Spectral Library of Maize Leaves under Nitrogen Deficiency Stress
Abstract
:1. Summary
2. Data Description
3. Methods
3.1. Vegetal Material and Experimental Design
3.2. Data Collection
3.3. Data Pre-Processing
3.4. Data analysis
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Erenstein, O.; Chamberlin, J.; Sonder, K. Estimating the global number and distribution of maize and wheat farms. Glob. Food Secur. 2021, 30, 100558. [Google Scholar] [CrossRef]
- Tigchelaar, M.; Battisti, D.S.; Naylor, R.L.; Ray, D.K. Future warming increases probability of globally synchronized maize production shocks. Proc. Natl. Acad. Sci. USA 2018, 115, 6644–6649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zampieri, M.; Ceglar, A.; Dentener, F.; Dosio, A.; Naumann, G.; van den Berg, M.; Toreti, A. When will current climate extremes affecting maize production become the norm? Earth’s Future 2019, 7, 113–122. [Google Scholar] [CrossRef]
- Clevers, J.G. The use of imaging spectrometry for agricultural applications. ISPRS J. Photogramm. Remote. Sens. 1999, 54, 299–304. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote. Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Kumar, L.; Schmidt, K.; Dury, S.; Skidmore, A. Imaging spectrometry and vegetation science. In Imaging Spectrometry; van der Meer, F.D., De Jong, S.M., Eds.; Springer: Dordrecht, Germany, 2002; Volume 4, pp. 111–155. [Google Scholar] [CrossRef]
- Ustin, S.L.; Gitelson, A.A.; Jacquemoud, S.; Schaepman, M.; Asner, G.P.; Gamon, J.A.; Zarco-Tejada, P. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sens. Environ. 2009, 113, S67–S77. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, H.; Niu, Y.; Han, W. Mapping maize water stress based on UAV multispectral remote sensing. Remote. Sens. 2019, 11, 605. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Pu, R.; Zhang, S.; Wu, L. Spectral identification of stress types for maize seedlings under single and combined stresses. IEEE Access 2018, 6, 13773–13782. [Google Scholar] [CrossRef]
- Asaari, M.S.M.; Mertens, S.; Dhondt, S.; Inzé, D.; Wuyts, N.; Scheunders, P. Analysis of hyperspectral images for detection of drought stress and recovery in maize plants in a high-throughput phenotyping platform. Comput. Electron. Agric. 2019, 162, 749–758. [Google Scholar] [CrossRef]
- Colovic, M.; Yu, K.; Todorovic, M.; Cantore, V.; Hamze, M.; Albrizio, R.; Stellacci, A.M. Hyperspectral vegetation indices to assess water and nitrogen status of sweet maize crop. Agronomy 2022, 12, 2181. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Ritchie, S.W.; Hanway, J.J.; Benson, G.O. How a corn plant develops. Iowa State University of Science and Technology. Cooperative Extension Service Ames, Iowa. Spec. Rep. 1986, 48, 1–17. Available online: http://publications.iowa.gov/18027/1/How%20a%20corn%20plant%20develops001.pdf (accessed on 28 October 2022).
- Alam, M.; Nakasathien, S.; Molla, M.; Hossain, S.; Islam, M.; Maniruzzaman, M.; Akkas, M.; Sarobol, E.; Vichuki, V.; Hassan, M.; et al. Kernel water relations and kernel filling traits in maize (Zea mays L.) are influenced by water-deficit condition in a tropical environment. Front. Plant Sci. 2021, 12, 1–18. [Google Scholar] [CrossRef] [PubMed]
- IGAC. Estudio General de Suelos y Zonificación de Tierras Departamento de Antioquia; Instituto Geográfico Agustín Codazzi (IGAC); Imprenta Nacional de Colombia: Bogotá, Colombia, 2007; pp. 710–711.
