Acute and 28-Day Repeated-Dose Oral Toxicity of the Herbal Formula Guixiong Yimu San in Mice and Sprague–Dawley Rats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Drugs and Reagents
2.2. HPLC Analysis
2.3. Experimental Animals
2.4. Oral Acute Toxicity of GYS in Mice
2.5. Oral 28-Day Repeated Toxicity Trial of GYS in Rats
2.6. Clinical Observations and BW Monitoring
2.7. Hematological and Biochemical Analyses
2.8. Gross Necropsy and Organ Weights
2.9. Histopathological Analyses
2.10. Statistical Analysis
3. Results
3.1. HPLCAnalyses
3.2. Acute Toxicity
3.3. Subacute Toxicity–BW and Feed Consumption Observations
3.4. Subacute Toxicity–Hematologicaland Serum Biochemical Analyses
3.5. Subacute Toxicity–ROW Analyses
3.6. Subacute Toxicity–Gross Necropsy and Histopathological Observation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dervishi, E.; Zhang, G.; Hailemariam, D.; Dunn, S.M.; Ametaj, B.N. Occurrence of retained placenta is preceded by an inflammatory state and alterations of energy metabolism in transition dairy cows. J. Anim. Sci. Biotechnol. 2016, 7, 26. [Google Scholar] [CrossRef]
- Vallejo-Timaran, D.A.; Reyes, J.; Gilbert, R.O.; Lefebvre, R.C.; Palacio-Baena, L.G.; Maldonado-Estrada, J.G. Incidence, clinical patterns, and risk factors of postpartum uterine diseases in dairy cows from high-altitude tropical herds. J. Dairy Sci. 2021, 104, 9016–9026. [Google Scholar] [CrossRef]
- Beagley, J.C.; Whitman, K.J.; Baptiste, K.E.; Scherzer, J. Physiology and treatment of retained fetal membranes in cattle. J. Vet. Intern. Med. 2010, 24, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Ghavi Hossein-Zadeh, N.; Ardalan, M. Cow-specific risk factors for retained placenta, metritis and clinical mastitis in Holstein cows. Vet. Res. Commun. 2011, 35, 345–354. [Google Scholar] [CrossRef]
- Scariot, C.A.; Scariot, J.; de Souza Ramos, I.A.; Gonçalves, L.R.; Calchi, A.C.; André, M.R.; Machado, R.Z.; Costa, M.M.; Kreutz, L.C.; Zanella, R.; et al. Bovine anaplasmosis as a risk factor for retained placenta, mastitis, and abomasal displacement in dairy cattle. Res. Vet. Sci. 2023, 154, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, Z.; Yu, Y.; Liang, X.; Wang, S.; Wang, L.; Cui, D.; Huang, M. Plasma metabolomics reveals pathogenesis of retained placenta in dairy cows. Front. Vet. Sci. 2021, 8, 697789. [Google Scholar] [CrossRef] [PubMed]
- Mahnani, A.; Sadeghi-Sefidmazgi, A.; Ansari-Mahyari, S.; Ghorbani, G.R.; Keshavarzi, H. Farm and cow factors and their interactions on the incidence of retained placenta in holstein dairy cows. Theriogenology 2021, 159, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Trevisi, E.; Ferrari, A.R.; Bertoni, G. Productive and metabolic consequences induced by the retained placenta in dairy cows. Vet. Res. Commun. 2008, 32 (Suppl. 1), S363–S366. [Google Scholar] [CrossRef] [PubMed]
