Prediction of Retention Indices and Response Factors of Oxygenates for GC-FID by Multilinear Regression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Utilized Raw Materials and Consumables
2.2. Preparation of the Standard Solutions
2.3. GC Methods
2.4. Computation
- RIi = retention index of the substance
- n = carbon number of n-paraffin
- ti = retention time of the component
- tn = retention time of the preceding n-paraffin
- tn+1 = retention time of the next n-paraffin molecule
- RFi = relative response factor of the substance
- Caw = atomic weight of carbon (12.011)
- NC = number of carbon atoms in the substance
- Haw = atomic weight of hydrogen (1.008)
- NH = number of hydrogen atoms in the group
- RFi = relative response factor of the substance
- RFRef = relative response factor of the reference
- (RFEthanol = 2.05; RF1,3,5-trimethylbenzene = 0.9329)
- RM,i = mass response factor of the substance
- RM,Ref = mass response factor of the reference
- Ai = area of the substance peak
- wi = mass fraction of the substance corrected by the purity of the substance
- ARef = area of the reference peak
- wRef = mass fraction of the reference
2.5. Design of the Experiments
3. Results and Discussion
3.1. Determination of the Retention Indices and Response Factors
- NOH = number of hydroxyl groups in the substance
3.2. Optimization for the Aromatic Oxygenates
3.3. Influence of the Method-Specific Factors by Design of the Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tekin, K.; Karagöz, S.; Bektaş, S. A review of hydrothermal biomass processing. Renew. Sustain. Energy Rev. 2014, 40, 673–687. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Liu, C.; Ma, W.; Yan, B.; Zhang, J. Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: A critical review. Renew. Sustain. Energy Rev. 2017, 71, 296–308. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, G.; Miao, C. Green and renewable bio-diesel produce from oil hydrodeoxygenation: Strategies for catalyst development and mechanism. Renew. Sustain. Energy Rev. 2019, 101, 568–589. [Google Scholar] [CrossRef]
- Ambursa, M.M.; Juan, J.C.; Yahaya, Y.; Taufiq-Yap, Y.H.; Lin, Y.C.; Lee, H.V. A Review on Catalytic Hydrodeoxygenation of Lignin to Transportation Fuels by Using Nickel-Based Catalysts; Elsevier: Amsterdam, The Netherlands, 2021; Volume 138, pp. 1–24. [Google Scholar]
- Sheldon, R.; Downing, R. Heterogeneous catalytic transformations for environmentally friendly production. Appl. Catal. A Gen. 1999, 189, 163–183. [Google Scholar] [CrossRef]
- Robinson, A.M.; Hensley, J.E.; Will Medlin, J. Bifunctional Catalysts for Upgrading of Biomass-Derived Oxygenates: A Review. ACS Catal. 2016, 6, 5026–5043. [Google Scholar] [CrossRef]
- Prabhudesai, V.S.; Gurrala, L.; Vinu, R. Catalytic Hydrodeoxygenation of Lignin-Derived Oxygenates: Catalysis, Mechanism, and Effect of Process Conditions. Energy Fuels 2022, 36, 1155–1188. [Google Scholar] [CrossRef]
- Qu, L.; Jiang, X.; Zhang, Z.; Zhang, X.; Song, G.; Wang, H.; Yuan, Y.; Chang, Y. A review of hydrodeoxygenation of bio-oil: Model compounds, catalysts, and equipment. Green Chem. 2021, 23, 1–7. [Google Scholar] [CrossRef]
- de Saint Laumer, J.-Y.; Leocata, S.; Tissot, E.; Baroux, L.; Kampf, D.M.; Merle, P.; Boschung, A.; Seyfried, M.; Chaintreau, A. Prediction of response factors for gas chromatography with flame ionization detection: Algorithm improvement, extension to silylated compounds, and application to the quantification of metabolites. J. Sep. Sci. 2015, 38, 3209–3217. [Google Scholar] [CrossRef]