- Acevedo-Correa, C.; Goez, M.M.; Torres-Madronero, M.C.; Rondon, T. Low-cost clamp for the measurement of vegetation spectral signatures. HardwareX 2022, 1–9. [Google Scholar]
- McMurtrey III, J.E.; Chappelle, E.W.; Kim, M.S.; Meisinger, J.J.; Corp, L.A. Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with actively induced fluorescence and passive reflectance measurements. Remote Sens. Environ. 1994, 47, 36–44. [Google Scholar] [CrossRef]
- Blackmer, T.M.; Schepers, J.S.; Varvel, G.E. Light reflectance compared with other nitrogen stress measurements in corn leaves. Agron. J. 1994, 86, 934–938. [Google Scholar] [CrossRef]
- Noh, H.; Zhang, Q.; Shin, B.; Han, S.; Feng, L. A neural network model of maize crop nitrogen stress assessment for a multispectral imaging sensor. Biosyst. Eng. 2006, 94, 477–485. [Google Scholar] [CrossRef]
- Molina, N.A.; Torres-Madronero, M.C.; Galeano, J.; Casamitjana, M. Direct diffuse reflectance model implementation using optical parameters applied to the spectral simulation of avocado leaf. In Proceedings of the SmartTech-IC 2021 Second International Conference on Smart Technologies, Systems and Applications, Cuenca, Ecuador, 16–18 November 2021; pp. 69–83. Available online: https://dspace.ups.edu.ec/bitstream/123456789/22473/4/Smart%20Technologies%20abril-2022.pdf (accessed on 30 October 2022).
- Barbedo, J.G.A. Detection of nutrition deficiencies in plants using proximal images and machine learning: A review. Comput. Electron. Agric. 2019, 162, 482–492. [Google Scholar] [CrossRef]
Id. | Genotype | Company | Grain Color | Description |
---|---|---|---|---|
G1 | P3041 | Pioneer | Yellow | Commercial |
G2 | DK-415UT3PRO | Dekalb | White | Commercial |
G3 | DK7088 | Dekalb | Yellow | Commercial |
G4 | FNC8134 | Fenalce | Yellow | Commercial |
G5 | FNC8502 | Fenalce | White | Commercial |
G6 | BioMZn01 | Maxi Semillas | White | Commercial |
G7 | Synko | Syngenta | Yellow | Commercial |
G8 | V114/P535 | Agrosavia | Yellow | Experimental |
G9 | V114/P528 | Agrosavia | Yellow | Experimental |
G10 | P535/V114 | Agrosavia | Yellow | Experimental |
Id. | Genotype | Nitrogen Level | |||
---|---|---|---|---|---|
25% (T1) | 50% (T2) | 75% (T3) | 100% (T4) | ||
G1 | P3041 | 26 | 26 | 25 | 27 |
G2 | DK-415UT3PRO | 25 | 25 | 27 | 28 |
G3 | DK7088 | 28 | 24 | 26 | 28 |
G4 | FNC8134 | 24 | 26 | 26 | 26 |
G5 | FNC8502 | 27 | 26 | 26 | 27 |
G6 | BioMZn01 | 27 | 26 | 27 | 25 |
G7 | Synko | 26 | 27 | 27 | 30 |
G8 | V114/P535 | 25 | 26 | 28 | 28 |
G9 | V114/P528 | 24 | 26 | 27 | 29 |
G10 | P535/V114 | 26 | 24 | 24 | 26 |
Total per treatment | 258 | 256 | 263 | 274 | |
Total spectral signatures | 1051 |
Id. | Genotype | Nitrogen Level | |||
---|---|---|---|---|---|
25% (T1) | 50% (T2) | 75% (T3) | 100% (T4) | ||
G1 | P3041 | 47 | 54 | 51 | 52 |
G2 | DK-415UT3PRO | 52 | 50 | 51 | 54 |
G3 | DK7088 | 50 | 51 | 52 | 51 |
G4 | FNC8134 | 55 | 52 | 48 | 53 |