- Mordak, R.; Stewart, P.A. Periparturient stress and immune suppression as a potential cause of retained placenta in highly productive dairy cows: Examples of prevention. Acta Vet. Scand. 2015, 57, 84. [Google Scholar] [CrossRef]
- Golzari Fard, A.A.; Batavani, R.A.; Amanlou, H. Investigation the efficiency ceftiofur hydrochloride in prevention of uterine postpartum infections and improvement the fertility parameters in holstein dairy cows affected by retained fetal membrane and dystocia. Int. J. Advan. Bio. Biomed. Res. 2017, 5, 65–68. [Google Scholar]
- Dervishi, E.; Zhang, G.; Mandal, R.; Wishart, D.S.; Ametaj, B.N. Targeted metabolomics: New insights into pathobiology of retained placenta in dairy cows and potential risk biomarkers. Animal 2018, 12, 1050–1059. [Google Scholar] [CrossRef]
- Yazlik, M.O.; Çolakoğlu, H.E.; Pekcan, M.; Kaya, U.; Kaçar, C.; Vural, M.R.; Kurt, S.; Baş, A.; Küplülü, Ş. The evaluation of superoxide dismutase activity, neutrophil function, and metabolic profile in cows with retained placenta. Theriogenology 2019, 128, 40–46. [Google Scholar] [CrossRef]
- Mahnani, A.; Sadeghi-Sefidmazgi, A.; Ansari-Mahyari, S.; Ghorbani, G.R. Assessing the consequences and economic impact of retained placenta in Holstein dairy cattle. Theriogenology 2021, 175, 61–68. [Google Scholar] [CrossRef]
- Xie, X.F.; Xiong, L.; Li, D.; Li, Y.; Li, M.T.; Peng, C. Effect of effective parts of Leonurus injection on the activity of rat uterus in vitro. Chin. Tradit. Pat. Med. 2015, 37, 1103–1106. (In Chinese) [Google Scholar] [CrossRef]
- Dai, L.P.; Sun, C.; Xie, X.F.; Xiong, L.; Zhou, Q.M.; Li, H.; Peng, C. Preparation of total alkaloids extracted from Leonurus sibiricus L. (Yimucao) and Yimucao injection and effects on blood coagulation system. Chin. Archi. Tradit. Chin. Med. 2017, 35, 2372–2375. (In Chinese) [Google Scholar] [CrossRef]
- Cui, D.; Li, J.; Wang, X.; Xie, J.; Zhang, K.; Wang, X.; Zhang, J.; Wang, L.; Qin, Z.; Yang, Z. Efficacy of herbal tincture as treatment option for retained placenta in dairy cows. Anim. Reprod. Sci. 2014, 145, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wang, S.; Wang, L.; Wang, H.; Li, X.; Cui, D. Administration of an herbal powder based on traditional Chinese veterinary medicine enhanced the fertility of Holstein dairy cows affected with retained placenta. Theriogenology 2018, 121, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Fadden, A.N.; Traber, M.G.; Bobe, G. Potential risk indicators of retained placenta and other diseases in multiparous cows. J. Dairy Sci. 2014, 97, 4151–4165. [Google Scholar] [CrossRef] [PubMed]
- Moretti, P.; Probo, M.; Morandi, N.; Trevisi, E.; Ferrari, A.; Minuti, A.; Venturini, M.; Paltrinieri, S.; Giordano, A. Early post-partum hematological changes in Holstein dairy cows with retained placenta. Anim. Reprod. Sci. 2015, 152, 17–25. [Google Scholar] [CrossRef]
