, J.J.; Crawford, J.; Ferrara, J. An Experimental Model of Idiopathic Pneumonia Syndrome after Bone Marrow Transplantation: I. The Roles of Minor H Antigens and Endotoxin. Blood 1996, 88, 3230–3239. [Google Scholar] [CrossRef]
- Koch, A.; Gulani, J.; King, G.; Hieber, K.; Chappell, M.; Ossetrova, N. Establishment of Early Endpoints in Mouse Total-Body Irradiation Model. PLoS ONE 2016, 11, e0161079. [Google Scholar] [CrossRef]
- Reed, A.B. The History of Radiation Use in Medicine. J. Vasc. Surg. 2011, 53, 3S–5S. [Google Scholar] [CrossRef] [PubMed]
- Huh, H.D.; Kim, S. History of Radiation Therapy Technology. Prog. Med. Phys. 2020, 31, 124–134. [Google Scholar] [CrossRef]
- Inkret, W.C.; Taschner, J.C.; Meinhold, C.B. A Brief History of Radiation Protection Standards. Los Alamos Sci. 1995, 23, 116–123. [Google Scholar]
- Douple, E.B.; Mabuchi, K.; Cullings, H.M.; Preston, D.L.; Kodama, K.; Shimizu, Y.; Fujiwara, S.; Shore, R.E. Long-Term Radiation-Related Health Effects in a Unique Human Population: Lessons Learned from the Atomic Bomb Survivors of Hiroshima and Nagasaki. Disaster Med. Public Health Prep. 2011, 5 (Suppl. S1), S122–S133. [Google Scholar] [CrossRef]
- Jacobson, L.O.; Marks, E.K.; Gaston, E.O.; Robson, M.; Zirkle, R.E. The Role of the Spleen in Radiation Injury. Exp. Biol. Med. 1949, 70, 740–742. [Google Scholar] [CrossRef] [PubMed]
- Rekers, P.E. Transplantation of Bone Marrow into Dogs That Have Received Total Body Single Dose Radiation; Atomic Energy Project, U.R. 11; University of Rochester: Rochester, NY, USA, 1948. [Google Scholar]
- Rekers, P.E. Effect of Transplantation of Bone Marrow into Irradiated Animals. Arch. Surg. 1950, 60, 635. [Google Scholar] [CrossRef]
- Gorer, P.A. The Genetic and Antigenic Basis of Tumour Transplantation. J. Pathol. Bacteriol. 1937, 44, 691–697. [Google Scholar] [CrossRef]
- Jacobson, L.O. Modification of Radiation Injury. Bull. N. Y. Acad. Med. 1954, 30, 675–692. [Google Scholar] [PubMed]
- Jacobson, L.O.; Simmons, E.L.; Marks, E.K.; Eldredge, J.H. Recovery from Radiation Injury. Science 1951, 113, 510–511. [Google Scholar] [CrossRef]
- Lorenz, E.; Uphoff, D.; Reid, T.R.; Shelton, E. Modification of Irradiation Injury in Mice and Guinea Pigs by Bone Marrow Injections. J. Natl. Cancer Inst. 1951, 12, 197–201. [Google Scholar] [CrossRef]
- Lorenz, E.; Congdon, C.; Uphoff, D. Modification of Acute Irradiation Injury in Mice and Guinea-Pigs by Bone Marrow Injections. Radiology 1952, 58, 863–877. [Google Scholar] [CrossRef]
- Jacobson, L.O.; Marks, E.K.; Gaston, E.O. Effect of protection of the spleen during total body irradiation on the blood in rabbit. Rev. Hematol. 1953, 8, 515–532. [Google Scholar]
- Nowell, P.C.; Cole, L.J.; Habermeyer, J.G.; Roan, P.L. Growth and Continued Function of Rat Marrow Cells in X-Radiated Mice. Cancer Res. 1956, 16, 258–261. [Google Scholar]
- Ford, C.E.; Hamerton, J.L.; Barnes, D.W.; Loutit, J.F. Cytological Identification of Radiation-Chimaeras. Nature 1956, 177, 452–454. [Google Scholar] [CrossRef]
- Till, J.E.; McCulloch, E.A. A Direct Measurement of the Radiation Sensitivity of Normal Mouse Bone Marrow Cells. Radiat. Res. 1961, 14, 213–222. [Google Scholar] [CrossRef]