- de Saint Laumer, J.-Y.; Cicchetti, E.; Merle, P.; Egger, J.; Chaintreau, A. Quantification in Gas Chromatography: Prediction of Flame Ionization Detector Response Factors from Combustion Enthalpies and Molecular Structures. Anal. Chem. 2010, 82, 6457–6462. [Google Scholar] [CrossRef]
- ASTM Standard D 6729-14; Standard Test Method for Determination of Indiviual Components in Spark Ignition Engine Fuels by 100 Metre Capillary High Resolution Gas Chromatography. ASTM International: West Conshohocken, PA, USA, 2014. [CrossRef]
- ASTM Standard D 6730-01; Standard Test Method for Determination of Individual Components in Spark Ignition Engine Fuels by 100 Meter Capillary (with Precolumn) High Resolution Gas Chromatography. ASTM International: West Conshohocken, PA, USA, 1999. [CrossRef]
- ASTM Standard D6733-01; Standard Test Method for Determination of Individual Components in Spark Ignition Engine Fuels by 50 Meter Capillary High Resolution Gas Chromatography. ASTM International: West Conshohocken, PA, USA, 1999. [CrossRef]
- Kováts, E. Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv. Chim. Acta 1958, 41, 1915–1932. [Google Scholar] [CrossRef]
- Tranchida, P.Q.; Mondello, L. Detectors and basic data analysis. In Basic Multidimensional Gas Chromatography; Snow, N.H., Ed.; Elsevier: London, UK, 2020; pp. 205–227. ISBN 9780128137451. [Google Scholar]
- Costa, R.; d’Acampora Zellner, B.; Crupi, M.L.; de Fina, M.R.; Valentino, M.R.; Dugo, P.; Dugo, G.; Mondello, L. GC–MS, GC–O and enantio–GC investigation of the essential oil of Tarchonanthus camphoratus L. Flavour Fragr. J. 2008, 23, 40–48. [Google Scholar] [CrossRef]
- Ziegler, J.G.; Nichols, N.B. Optimum Settings for Automatic Controllers. Trans. Am. Soc. Mech. Eng. 1942, 64, 759–765. [Google Scholar] [CrossRef]
- Calcote, H.F. Ion production and recombination in flames. Symp. Int. Combust. 1961, 8, 184–199. [Google Scholar] [CrossRef]
- Gardner, M.P.; Vinckier, C.; Bayes, K.D. Identification of the primary chemi-ion in hydrocarbon oxidations. Chem. Phys. Lett. 1975, 31, 318–320. [Google Scholar] [CrossRef]
- Jalali-Heravi, M.; Fatemi, M.H. Prediction of flame ionization detector response factors using an artificial neural network. J. Chromatogr. A 1998, 825, 161–169. [Google Scholar] [CrossRef]
- Lučić, B.; Trinajstić, N.; Sild, S.; Karelson, M.; Katritzky, A.R. A new efficient approach for variable selection based on multiregression: Prediction of gas chromatographic retention times and response factors. J. Chem. Inf. Comput. Sci. 1999, 39, 610–621. [Google Scholar] [CrossRef]
- Tissot, E.; Rochat, S.; Debonneville, C.; Chaintreau, A. Rapid GC-FID quantification technique without authentic samples using predicted response factors. Flavour Fragr. J. 2012, 27, 290–296. [Google Scholar] [CrossRef]
- Venkatesan, K.; Krishna, J.V.; Anjana, S.; Selvam, P.; Vinu, R. Hydrodeoxygenation kinetics of syringol, guaiacol and phenol over H-ZSM-5. Catal. Commun. 2021, 148, 106164. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, M.; Liu, P.; Sharma, B.K.; Jiang, J. Flexible NiCo-based catalyst for direct hydrodeoxygenation of guaiacol to cyclohexanol. New J. Chem. 2020, 44, 18906–18916. [Google Scholar] [CrossRef]
- García-Minguillán, A.M.; Briones, L.; Serrano, D.P.; Botas, J.A.; Escola, J.M. Shifting Pathways in the Phenol/2-Propanol Conversion over the Tandem Raney Ni + ZSM-5 Catalytic System. Ind. Eng. Chem. Res. 2020, 59, 3375–3382. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, H.; Perras, F.A.; Naik, P.; Pruski, M.; Sadow, A.D.; Slowing, I.I. Two-step conversion of Kraft lignin to nylon precursors under mild conditions. Green Chem. 2020, 22, 4676–4682. [Google Scholar] [CrossRef]
