Agricultural Crop Change in the Willamette Valley, Oregon, from 2004 to 2017
Abstract
1. Introduction
2. Study Region and Data Description
2.1. Classified Images of the Willamette Valley
2.1.1. Files
2.1.2. Land-Use Classification
- Annually disturbed agricultural crops;
- Established perennial crops;
- Forest types;
- Urban development.
2.2. Ground Truth and Training Data
3. Methods
3.1. Imagery
3.2. Remote Sensing Pixel Classification and Object-Based Reclassification
4. Results and Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mueller-Warrant, G. Multistep block mapping on principal component uniformity repairs Landsat 7 defects. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 12–23. [Google Scholar] [CrossRef]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Guo, Y.; Wang, C.; Lei, S.; Yang, J.; Zhao, Y. A Framework of Spatio-Temporal Fusion Algorithm Selection for Landsat NDVI Time Series Construction. ISPRS Int. J. Geo-Inf. 2020, 9, 665. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Vujadinovic, T. Change Detection within Remotely Sensed Satellite Image Time Series via Spectral Analysis. Remote Sens. 2020, 12, 4001. [Google Scholar] [CrossRef]
- Dai, J.; Roberts, D.A.; Stow, D.A.; An, L.; Zhao, Q. Green Vegetation Cover Has Steadily Increased Since Establishment of Community Forests in Western Chitwan, Nepal. Remote Sens. 2020, 12, 4071. [Google Scholar] [CrossRef]
- Morgan, B.E.; Chipman, J.; Bolger, D.T.; Dietrich, J.T. Spatiotemporal Analysis of Vegetation Cover Change in a Large Ephemeral River: Multi-Sensor Fusion of Unmanned Aerial Vehicle (UAV) and Landsat Imagery. Remote Sens. 2020, 13, 51. [Google Scholar] [CrossRef]
- Han, J.; Zhang, Z.; Cao, J. Developing A New Method to Identify Flowering Dynamics of Rapeseed Using Landsat 8 and Sentinel-1/2. Remote Sens. 2020, 13, 105. [Google Scholar] [CrossRef]
- Cabral, A.I.; Silva, S.; Silva, P.C.; Vanneschi, L.; Vasconcelos, M. Burned area estimations derived from Landsat ETM+ and OLI data: Comparing Genetic Programming with Maximum Likelihood and Classification and Regression Trees. ISPRS J. Photogramm. Remote Sens. 2018, 142, 94–105. [Google Scholar] [CrossRef]
- Michelson, D.B. Comparison of Algorithms for Classifying Swedish Landcover Using Landsat TM and ERS-1 SAR Data. Remote Sens. Environ. 2000, 71, 1–15. [Google Scholar] [CrossRef]
- Storie, C.D.; Henry, C.J. Deep Learning Neural Networks for Land Use Land Cover Mapping. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 3445–3448. [Google Scholar]
- Helber, P.; Bischke, B.; Dengel, A.; Borth, D. EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2217–2226. [Google Scholar] [CrossRef]
- Mueller-Warrant, G.W.; Whittaker, G.W.; Trippe, K.M. Remote Sensing of Perennial Crop Stand Duration and Pre-Crop Identification. Agron. J. 2016, 108, 2339–2354. [Google Scholar] [CrossRef]
- Mueller-Warrant, G.W.; Trippe, K.M.; Whittaker, G.W.; Anderson, N.P.; Sullivan, C.S. Spatial methods for deriving crop rotation history. Int. J. Appl. Earth Obs. Geoinf. 2017, 60, 22–37. [Google Scholar] [CrossRef]
- O’Connor, J.E.; Sarna-Wojcicki, A.M.; Wozniak, K.C.; Polette, D.J.; Fleck, R.J. Origin, Extent, and Thickness of Quaternary Geologic Units in the Willamette Valley, Oregon; US Geological Survey: Sunrise Valley Drive Reston, VA, USA, 2001; p. 51.
- Taylor, G. The Climate of Oregon: Climate Zone 2 Willamette Valley; Oregon State University: Corvallis, OR, USA, 1993; p. 11. [Google Scholar]
- Mueller-Warrant, G. Landsat 7 Gap Repaired Imagery 2018. Available online: https://doi.org/10.7910/DVN/VCD3QD (accessed on 4 February 2021).