- Becker, A.J.; McCulloch, E.A.; Till, J.E. Cytological Demonstration of the Clonal Nature of Spleen Colonies Derived from Transplanted Mouse Marrow Cells. Nature 1963, 197, 452–454. [Google Scholar] [CrossRef]
- Copelan, E.A. Hematopoietic Stem-Cell Transplantation. N. Engl. J. Med. 2006, 354, 1813–1826. [Google Scholar] [CrossRef] [PubMed]
- Urso, P.; Congdon, C.C. The Effect of the Amount of Isologous Bone Marrow Injected on the Recovery of Hematopoietic Organs, Survival and Body Weight after Lethal Irradiation Injury in Mice. Blood 1957, 12, 251–260. [Google Scholar] [CrossRef]
- Lucas, A.M.; Denington, E.M. Effect of Total Body X-Ray Irradiation on the Blood of Female Single Comb White Leghorn Chickens. Poult. Sci. 1957, 36, 1290–1310. [Google Scholar] [CrossRef]
- Stearner, S.P.; Tyler, S.A. An Analysis of the Role of Dose and Dosage Rate in the Early Radiation Mortality of the Chick. Radiat. Res. 1957, 7, 253. [Google Scholar] [CrossRef] [PubMed]
- Ossetrova, N.I.; Sandgren, D.J.; Blakely, W.F. Protein Biomarkers for Enhancement of Radiation Dose and Injury Assessment in Nonhuman Primate Total-Body Irradiation Model. Radiat. Prot. Dosim. 2014, 159, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Salomon, O.; Lapidot, T.; Terenzi, A.; Lubin, I.; Rabi, I.; Reisner, Y. Induction of Donor-Type Chimerism in Murine Recipients of Bone Marrow Allografts by Different Radiation Regimens Currently Used in Treatment of Leukemia Patients. Blood 1990, 76, 1872–1878. [Google Scholar] [CrossRef]
- Guest, I.; Ilic, Z.; Scrable, H.; Sell, S. Survival of Irradiated Recipient Mice after Transplantation of Bone Marrow from Young, Old and “Early Aging” Mice. Aging 2015, 7, 1212–1222. [Google Scholar] [CrossRef]
- Díaz, D.; Piquer-Gil, M.; Recio, J.S.; Martínez-Losa, M.M.; Alonso, J.R.; Weruaga, E.; Álvarez-Dolado, M. Bone Marrow Transplantation Improves Motor Activity in a Mouse Model of Ataxia. J. Tissue Eng. Regen. Med. 2018, 12, e1950–e1961. [Google Scholar] [CrossRef] [PubMed]
- Schwartzer, J.J.; Onore, C.E.; Rose, D.; Ashwood, P. C57BL/6J Bone Marrow Transplant Increases Sociability in BTBR T+ Itpr3tf/J Mice. Brain Behav. Immun. 2017, 59, 55–61. [Google Scholar] [CrossRef]
- Naserian, S.; Leclerc, M.; Thiolat, A.; Pilon, C.; Le Bret, C.; Belkacemi, Y.; Maury, S.; Charlotte, F.; Cohen, J.L. Simple, Reproducible, and Efficient Clinical Grading System for Murine Models of Acute Graft-versus-Host Disease. Front. Immunol. 2018, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, F.A.; Nucci, M.P.; Filgueiras, I.S.; Ferreira, J.M.; Nucci, L.P.; Mamani, J.B.; Alvieri, F.; Souza, L.E.B.; Rego, G.N.A.; Kondo, A.T.; et al. Noninvasive Tracking of Hematopoietic Stem Cells in a Bone Marrow Transplant Model. Cells 2020, 9, 939. [Google Scholar] [CrossRef] [PubMed]
- Morgan, T.L.; Falk, P.M.; Kogut, N.; Shah, K.H.; Tome, M.; Kagan, A.R. A Comparison of Single-Dose and Fractionted Total-Body Irradiation on the Development of Pneumonitis Following Bone Marrow Transplantation. Int. J. Radiat. Oncol. Biol. Phys. 1996, 36, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Roderick, T.H. The response of twenty-seven inbred strains of mice to daily doses of whole-body X-irradiation. Radiat. Res. 1963, 20, 631–639. [Google Scholar] [CrossRef]