- Inocêncio, C.V.; de Souza, P.M.; Rabelo-Neto, R.C.; Da Silva, V.T.; Noronha, F.B. A systematic study of the synthesis of transition metal phosphides and their activity for hydrodeoxygenation of phenol. Catal. Today 2020, 381, 133–142. [Google Scholar] [CrossRef]
- Shumeiko, B.; Kubička, D. Semi-Batch Hydrotreatment of Lignin-Derived Phenolic Compounds over Raney-Ni with a Continuous Regeneration of the H-Donor Solvent. ChemSusChem 2022, 15, e202102099. [Google Scholar] [CrossRef] [PubMed]
- PAC AC Analytical Controls. DHA-Handbook AC DHA Analyzer; PAC AC Analytical Controls: Rotterdam, The Netherlands, 1994. [Google Scholar]
- Subramanian, S.; Ganapathiraju, M.K. Antibody Exchange: Information extraction of biological antibody donation and a web-portal to find donors and seekers. Data 2017, 2, 38. [Google Scholar] [CrossRef] [PubMed]
- Berrar, D. Cross-Validation. In Encyclopedia of Bioinformatics and Computational Biology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 542–545. ISBN 9780128114322. [Google Scholar]
- ASTM Standard D 4626-94; Standard Practice for Calculation of Gas Chromatographic Response Factors 1. ASTM International: West Conshohocken, PA, USA, 2015. [CrossRef]
- Plackett, R.L.; Burman, J.P. The Design of Optimum Multifactorial Experiments. Biometrika 1946, 33, 305–325. [Google Scholar] [CrossRef]
- Siebertz, K.; van Bebber, D.; Hochkirchen, T. Statistische Versuchsplanung, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-662-55742-6. [Google Scholar]
- Furimsky, E. Catalytic hydrodeoxygenation. Appl. Catal. A Gen. 2000, 199, 147–190. [Google Scholar] [CrossRef]
- Cicchetti, E.; Merle, P.; Chaintreau, A. Quantitation in gas chromatography: Usual practices and performances of a response factor database. Flavour Fragr. J. 2008, 23, 450–459. [Google Scholar] [CrossRef]
- El-Naggar, A. Factors Affecting Linearity and Response of Flame Ionization Detector. Pet. Sci. Technol. 2006, 24, 41–50. [Google Scholar] [CrossRef]
- Kállai, M.; Máté, V.; Balla, J. Effects of experimental conditions on the determination of the effective carbon number. Chromatographia 2003, 57, 639–644. [Google Scholar] [CrossRef]
- Blanco, C.G.; Canga, J.S.; Domínguez, A.; Iglesias, M.J.; Guillén, M.D. Flame ionization detection relative response factors of some polycyclic aromatic compounds. Determination of the main components of the coal tar pitch volatile fraction. J. Chromatogr. A 1992, 607, 295–302. [Google Scholar] [CrossRef]
- Hassan, H.; Othman, M.F.; Zakaria, Z.A.; Ahmad Saad, F.F.; Abdul Razak, H.R. Assessing the influence of neglected GC-FID variables on the multiple responses using multivariate optimization for the determination of ethanol and acetonitrile in radiopharmaceuticals. SN Appl. Sci. 2021, 3, 251. [Google Scholar] [CrossRef]
Step | Temperature | Heating Rate | Dwell | |
---|---|---|---|---|
Starting [°C] | Final [°C] | [K/min] | [min] | |
1 | 35 | 35 | 0 | 13 |
2 | 35 | 45 | 10 | 15 |
3 | 45 | 60 | 1 | 15 |
4 | 60 | 200 | 1.9 | 120 |
Abbr. | Parameter | Level “−” | Level “+” |
---|---|---|---|
A | Concentration of the substance | 10 mg/mL | 20 mg/mL |
B | Reference to substance ratio | 1 | 2 |
C | Control | - | - |
D | Control | - | - |
E | Injection volume | 0.1 µL | 0.2 µL |
F | Split ratio | 100 | 10 |
G | Hydrogen flow | 34.5 mL/min | 30.0 mL/min |
H | Synthetic air flow | 400 mL/min | 350 mL/min |
I | Temperature ramp | last ramp 1.9 K/min | last ramp 10 K/min |