- Cui, D.A.; Wang, S.Y.; Wang, L.; Wang, H.; Li, J.X.; Tuo, X.; Huang, X.L.; Liu, Y.M. Treatment of the retained placenta in dairy cows: Comparison of a systematic antibiosis with an oral administered herbal powder based on traditional Chinese veterinary medicine. Livest. Sci. 2017, 196, 55–60. [Google Scholar] [CrossRef]
- Zhou, Q.M.; Peng, C.; Li, X.H.; Xiong, L.; He, C.J.; Guo, L.; Cao, Z.X.; Liu, Z.H. Aromatic compounds from Leonurus japonicus Houtt. Biochem. Syst. Ecol. 2013, 51, 101–103. [Google Scholar] [CrossRef]
- Zhang, X.; Song, Y.Q.; Yang, Y.T.; Xiong, L.; Peng, C.; Xie, X.F. Research progress on chemical components of Leonurus japonicus and their pharmacological effects of activating blood and resolving stasis. Drug Eval. Res. 2015, 38, 214–217. (In Chinese) [Google Scholar]
- Xiong, L.; Peng, C. Study on Q-Marker of Leonurus japonicus and Penthorum chinense based on basic conditions of Q-Marker. Chin. Tradit. Herbal Drugs 2016, 47, 2212–2220. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, G.; Tobolski, D.; Zwierzchowski, G.; Mandal, R.; Wishart, D.S.; Ametaj, B.N. A targeted serum metabolomics GC-MS approach identifies predictive blood biomarkers for retained placenta in holstein dairy cows. Metabolites 2021, 11, 633. [Google Scholar] [CrossRef] [PubMed]
- Chinese Veterinary Pharmacopoeia Commission. Veterinary Pharmacopoeia of the People’s Republic of China, Part II; China Agricultural Press: Beijing, China, 2015. [Google Scholar]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China, Part I; People’s Medical Publishing House: Beijing, China, 2020. [Google Scholar]
- Office of Laboratory Animal Welfare (OLAW), National Institute of Health (NIH). Public Health Service (PHS) Policy on Humane Care and Use of Laboratory Animals (Policy); OLAW. nih. gov; NIH Publication: Bethesda, MD, USA, 2015. [Google Scholar]
- Center for Veterinary Drug Evaluation (CVDE), Ministry of Agriculture of the People’s Republic of China. Compilation of Technical Guidelines for Veterinary Drug Research, 1st ed.; China Chemical Industry Press: Beijing, China, 2015. [Google Scholar]
- OECD. Test No. 423: Acute oral toxicity-acute toxic class method. In OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2002. [Google Scholar] [CrossRef]
- Li, X.; Luo, Y.; Wang, L.; Li, Y.; Shi, Y.; Cui, Y.; Xue, M. Acute and subacute toxicity of ethanol extracts from Salvia przewalskii Maxim in rodents. J. Ethnopharmacol. 2010, 131, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Jiang, H.J.; Ablat, N.; Wang, C.; Guo, Y.F.; Sun, Y.; Zhao, X.; Xu, J.M.; Zhang, K.; Ren, R.T.; et al. Evaluation of the acute and sub-chronic oral toxicity of the herbal formula XiaoerChaigui Tuire Oral Liquid. J. Ethnopharmacol. 2016, 189, 290–299. [Google Scholar] [CrossRef]