- Yuhas, J.M.; Storer, J.B. On Mouse Strain Differences in Radiation Resistance: Hematopoietic Death and the Endogenous Colony-Forming Unit. Radiat. Res. 1969, 39, 608–622. [Google Scholar] [CrossRef] [PubMed]
- Ossetrova, N.I.; Condliffe, D.P.; Ney, P.H.; Krasnopolsky, K.; Hieber, K.P.; Rahman, A.; Sandgren, D.J. Early-Response Biomarkers for Assessment of Radiation Exposure in a Mouse Total-Body Irradiation Model. Health Phys. 2014, 106, 772–786. [Google Scholar] [CrossRef]
- Anderson, B.E.; McNiff, J.; Yan, J.; Doyle, H.; Mamula, M.; Shlomchik, M.J.; Shlomchik, W.D. Memory CD4+ T Cells Do Not Induce Graft-versus-Host Disease. J. Clin. Investig. 2003, 112, 101–108. [Google Scholar] [CrossRef]
- Mutis, T.; van Rijn, R.S.; Simonetti, E.R.; Aarts-Riemens, T.; Emmelot, M.E.; van Bloois, L.; Martens, A.; Verdonck, L.F.; Ebeling, S.B. Human Regulatory T Cells Control Xenogeneic Graft-versus-Host Disease Induced by Autologous T Cells in RAG2−/−γc−/− Immunodeficient Mice. Clin. Cancer Res. 2006, 12, 5520–5525. [Google Scholar] [CrossRef]
- Wilson, J.; Cullup, H.; Lourie, R.; Sheng, Y.; Palkova, A.; Radford, K.J.; Dickinson, A.M.; Rice, A.M.; Hart, D.N.J.; Munster, D.J. Antibody to the Dendritic Cell Surface Activation Antigen CD83 Prevents Acute Graft-versus-Host Disease. J. Exp. Med. 2009, 206, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Castor, M.G.M.; Rezende, B.; Resende, C.B.; Alessandri, A.L.; Fagundes, C.T.; Sousa, L.P.; Arantes, R.M.E.; Souza, D.G.; Silva, T.A.; Proudfoot, A.E.I.; et al. The CCL3/Macrophage Inflammatory Protein-1α–Binding Protein Evasin-1 Protects from Graft-versus-Host Disease but Does Not Modify Graft-versus-Leukemia in Mice. J. Immunol. 2010, 184, 2646–2654. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.-Y.; Chou, T.-Y.; Tzeng, C.-H.; Lee, O.K.-S. Cytokine Profiles in Various Graft-Versus-Host Disease Target Organs Following Hematopoietic Stem Cell Transplantation. Cell Transplant. 2012, 21, 2033–2045. [Google Scholar] [CrossRef] [PubMed]
- Budde, H.; Kolb, S.; Salinas Tejedor, L.; Wulf, G.; Reichardt, H.M.; Riggert, J.; Legler, T.J. Modified Extracorporeal Photopheresis with Cells from a Healthy Donor for Acute Graft-versus-Host Disease in a Mouse Model. PLoS ONE 2014, 9, e105896. [Google Scholar] [CrossRef] [PubMed]
- Doisne, J.-M.; Hüber, C.M.; Okkenhaug, K.; Colucci, F. Immunomodulation of Selective Naive T Cell Functions by P110δ Inactivation Improves the Outcome of Mismatched Cell Transplantation. Cell Rep. 2015, 10, 702–710. [Google Scholar] [CrossRef]
- Kumar, V.P. Mitigation of Total Body Irradiation-Induced Mortality and Hematopoietic Injury of Mice by a Thrombopoietin Mimetic (JNJ-26366821). Sci. Rep. 2022, 12, 3485. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R.K. Protein-Energy Malnutrition and Immunological Responses. J. Nutr. 1992, 122, 597–600. [Google Scholar] [CrossRef]
- Suzumura, R.; Fujimoto, A.; Sato, K.; Baba, S.; Kubota, S.; Itoh, S.; Shibamoto, I.; Enoki, H.; Okanishi, T. Nutritional Intervention Facilitates Food Intake after Epilepsy Surgery. Brain Sci. 2021, 11, 514. [Google Scholar] [CrossRef]