J | Detector temperature | 250 °C | 225 °C |
K | Injector temperature | 290 °C | 250 °C |
Substance | CAS-Number | Retention Time [min] |
---|---|---|
Pentane | 109-66-0 | 10.097 ± 0.000 |
Hexane | 110-54-3 | 15.197 ± 0.002 |
Heptane | 142-82-5 | 25.842 ± 0.015 |
Octane | 111-65-9 | 44.755 ± 0.015 |
Nonane | 111-84-2 | 69.842 ± 0.011 |
Decane | 124-18-5 | 86.627 ± 0.011 |
Undecane | 1120-21-4 | 98.752 ± 0.013 |
Dodecane | 112-40-3 | 108.677 ± 0.015 |
Tridecane | 629-50-5 | 117.348 ± 0.012 |
Tetradecane | 629-59-4 | 125.219 ± 0.012 |
Pentadecane | 629-62-9 | 132.506 ± 0.009 |
Compound | RFmeasured | RFthis study | RFDHA |
---|---|---|---|
Methanol | 2.8888 | 2.6713 | 1.1207 |
Phenol | 1.3541 | 1.5104 | 0.9095 |
Cyclohexanol | 1.2755 | 1.2070 | 0.9799 |
Dependencies on Elementary Composition | ||||
Source | Response Factor (RF) | Retention Index (RI) | ||
p-Value | Estimate | p-Value | Estimate | |
Intercept | - | 1.0719 | - | 117.796 |
C | 0.0104 | −0.0353 | 0.0000 | 99.049 |
H | 0.0260 | −0.0142 | 0.0576 | −4.160 |
O | 0.0000 | 0.4318 | 0.0000 | 84.043 |
Dependencies on Functional Groups | ||||
Source | p-Value | Estimate | p-Value | Estimate |
Hydroxy groups | 0.0001 | 0.2063 | 0.0000 | 157.068 |
Categorical(A/B/C) | 0.0028 | A = −0.0729 B = −0.0553 C = 0.1282 | 0.0000 | A = −80.404 B = 23.134 C = 57.270 |
Two-Way Interactions C-H and C-O | ||||
Source | p-Value | Estimate | p-Value | Estimate |
(C-7.0808)·(H-11.374) | 0.0000 | 0.0264 | Not necessary | |
(C-7.0808)·(O-1.2828) | 0.0554 | −0.0510 |
Source | OH | OMe | Me | H |
---|---|---|---|---|
Position 1 | 0.0633 | −0.0633 | - | - |
Position 2 | 0.4540 | 0.0475 | −0.3309 | −0.1705 |
Position 3 | 0.4300 | 0.1010 | −0.3158 | −0.2150 |
Position 4 | 0.5007 | 0.0654 | −0.3061 | −0.2600 |
Position 5 | - | - | −0.0358 | 0.0358 |
Position 6 | - | - | −0.0170 | 0.0170 |
Intercept | 1.9507 |
Source | Response Factor (RF) | Retention Index (RI) | ||
---|---|---|---|---|
p-Value | Estimate | p-Value | Estimate | |
Intercept | - | 1.452 | - | 1066.7 |
Concentration of substance | 0.0157 | 0.033 | 0.0022 | 0.1 |
Reference to substance ratio | 0.1782 | 0.018 | 0.8619 | 0.0 |
Control | 0.3051 | 0.014 | 0.2048 | −0.1 |
Control | 0.9833 | 0.000 | 0.9997 | 0.0 |
Injection vol. | 0.7100 | 0.005 | 0.0008 | 0.2 |
Split ratio | 0.0090 | −0.036 | 0.0000 | 0.4 |
Hydrogen flow | 0.2425 | 0.015 | 0.4433 | 0.0 |
Syn. air flow | 0.2334 | 0.016 | 0.1805 | 0.1 |
Temp. ramp | 0.6384 | 0.006 | 0.0000 | 2.4 |
Detector temp. | 0.2090 | 0.017 | 0.8356 | 0.0 |
Injector temp. | 0.2777 | 0.014 | 0.9963 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kretzschmar, N.; Seifert, M.; Busse, O.; Weigand, J.J. Prediction of Retention Indices and Response Factors of Oxygenates for GC-FID by Multilinear Regression. Data 2022, 7, 133. https://doi.org/10.3390/data7090133
Kretzschmar N, Seifert M, Busse O, Weigand JJ. Prediction of Retention Indices and Response Factors of Oxygenates for GC-FID by Multilinear Regression. Data. 2022; 7(9):133. https://doi.org/10.3390/data7090133
Chicago/Turabian StyleKretzschmar, Nils, Markus Seifert, Oliver Busse, and Jan J. Weigand. 2022. "Prediction of Retention Indices and Response Factors of Oxygenates for GC-FID by Multilinear Regression" Data 7, no. 9: 133. https://doi.org/10.3390/data7090133
APA StyleKretzschmar, N., Seifert, M., Busse, O., & Weigand, J. J. (2022). Prediction of Retention Indices and Response Factors of Oxygenates for GC-FID by Multilinear Regression. Data, 7(9), 133. https://doi.org/10.3390/data7090133