- OECD. Test No. 407: Repeated dose 28-day oral toxicity study in rodents. In OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2008. [Google Scholar] [CrossRef]
- Han, C.T.; Kim, D.Y.; Nam, C.; Moon, S.H.; Park, S.H.; Han, K.G.; Lee, H.Y.; Bae, H.M.; Park, C.B.; So, J.H.; et al. Acute and 13-week subchronic toxicity studies of hot-water extract of Cynanchiwilfordii Radix in Sprague-Dawley rats. Toxicol. Res. 2019, 36, 89–98. [Google Scholar] [CrossRef]
- Wang, L.; Guo, Z.; Cui, D.; Ul Haq, S.; Guo, W.; Yang, F.; Zhang, H. Toxicological evaluation of the ultrasonic extract from Dichroae radix in mice and wistar rats. Sci. Rep. 2020, 10, 18206. [Google Scholar] [CrossRef]
- Lee, J.Y.; Jun, S.A.; Hong, S.S.; Ahn, Y.C.; Lee, D.S.; Son, C.G. Systematic review of adverse effects from herbal drugs reported in randomized controlled trials. Phytother. Res. 2016, 30, 1412–1419. [Google Scholar] [CrossRef]
- Jamshidi-Kia, F.; Lorigooini, Z.; Amini-Khoei, H. Medicinal plants: Past history and future perspective. J. HerbmedPharmacol. 2018, 7, 1–7. [Google Scholar] [CrossRef]
- Van der Merwe, D.; Swan, G.E.; Botha, C.J. Use of ethnoveterinary medicinal plants in cattle by Setswana-speaking people in the Madikwe area of the North West Province of South Africa. J. S. Afr. Vet. Assoc. 2001, 72, 189–196. [Google Scholar] [CrossRef]
- Lans, C.; Turner, N.; Khan, T.; Brauer, G.; Boepple, W. Ethnoveterinary medicines used for ruminants in British Columbia, Canada. J. Ethnobiol. Ethnomed. 2007, 3, 11. [Google Scholar] [CrossRef]
- McGaw, L.J.; Eloff, J.N. Ethnoveterinary use of southern African plants and scientific evaluation of their medicinal properties. J. Ethnopharmacol. 2008, 119, 559–574. [Google Scholar] [CrossRef]
- LeBlanc, S.J. Postpartum uterine disease and dairy herd reproductive performance: A review. Vet. J. 2008, 176, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.; Wang, X.; Wang, L.; Wang, X.; Zhang, J.; Qin, Z.; Li, J.; Yang, Z. The administration of Sheng Hua Tang immediately after delivery to reduce the incidence of retained placenta in Holstein dairy cows. Theriogenology 2014, 81, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Moreki, J.C.; Tshireletso, K.; Okoli, I.C. Potential use of ethnoveterinary medicine for retained placenta in cattle in Mogonono, Botswana. J. Anim. Prod. Adv. 2012, 2, 303–309. [Google Scholar] [CrossRef]
- Firenzuoli, F.; Gori, L. Herbal medicine today: Clinical and research issues. Evid. Based Complement. Altern. Med. 2007, 4, 37–40. [Google Scholar] [CrossRef]
- Liu, W.B.; Chuang, S.T.; Shyu, C.L.; Chang, C.C.; Jack, A.; Peh, H.C.; Chan, J.P. Strategy for the treatment of puerperal metritis and improvement of reproductive efficiency in cows with retained placenta. Acta Vet. Hung. 2011, 59, 247–256. [Google Scholar] [CrossRef]