- Doerning, C.M.; Burlingame, L.A.; Lewis, A.G.; Myronovych, A.; Seeley, R.J.; Lester, P.A. Refinement of Perioperative Feeding in a Mouse Model of Vertical Sleeve Gastrectomy. J. Am. Assoc. Lab. Anim. Sci. 2018, 57, 295–301. [Google Scholar] [CrossRef]
- Ullman-Culleré, M.H.; Foltz, C.J. Body Condition Scoring: A Rapid and Accurate Method for Assessing Health Status in Mice. Lab. Anim. Sci. 1999, 49, 319–323. [Google Scholar]
- Steiner, D.; Gelovani, J.; Savoldo, B.; Robinson, S.N.; Decker, W.K.; Brouard, N.; Najjar, A.; Xing, D.; Yang, H.; Li, S.; et al. Noninvasive Bioluminescent Imaging Demonstrates Long-Term Multilineage Engraftment of Ex Vivo-Expanded CD34-Selected Umbilical Cord Blood Cells. Stem Cells 2009, 27, 1932–1940. [Google Scholar] [CrossRef]
- Lin, Y.; Cheung, P.; Roth, J.C.; Wilson, D.L.; Gerson, S.L. Imaging Stem Cell-Derived Persistent Foci after in Vivo Selection of Lentiviral MGMT-P140K Transduced Murine Bone Marrow Cells. Mol. Ther. 2011, 19, 1342–1352. [Google Scholar] [CrossRef] [PubMed]
- Staal, F.J.T.; Spaink, H.P.; Fibbe, W.E. Visualizing Human Hematopoietic Stem Cell Trafficking In Vivo Using a Zebrafish Xenograft Model. Stem Cells Dev. 2016, 25, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Asiedu, K.O.; Koyasu, S.; Szajek, L.P.; Choyke, P.L.; Sato, N. Bone Marrow Cell Trafficking Analyzed by 89Zr-Oxine Positron Emission Tomography in a Murine Transplantation Model. Clin. Cancer Res. 2017, 23, 2759–2768. [Google Scholar] [CrossRef] [PubMed]
- Lange, S.; Steder, A.; Killian, D.; Knuebel, G.; Sekora, A.; Vogel, H.; Lindner, I.; Dunkelmann, S.; Prall, F.; Murua Escobar, H.; et al. Engraftment Efficiency after Intra-Bone Marrow versus Intravenous Transplantation of Bone Marrow Cells in a Canine Nonmyeloablative Dog Leukocyte Antigen-Identical Transplantation Model. Biol. Blood Marrow Transplant. 2017, 23, 247–254. [Google Scholar] [CrossRef]
- Sweeney, S.K.; Manzar, G.S.; Zavazava, N.; Assouline, J.G. Tracking Embryonic Hematopoietic Stem Cells to the Bone Marrow: Nanoparticle Options to Evaluate Transplantation Efficiency. Stem Cell. Res. Ther. 2018, 9, 204. [Google Scholar] [CrossRef]
- Stuker, F.; Ripoll, J.; Rudin, M. Fluorescence Molecular Tomography: Principles and Potential for Pharmaceutical Research. Pharmaceutics 2011, 3, 229–274. [Google Scholar] [CrossRef]
- Leon-Rico, D.; Fernández-García, M.; Aldea, M.; Sánchez, R.; Peces-Barba, M.; Martinez-Palacio, J.; Yáñez, R.; Almarza, E. Comparison of Haematopoietic Stem Cell Engraftment through the Retro-Orbital Venous Sinus and the Lateral Vein: Alternative Routes for Bone Marrow Transplantation in Mice. Lab. Anim. 2015, 49, 132–141. [Google Scholar] [CrossRef]
- Rodrigues, M.V.; de Castro, S.O.; de Albuquerque, C.Z.; Mattaraia, V.G.d.M.; Santoro, M.L. The Gingival Vein as a Minimally Traumatic Site for Multiple Blood Sampling in Guinea Pigs and Hamsters. PLoS ONE 2017, 12, e0177967. [Google Scholar] [CrossRef]
- De Oliveira, D.T.; Souza-Silva, E.; Tonussi, C.R. Technical Report: Gingival Vein Punction: A New Simple Technique for Drug Administration or Blood Sampling in Rats and Mice. Scand. J. Lab. Anim. Sci. 2014, 36, 109–113. [Google Scholar] [CrossRef]
Authors | Year | Model | Features Analyzed | Advantages | Disadvantages |
---|---|---|---|---|---|