G5 | FNC8502 | 52 | 49 | 53 | 52 |
G6 | BioMZn01 | 49 | 50 | 53 | 51 |
G7 | Synko | 48 | 52 | 48 | 50 |
G8 | V114/P535 | 53 | 46 | 49 | 53 |
G9 | V114/P528 | 49 | 52 | 51 | 51 |
G10 | P535/V114 | 51 | 49 | 54 | 50 |
Total per treatment | 506 | 505 | 510 | 517 | |
Total spectral signatures | 2038 |
Id. | Genotype | Nitrogen Level | |||
---|---|---|---|---|---|
25% (T1) | 50% (T2) | 75% (T3) | 100% (T4) | ||
G1 | P3041 | 52 | 48 | 51 | 50 |
G2 | DK-415UT3PRO | 52 | 50 | 51 | 52 |
G3 | DK7088 | 51 | 48 | 51 | 50 |
G4 | FNC8134 | 51 | 53 | 51 | 53 |
G5 | FNC8502 | 48 | 49 | 53 | 50 |
G6 | BioMZn01 | 54 | 53 | 48 | 49 |
G7 | Synko | 51 | 51 | 50 | 54 |
G8 | V114/P535 | 43 | 51 | 54 | 51 |
G9 | V114/P528 | 52 | 48 | 54 | 50 |
G10 | P535/V114 | 52 | 50 | 53 | 51 |
Total per treatment | 506 | 501 | 516 | 510 | |
Total spectral signatures | 2033 |
Folder | Filename | Size | Description |
---|---|---|---|
V3 | Spectra_V3 | 1485 × 1051 | Spectral signature collected at V3 stage |
Label_V3 | 2 × 1051 | First row: treatment label (1: T1, 2: T2, 3: T3, 4: T4) Second row: genotype | |
Wavelength_V3 | 1485 × 1 | Wavelength (nm) for each spectral signature | |
V7 | Spectra_V7 | 1485 × 2038 | Spectral signature collected at V7 stage |
Label_V7 | 2 × 2038 | First row: treatment label (1: T1, 2: T2, 3: T3, 4: T4) Second row: genotype | |
Wavelength_V7 | 1485 × 1 | Wavelength (nm) for each spectral signature | |
V10-V12 | Spectra_V10 | 1485 × 2033 | Spectral signature collected at V10-V12 stage |
Label_V10 | 2 × 2033 | First row: treatment label (1: T1, 2: T2, 3: T3, 4: T4) Second row: genotype | |
Wavelength_V10 | 1485 × 1 | Wavelength (nm) for each spectral signature |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Madronero, M.C.; Goez, M.; Guzman, M.A.; Rondon, T.; Carmona, P.; Acevedo-Correa, C.; Gomez-Ortega, S.; Durango-Flórez, M.; López, S.V.; Galeano, J.; et al. Spectral Library of Maize Leaves under Nitrogen Deficiency Stress. Data 2023, 8, 2. https://doi.org/10.3390/data8010002
Torres-Madronero MC, Goez M, Guzman MA, Rondon T, Carmona P, Acevedo-Correa C, Gomez-Ortega S, Durango-Flórez M, López SV, Galeano J, et al. Spectral Library of Maize Leaves under Nitrogen Deficiency Stress. Data. 2023; 8(1):2. https://doi.org/10.3390/data8010002
Chicago/Turabian StyleTorres-Madronero, Maria C., Manuel Goez, Manuel A. Guzman, Tatiana Rondon, Pablo Carmona, Camilo Acevedo-Correa, Santiago Gomez-Ortega, Mariana Durango-Flórez, Smith V. López, July Galeano, and et al. 2023. "Spectral Library of Maize Leaves under Nitrogen Deficiency Stress" Data 8, no. 1: 2. https://doi.org/10.3390/data8010002
APA StyleTorres-Madronero, M. C., Goez, M., Guzman, M. A., Rondon, T., Carmona, P., Acevedo-Correa, C., Gomez-Ortega, S., Durango-Flórez, M., López, S. V., Galeano, J., & Casamitjana, M. (2023). Spectral Library of Maize Leaves under Nitrogen Deficiency Stress. Data, 8(1), 2. https://doi.org/10.3390/data8010002