- Machado, V.S.; Celestino, M.L.; Oliveira, E.B.; Lima, F.S.; Ballou, M.A.; Galvão, K.N. The association of cow-related factors assessed at metritis diagnosis with metritis cure risk, reproductive performance, milk yield, and culling for untreated and ceftiofur-treated dairy cows. J. Dairy Sci. 2020, 103, 9261–9276. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.K. Gynaecology of TCM; Shanghai Scientific & Technical Publishers: Shanghai, China, 1986; p. 135. (In Chinese) [Google Scholar]
- Yan, Z.T.; Xie, J.S.; Li, S.H.; Wang, D.S.; Yang, G.L.; Yv, S.J.; Zhu, X.R.; Chen, D.S. Effect of Chinese medicine production Chan-Fu-Kang on hemorheology of postpartum cows with qi deficiency and blood stasis syndrome. Chin. Dairy Cattle 2009, 172, 42–44. (In Chinese) [Google Scholar] [CrossRef]
- Editorial Committee of Encyclopedia of China’s Agriculture. China Agricultural Encyclopedia; Traditional Chinese Veterinary Medicine Volume; Agricultural Publishing House: Beijing, China, 1991. (In Chinese) [Google Scholar]
- Shang, X.; Pan, H.; Wang, X.; He, H.; Li, M. Leonurus japonicus Houtt.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 2014, 152, 14–32. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Miao, X.; Yang, F.; Li, B.; Guo, X.; Pan, H.; Zhang, Y.; Zhang, J. The Anti-diarrheal Activity of the Non-toxic Dihuang Powder in Mice. Front. Pharmacol. 2018, 9, 1037. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.F.; Siddiqui, M.K.; Jamil, K. Effects of Vepacide (Azadirachta indica) on aspartate and alanine aminotransferase profiles in a subchronic study with rats. Hum. Exp. Toxicol. 2001, 20, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Vítek, L. The role of bilirubin in diabetes, metabolic syndrome, and cardiovascular diseases. Front. Pharmacol. 2012, 3, 55. [Google Scholar] [CrossRef]
- Liju, V.B.; Jeena, K.; Kuttan, R. Acute and subchronic toxicity as well as mutagenic evaluation of essential oil from turmeric (Curcuma longa L.). Food Chem. Toxicol. 2013, 53, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Kumari, M.; Bajad, S.M.; Kshirsagar, S.R.; Chinde, S.; Balaji, A.S.; Jerald Mahesh Kumar, M.; Saxena, S.; Kumari, S.I. Sub-chronic oral toxicity evaluation of herbo-metallic formulation Arshakuthar rasa in rats. J. Ethnopharmacol. 2022, 298, 115306. [Google Scholar] [CrossRef]
- Olson, H.; Betton, G.; Robinson, D.; Thomas, K.; Monro, A.; Kolaja, G.; Lilly, P.; Sanders, J.; Sipes, G.; Bracken, W.; et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul. Toxicol. Pharmacol. 2000, 32, 56–67. [Google Scholar] [CrossRef]
- Vítek, L. The Protective Role of the Heme Catabolic Pathway in Hepatic Disorders. Antioxid. Redox. Signal. 2021, 35, 734–752. [Google Scholar] [CrossRef]
- Stec, D.E.; Tiribelli, C.; Badmus, O.O.; Hinds, T.D., Jr. Novel function for bilirubin as a metabolic signaling molecule: Implications for kidney diseases. Kidney 360 2022, 3, 945–953. [Google Scholar] [CrossRef]