Cooke et al. [21] | 1996 | GVHD | Weight loss, posture, activity, fur texture, skin integrity | Quantitative and semi-quantitative sheets with simple categories. Less complex scoring system. | Non-specific clinical signs. Overestimate or underestimate pain and distress experienced by animals in some situations. |
Lloyd & Wolfensohn [18] | 1999 | Emphysema and encephalomyelitis | Appearance, food and water intake, clinical (respiratory) signs, natural behavior, provoked behavior | Combination of signs can be used to indicate overall severity of the procedure. Inclusion of specific parameters for the disease model (respiratory signs), increasing the sensitivity and specificity of the humane endpoint. | Validation of observation sheet. Variability between observers. |
Morton [17] | 2000 | Diabetes, vaccine | Weight loss, posture, activity, fur texture, skin integrity, general appearance, food and water intake, type of breathing, behavioral assessments, diarrhea, dehydration, eye appearance, social isolation, temperature, pinched face, not grooming, vocalization, distended abdomen/swollen, blood sugar level, polyuria. | Quantitative and semi-quantitative sheets with Simple categories. Less complex scoring system. Single signs or combination of signs can be used to indicate overall severity of the procedure. Score sheets reveal patterns of recovery or deterioration of health status and provides information on the effect of procedures on animals | Establish and limit cut-off points for clinical intervention and humane endpoint. |
Anderson et al. [55] | 2003 | GVHD | Skin ulcers with different size of alopecia and the site of skin lesion | Objective scoring and specific parameters for skin analyze. | Establish and limit cut-off points for clinical intervention and humane endpoint. Validation of observation sheet. |
Mutis et al. [56] | 2006 | XenoGVHD | Weight loss, mobility, and general appearance | Quantitative and semi-quantitative sheets with simple categories. Less complex scoring system. | Non-specific clinical signs. Overestimate or underestimate pain and distress experienced by animals in some situations. |
Paster et al. [19] | 2009 | Cancer | Body weight, appearance, behavioral assessments to evaluate morbidity (natural and provoked), body condition scoring | Combined assessments more accurately illustrate animal health status. | Behavioral signs may overlap with clinical signs. Variability between observers. |
Wilson et al. [57] | 2009 | GVHD | Weight loss, posture, activity, fur texture, skin integrity, and diarrhea | Quantitative and semi-quantitative sheets with simple categories. Less complex scoring system. | Non-specific clinical signs. Overestimate or underestimate pain and distress experienced by animals in some situations |
Castor et al. [58] | 2010 | GVHD | Weight loss, posture, activity, fur texture, skin integrity, diarrhea, and occult blood in feces | Quantitative and semi-quantitative sheets with simple categories. Less complex scoring system. | Non-specific clinical signs. Overestimate or underestimate pain and distress experienced by animals in some situations |