- Environmental Systems Research Institute Inc. ArcGIS 10.6; ESRI: Redlands, CA, USA, 2016. [Google Scholar]
- Mueller-Warrant, G.; Whittaker, G.W.; Griffith, S.M.; Banowetz, G.M.; Dugger, B.D.; Garcia, T.S.; Giannico, G.; Boyer, K.L.; McComb, B.C. Remote sensing classification of grass seed cropping practices in western Oregon. Int. J. Remote Sens. 2011, 32, 2451–2480. [Google Scholar] [CrossRef]
- Mueller-Warrant, G.W.; Whittaker, G.W.; Banowetz, G.M.; Griffith, S.M.; Barnhart, B.L. Methods for improving accuracy and extending results beyond periods covered by traditional ground-truth in remote sensing classification of a complex landscape. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 115–128. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Scheel, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA: College Station, TX, USA, 1974; Volume 1, pp. 48–62. [Google Scholar]
- Richards, J.A. Remote Sensing Digital Image Analysis, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Harris Geospatial Solutions ENVI; Exelis Visual Information Solutions: Boulder, CO, USA, 2016.
- Riddell, A.P.; Fitzgerald, S.B.; Qi, C.; Strimbu, B.M. Classification Strategies for Unbalanced Binary Maps: Finding Ponderosa Pine (Pinus ponderosa) in the Willamette Valley. Remote Sens. 2020, 12, 3325. [Google Scholar] [CrossRef]
- Mueller-Warrant, G.; Sullivan, C.; Anderson, N.; Whittaker, G.W. Detecting and correcting logically inconsistent crop rotations and other land-use sequences. Int. J. Remote Sens. 2016, 37, 29–59. [Google Scholar] [CrossRef]
Class Areas | Classification Accuracy (%) | ||||
---|---|---|---|---|---|
Class | Superclass | Description | (km2) | Producer’s | User’s |
11 | 3 | poplars | 0.4 | 76.9 | 99.4 |
20 | 3 | Christmas trees | 191.9 | 84.9 | 90.1 |
31 | 4 | development | 24.4 | 54.6 | 78.3 |
33 | 3 | reforestation | 926.1 | 96.5 | 60.9 |
34 | 3 | trees other than poplars | 2.8 | 55.7 | 48.9 |
37 | 3 | oak trees | 106.4 | 88.3 | 76.3 |
39 | 3 | shrubs, wildlife refuge | 3.5 | 82.6 | 99.8 |
45 | 3 | NLCD 11 open water | 176.2 | 98.5 | 100.0 |
46 | 3 | NLCD 90 woody wetlands | 164.9 | 95.3 | 97.1 |
47 | 3 | NLCD 95 herbaceous wetlands | 18.0 | 86.0 | 96.1 |
48 | 4 | NLCD 21 developed open space | 1402.8 | 54.0 | 46.3 |
49 | 4 | NLCD 22 developed low intensity | 593.7 | 43.7 | 75.6 |
50 | 4 | NLCD 23 developed medium intensity | 663.7 | 81.2 | 52.6 |
51 | 3 | NLCD 41 deciduous forest | 1645.5 | 70.7 | 53.8 |
52 | 3 | NLCD 43 evergreen forest | 7123.7 | 78.1 | 88.4 |
53 | 3 | NLCD 44 mixed forest | 4479.0 | 70.6 | 67.7 |
54 | 3 | NLCD 53 scrub/shrub | 1571.7 | 46.2 | 78.7 |
57 | 4 | NLCD 24 developed high intensity | 197.5 | 55.0 | 71.8 |
Class | Superclass | Description | Subsequent Year Options in Two-Year-Long SEQUENCES Sequences (137 Total Cases) |
---|---|---|---|
1 | 1 | bare ground in fall | 1,3,13,14,15,16,27,28,35,55 |
2 +12 +44 | 1 | full straw Annual ryegrass +fall plant Annual ryegrass +Annual ryegrass pasture | 1,2,3,13,14,15,16,17,30 |