Dose (g/kg BW/d) | Average Initial BW (g) 1 | BWG (g/d/rat) 2 | Average Final BW (g) 3 | ADG (g) 4 | ADFI (g) 5 | FCR 6 | |||
---|---|---|---|---|---|---|---|---|---|
d 1–7 | d 8–14 | d 15–21 | d 22–28 | ||||||
Male ♂ | |||||||||
Control | 163.94 ± 7.98 | 31.41 ± 5.51 | 28.06 ± 4.37 | 23.55 ± 6.73 | 24.00 ± 4.74 | 270.97 ± 14.32 | 3.82 ± 0.32 | 19.17 ± 1.68 | 5.06 ± 0.70 |
7.5 | 165.71 ± 9.38 | 31.64 ± 7.02 | 28.01 ± 4.73 | 22.33 ± 6.45 | 23.89 ± 4.21 | 265.58 ± 15.32 | 3.71 ± 0.48 | 18.76 ± 3.81 | 5.10 ± 0.98 |
15.0 | 165.29 ± 8.29 | 31.20 ± 8.12 | 28.35 ± 2.73 | 22.92 ± 4.02 | 21.79 ± 6.03 | 270.50 ± 14.42 | 3.73 ± 0.32 | 18.80 ± 0.87 | 5.09 ± 0.55 |
30.0 | 165.57 ± 7.31 | 30.65 ± 4.83 | 28.58 ± 6.41 | 22.82 ± 7.25 | 22.08 ± 5.89 | 269.90 ± 17.56 | 3.73 ± 0.45 | 18.52 ± 1.97 | 5.03 ± 0.76 |
Female♀ | |||||||||
Control | 163.04 ± 4.89 | 13.33 ± 4.35 | 10.62 ± 5.28 | 9.70 ± 5.53 | 12.69 ± 4.05 | 209.88 ± 7.09 | 1.65 ± 0.30 | 13.29 ± 0.80 | 8.28 ± 1.48 |
7.5 | 163.29 ± 6.95 | 12.32 ± 4.18 | 11.19 ± 2.98 | 9.26 ± 3.35 | 12.28 ± 2.84 | 207.44 ± 11.06 | 1.61 ± 0.22 | 13.55 ± 0.42 | 8.59 ± 1.37 |
15.0 | 161.87 ± 8.95 | 13.71 ± 2.80 | 11.36 ± 2.93 | 9.23 ± 3.28 | 12.84 ± 2.94 | 209.01 ± 12.98 | 1.69 ± 0.23 | 13.69 ± 0.91 | 8.29 ± 1.38 |
30.0 | 161.67 ± 8.89 | 13.32 ± 3.86 | 11.74 ± 3.36 | 9.29 ± 1.74 | 12.72 ± 4.02 | 209.64 ± 12.26 | 1.71 ± 0.28 | 13.76 ± 0.71 | 8.25 ± 1.51 |
Indexes | Reference Values | Groups and Treatments (g/kg BW/d) | |||
---|---|---|---|---|---|
Control | 7.50 g/kg BW | 15.0 g/kg BW | 30.0 g/kg BW | ||
Male ♂ | |||||
WBC (×109/L) 1 | 2.3–13 | 5.01 ± 2.15 | 4.67 ± 0.67 | 4.69 ± 1.00 | 4.93 ± 0.61 |
LYM # (×109/L) 2 | 1.9–11.0 | 4.32 ± 1.82 | 3.72 ± 0.31 | 3.91 ± 0.44 | 4.21 ± 0.58 |
MONO # (×109/L) 3 | 0.00–0.54 | 0.25 ± 0.08 | 0.28 ± 0.03 | 0.27 ± 0.04 | 0.31 ± 0.09 |
GRAN # (×109/L) 4 | 0.00–1.20 | 0.23 ± 0.06 | 0.20 ± 0.03 | 0.19 ± 0.10 | 0.20 ± 0.05 |
LYM (%) 5 | 51–91 | 87.14 ± 4.62 | 84.31 ± 5.81 | 83.66 ± 5.34 | 85.70 ± 6.22 |
MONO (%) 6 | 0–21 | 6.51 ± 0.99 | 6.84 ± 1.95 | 6.72 ± 1.16 | 6.93 ± 1.40 |
GRAN(%) 7 | 0–27 | 5.78 ± 1.38 | 5.65 ± 1.37 | 5.32 ± 1.15 | 5.39 ± 1.50 |
RBC (×1012/L) 8 | 5.0–8.5 | 7.64 ± 0.42 | 7.40 ± 0.54 | 7.47 ± 0.86 | 7.45 ± 0.58 |
HGB (g/dL) 9 | 11–16 | 15.49 ± 0.97 | 15.50 ± 1.14 | 15.54 ± 1.15 | 15.13 ± 1.23 |
HCT (%) 10 | 32–53 | 47.19 ± 1.92 | 46.57 ± 1.26 | 47.63 ± 1.53 | 46.76 ± 1.00 |
MCV (fL) 11 | 51–69 | 53.70 ± 2.60 | 53.67 ± 1.75 | 54.43 ± 2.81 | 53.49 ± 1.54 |
MCH (pg) 12 | 15–25 | 18.43 ± 0.62 | 18.71 ± 0.46 | 18.36 ± 0.48 | 18.73 ± 0.34 |
MCHC (g/L) 13 | 26–41 | 33.36 ± 0.56 | 33.39 ± 0.829 | 33.27 ± 0.92 | 32.33 ± 0.90 |
RDW (%) 14 | 10–18 | 17.22 ± 0.70 | 17.43 ± 1.37 | 17.41 ± 0.85 | 17.26 ± 1.40 |
PLT# (×109/L) 15 | 538–1330 | 881.22 ± 64.54 | 873.57 ± 37.29 | 874.44 ± 38.88 | 878.25 ± 40.72 |