Lai et al. [59] | 2012 | GVHD | Weight loss, posture, activity, fur texture, skin integrity, and diarrhea | Quantitative and semi-quantitative sheets with simple categories. Less complex scoring system. | Non-specific clinical signs. Overestimate or underestimate pain and distress experienced by animals in some situations |
Nunamaker et al. [20] | 2013 | TBI | Body posture, eye appearance, activity level | Combined assessments more accurately illustrate animal health status. | Variability between observers. |
Budde et al. [60] | 2014 | GVHD | Posture, activity, fur/skin, and diarrhea | Quantitative and semi-quantitative sheets with simple categories. Less complex scoring system. | Non-specific clinical signs. Overestimate or underestimate pain and distress experienced by animals in some situations |
Doisne et al. [61] | 2015 | GVHD | Weight loss, posture, activity, and fur texture | Quantitative and semi-quantitative sheets with simple categories. Less complex scoring system. | Non-specific clinical signs. Overestimate or underestimate pain and distress experienced by animals in some situations |
Koch [22] | 2016 | TBI | Appearance, respiratory rate, general behavior, provoked behavior, weight loss | Promotes a more careful observation of the animals by all those involved in the critical moments of the experiment. Single signs or combination of signs can be used to indicate overall severity of the procedure. | Validation of observation sheet. Variability between observers. |
Naserian et al. [49] | 2018 | TBI | Weight loss, hunched posture, fur texture, skin integrity, and diarrhea | Less complex model binary scoring and reproducible system. | Less specificity and variability between observers. |
Kumar et al. [62] | 2022 | TBI | Inability of the mouse to right itself, limb paralysis, abdominal breathing, a constant twitching, trembling, or tremor that lasted for more than 10 s, or greater than 35% weight loss | Single signs or combination of signs can be used to indicate overall severity of the procedure. | Qualified technical team with knowledge in biology, ethology, and animal physiology Variability between observers. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, M.R.d.; Campbell, D.C.d.P.; Cunha-Madeira, M.R.d.; Bomfim, B.C.M.; de Paula Ayres-Silva, J. Animal Welfare in Radiation Research: The Importance of Animal Monitoring System. Vet. Sci. 2023, 10, 651. https://doi.org/10.3390/vetsci10110651
Lima MRd, Campbell DCdP, Cunha-Madeira MRd, Bomfim BCM, de Paula Ayres-Silva J. Animal Welfare in Radiation Research: The Importance of Animal Monitoring System. Veterinary Sciences. 2023; 10(11):651. https://doi.org/10.3390/vetsci10110651
Chicago/Turabian StyleLima, Monique Ribeiro de, Daiani Cotrim de Paiva Campbell, Mariana Rietmann da Cunha-Madeira, Barbara Cristina Marcollino Bomfim, and Jackline de Paula Ayres-Silva. 2023. "Animal Welfare in Radiation Research: The Importance of Animal Monitoring System" Veterinary Sciences 10, no. 11: 651. https://doi.org/10.3390/vetsci10110651
APA StyleLima, M. R. d., Campbell, D. C. d. P., Cunha-Madeira, M. R. d., Bomfim, B. C. M., & de Paula Ayres-Silva, J. (2023). Animal Welfare in Radiation Research: The Importance of Animal Monitoring System. Veterinary Sciences, 10(11), 651. https://doi.org/10.3390/vetsci10110651