MPV (fL) 16 | 5.0–10.1 | 7.97 ± 0.55 | 8.01 ± 0.34 | 7.88 ± 0.47 | 8.13 ± 0.67 |
PDW (fL) 17 | 6.8–11.1 | 9.88 ± 0.28 | 9.50 ± 0.73 | 9.66 ± 1.36 | 9.80 ± 0.63 |
PCT (%) 18 | 0.4–0.8 | 0.64 ± 0.080 | 0.66 ± 0.04 | 0.63 ± 0.07 | 0.65 ± 0.04 |
Female♀ | |||||
WBC (×109/L) 1 | 0.4–11 | 4.67 ± 0.90 | 4.47 ± 1.40 | 4.49 ± 1.19 | 4.50 ± 0.59 |
LYM # (×109/L) 2 | 0.3–9.9 | 4.19 ± 0.47 | 3.96 ± 0.74 | 4.01 ± 0.62 | 4.03 ± 0.82 |
MONO # (×109/L) 3 | 0.00–0.40 | 0.25 ± 0.04 | 0.27 ± 0.06 | 0.26 ± 0.06 | 0.25 ± 0.04 |
GRAN # (×109/L) 4 | 0.00–0.76 | 0.22 ± 0.03 | 0.20 ± 0.05 | 0.20 ± 0.01 | 0.21 ± 0.06 |
LYM (%) 5 | 54–88 | 89.32 ± 2.91 | 87.10 ± 5.48 | 86.25 ± 5.30 | 85.78 ± 5.48 |
MONO (%) 6 | 0–21 | 6.41 ± 1.02 | 6.77 ± 0.85 | 6.75 ± 1.21 | 6.88 ± 1.35 |
GRAN (%) 7 | 0–27 | 4.98 ± 0.84 | 4.64 ± 0.80 | 4.71 ± 1.78 | 4.68 ± 1.28 |
RBC (×1012/L) 8 | 6.0–8.2 | 7.99 ± 1.26 | 7.57 ± 0.65 | 7.85 ± 1.43 | 7.65 ± 1.40 |
HGB (g/dL) 9 | 12–16 | 14.61 ± 2.22 | 14.53 ± 1.52 | 14.43 ± 1.34 | 14.51 ± 0.64 |
HCT (%) 10 | 32–53 | 43.32 ± 7.19 | 43.70 ± 2.58 | 44.76 ± 3.27 | 42.73 ± 2.14 |
MCV (fL) 11 | 51–65 | 57.14 ± 1.10 | 57.24 ± 1.14 | 57.45 ± 1.25 | 58.09 ± 1.75 |
MCH (pg) 12 | 17–22 | 18.75 ± 0.55 | 18.50 ± 0.44 | 18.56 ± 0.87 | 18.74 ± 0.53 |
MCHC (g/L) 13 | 32–36 | 33.83 ± 0.82 | 33.67 ± 0.85 | 33.27 ± 1.31 | 33.57 ± 1.34 |
RDW (%) 14 | 10–18 | 16.80 ± 0.89 | 16.54 ± 1.22 | 16.63 ± 1.46 | 16.98 ± 0.90 |
PLT (×109/L) 15 | 600–1290 | 785.30 ± 102.65 | 768.43 ± 73.66 | 771.75 ± 118.74 | 777.11 ± 127.47 |
MPV (fL) 16 | 5.0–8.7 | 7.98 ± 0.58 | 8.16 ± 0.33 | 8.11 ± 0.49 | 8.13 ± 0.67 |
PDW (fL) 17 | 6.8–11.1 | 9.77 ± 0.74 | 9.69 ± 0.64 | 9.70 ± 1.33 | 9.66 ± 1.17 |
PCT (%) 18 | 0.4–0.8 | 0.58 ± 0.20 | 0.61 ± 0.06 | 0.56 ± 0.24 | 0.63 ± 0.12 |
Indexes | Reference Values | Groups and treatments (g/kg BW/d) | |||
---|---|---|---|---|---|
Control | 7.50 g/kg BW | 15.0 g/kg BW | 30.0 g/kg BW | ||
Male ♂ | |||||
AST (U/L) 1 | 75–278 | 262.36 ± 26.96 | 263.26 ± 7.61 | 261.75 ± 41.39 | 259.73 ± 20.61 |
ALT (U/L) 2 | 19–146 | 23.47 ± 2.08 | 22.91 ± 1.95 | 22.13 ± 1.86 | 23.12 ± 5.13 |
ALP (U/L) 3 | 41–138 | 119.71 ± 15.92 | 120.91 ± 8.99 | 118.13 ± 16.26 | 116.11 ± 11.91 |
TBL (µmol/L) 4 | 0.3–0.7 | 0.82 ± 0.29 | 0.81 ± 0.07 | 0.83 ± 0.18 | 0.80 ± 0.44 |
BUN (mg/dL) 5 | 4–10 | 7.30 ± 0.68 | 7.53 ± 0.42 | 7.14 ± 0.99 | 7.38 ± 1.01 |
CRE (µmol/L) 6 | 34–63 | 45.12 ± 4.05 | 43.94 ± 5.26 | 43.97 ± 3.54 | 45.05 ± 6.65 |
TC (mg/dL) 7 | 18.2–41.6 | 22.70 ± 5.60 | 22.44 ± 2.02 | 23.11 ± 1.69 | 21.66 ± 4.10 |
TG (mmol/L) 8 | 0.4–1.3 | 0.68 ± 0.15 | 0.70 ± 0.14 | 0.68 ± 0.10 | 0.67 ± 0.10 |
GLU (mmol/L) 9 | 4–8 | 5.71 ± 0.99 a | 5.34 ± 0.68 b | 5.29 ± 0.64 b | 5.17 ± 0.71 b |
TP (g/L) 10 | 47–59 | 52.14 ± 2.50 | 50.91 ± 2.81 | 51.79 ± 3.17 | 51.58 ± 3.35 |
ALB (g/L) 11 | 18–41 | 26.62 ± 2.27 | 25.57 ± 1.35 | 26.96 ± 1.44 | 25.06 ± 1.39 |
Female ♀ | |||||
AST (U/L) 1 | 57–258 | 261.80 ± 43.84 | 264.90 ± 47.02 | 261.04 ± 32.15 | 266.76 ± 54.47 |
ALT (U/L) 2 | 20–85 | 25.15 ± 3.12 | 25.81 ± 2.13 | 24.97 ± 5.05 | 24.14 ± 4.07 |
ALP (U/L) 3 | 32–75 | 54.61 ± 4.19 | 53.20 ± 5.67 | 54.25 ± 11.98 | 53.89 ± 17.23 |
TBL (µmol/L) 4 | 0.4–0.8 | 0.58 ± 0.16 | 0.56 ± 0.20 | 0.51 ± 0.10 | 0.53 ± 0.16 |
BUN (mg/dL) 5 | 5–12 | 7.90 ± 0.76 | 7.86 ± 1.12 | 7.91 ± 0.64 | 7.90 ± 0.41 |
CRE (µmol/L) 6 | 36–68 | 46.22 ± 9.24 | 45.34 ± 5.03 | 44.58 ± 8.54 | 46.41 ± 5.15 |
TC (mg/dL) 7 | 12.6–46.8 | 23.44 ± 3.34 | 24.17 ± 4.49 | 24.75 ± 3.21 | 23.80 ± 2.05 |
TG (mmol/L) 8 | 0.2–1.3 | 0.63 ± 0.09 | 0.67 ± 0.13 | 0.66 ± 0.04 | 0.62 ± 0.06 |
GLU (mmol/L) 9 | 4–8 | 5.21 ± 0.69 a | 4.87 ± 0.37 b | 5.01 ± 0.97 b | 4.98 ± 0.48 b |
TP (g/L) 10 | 50–65 | 52.08 ± 2.96 | 51.00 ± 3.01 | 53.49 ± 1.71 | 51.17 ± 4.97 |
ALB (g/L) 11 | 20–44 | 27.93 ± 2.22 | 27.15 ± 1.09 | 28.10 ± 0.83 | 26.65 ± 1.33 |
Indexes | Groups and Treatments (g/kg BW/d) | |||
---|---|---|---|---|
Control | 7.50 g/kg BW | 15.0 g/kg BW | 30.0 g/kg BW | |
Male ♂ | ||||
Heart 1 | 0.35 ± 0.04 | 0.34 ± 0.02 | 0.34 ± 0.05 | 0.35 ± 0.02 |
Lung 2 | 0.52 ± 0.03 | 0.53 ± 0.08 | 0.53 ± 0.08 | 0.53 ± 0.06 |
Liver 3 | 3.07 ± 0.40 | 3.07 ± 0.32 | 3.06 ± 0.29 | 3.29 ± 0.30 |
Kidney 4 | 0.79 ± 0.08 | 0.80 ± 0.03 | 0.81 ± 0.09 | 0.81 ± 0.07 |
Spleen 5 | 0.23 ± 0.04 | 0.21 ± 0.03 | 0.21 ± 0.02 | 0.22 ± 0.04 |
Thymus 6 | 0.17 ± 0.03 | 0.16 ± 0.03 | 0.16 ± 0.05 | 0.17 ± 0.03 |
Uterus 7 | 0.20 ± 0.06 | 0.20 ± 0.04 | 0.21 ± 0.05 | 0.21 ± 0.05 |
Female ♀ | ||||
Heart 1 | 0.33 ± 0.06 | 0.33 ± 0.01 | 0.36 ± 0.03 | 0.34 ± 0.02 |
Lung 2 | 0.57 ± 0.08 | 0.59 ± 0.09 | 0.54 ± 0.06 | 0.58 ± 0.08 |
Liver 3 | 2.79 ± 0.40 | 2.78 ± 0.15 | 2.96 ± 0.23 | 2.95 ± 0.35 |
Kidney 4 | 0.78 ± 0.10 | 0.77 ± 0.05 | 0.78 ± 0.06 | 0.83 ± 0.07 |
Spleen 5 | 0.23 ± 0.04 | 0.21 ± 0.01 | 0.23 ± 0.03 | 0.24 ± 0.06 |
Thymus 6 | 0.21 ± 0.07 | 0.20 ± 0.04 | 0.19 ± 0.05 | 0.17 ± 0.03 |
Testis 7 | 1.22 ± 0.04 | 1.24 ± 0.04 | 1.23 ± 0.04 | 1.20 ± 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; He, J.; Wu, L.; Wu, X.; Hao, B.; Wang, S.; Cui, D. Acute and 28-Day Repeated-Dose Oral Toxicity of the Herbal Formula Guixiong Yimu San in Mice and Sprague–Dawley Rats. Vet. Sci. 2023, 10, 615. https://doi.org/10.3390/vetsci10100615
Wang L, He J, Wu L, Wu X, Hao B, Wang S, Cui D. Acute and 28-Day Repeated-Dose Oral Toxicity of the Herbal Formula Guixiong Yimu San in Mice and Sprague–Dawley Rats. Veterinary Sciences. 2023; 10(10):615. https://doi.org/10.3390/vetsci10100615
Chicago/Turabian StyleWang, Ling, Jiongjie He, Lianghong Wu, Xueqin Wu, Baocheng Hao, Shengyi Wang, and Dongan Cui. 2023. "Acute and 28-Day Repeated-Dose Oral Toxicity of the Herbal Formula Guixiong Yimu San in Mice and Sprague–Dawley Rats" Veterinary Sciences 10, no. 10: 615. https://doi.org/10.3390/vetsci10100615