3 +41 | 1 | spring plant new grass Seed +spring plant GS, peas | 1,3,4,5,6,13,15,19 |
4 | 2 | established PR | 1,3,4,13,15,16,17,27,30,35,43,55 |
5 | 2 | established OG | 5,3 |
6 | 2 | established TF | 1,3,6,14,15,16,30,35,43 |
7 +10 | 2 | pasture +haycrop | 7,13,16 |
8 | 2 | established clover | 3,8,13,14,16,40 |
9 | 2 | established mint | 9 |
13 | 1 | fall plant PR | 1,3,4,13,16,30,35 |
14 | 1 | fall plant TF | 3,6 |
15 | 1 | fall plant clover | 8,13,35 |
16 | 1 | wheat or other cereals | 1,2,3,7,13,14,15,16,17,28,35,43 |
17 | 1 | meadowfoam | 13,16 |
18 | 2 | established bentgrass | 1,13,18 |
19 | 2 | established fine fescue | 13,16,19,30 |
21 | 2 | wild rice | 21 |
22 | 2 | wetland restoration | 22 |
23 | 2 | established alfalfa | 13,23 |
24 | 2 | established blueberries | 24 |
25 | 2 | filberts | 25 |
26 | 2 | caneberries | 26 |
27 | 1 | corn or sorghum | 1,13,16,27 |
28 | 2 | nursery crops | 1,3,13,16,28,35 |
29 | 2 | orchards (apple, cherry) | 29 |
30 | 1 | fallow | 1,3,13,16 |
32 | 2 | vineyards | 32 |
35 | 1 | beans summer annuals | 1,3,13,16,27,35 |
36 | 1 | flowers | 36,1 |
38 | 2 | established hops | 38 |
40 | 1 | NT (no till) fall plant TF | 18 |
42 | 1 | new planting filberts, hops, blueberries | 24,38,25 |
43 | 1 | new planting alfalfa | 13,16,23 |
55 | 1 | radish, brassicas | 1,13,16 |
56 | 2 | strawberries | 56 |
Initial Classification | After 230 Cycles of Optimization | |||
---|---|---|---|---|
Year | Training Set | Validation Set | Training Set | Validation Set |
(% Accuracy) | ||||
2004 | 48.4 | 48.1 | 55.2 | 55.1 |
2005 | 51.4 | 51.0 | 56.8 | 56.3 |
2006 | 55.6 | 55.5 | 62.0 | 61.7 |
2007 | 51.3 | 51.2 | 56.4 | 56.1 |
2008 | 55.5 | 55.4 | 65.4 | 65.2 |
2009 | 58.7 | 58.4 | 64.3 | 64.0 |
2010 | 40.2 | 40.2 | 56.6 | 56.3 |
2011 | 32.8 | 32.9 | 56.3 | 56.0 |
2012 | 53.3 | 53.2 | 60.6 | 60.2 |
2013 | 66.2 | 65.8 | 65.3 | 65.0 |
2014 | 92.1 | 91.7 | 81.9 | 81.5 |
2015 | 94.8 | 94.5 | 88.1 | 87.7 |
2016 | 96.3 | 96.1 | 80.8 | 80.6 |
2017 | 96.3 | 96.0 | 97.4 | 97.1 |
Initial Classification | After 230 Cycles of Optimization | |||
---|---|---|---|---|
Year | Training Set | Validation Set | Training Set | Validation Set |
(Kappa) | ||||
2004 | 0.476 | 0.473 | 0.545 | 0.543 |
2005 | 0.509 | 0.505 | 0.563 | 0.558 |
2006 | 0.552 | 0.551 | 0.617 | 0.614 |
2007 | 0.508 | 0.506 | 0.559 | 0.556 |
2008 | 0.551 | 0.550 | 0.651 | 0.650 |
2009 | 0.584 | 0.581 | 0.641 | 0.638 |
2010 | 0.395 | 0.394 | 0.560 | 0.558 |
2011 | 0.320 | 0.322 | 0.559 | 0.555 |
2012 | 0.527 | 0.526 | 0.602 | 0.597 |
2013 | 0.660 | 0.656 | 0.651 | 0.648 |
2014 | 0.921 | 0.917 | 0.818 | 0.815 |
2015 | 0.948 | 0.945 | 0.881 | 0.877 |
2016 | 0.963 | 0.961 | 0.808 | 0.806 |
2017 | 0.963 | 0.960 | 0.974 | 0.971 |
Initial Classification | After 230 Cycles of Optimization | |||
---|---|---|---|---|
Year | Training Set | Validation Set | Training Set | Validation Set |
(% Accuracy) | ||||
2004–2005 | 43.3 | 42.3 | 47.1 | 46.7 |
2005–2006 | 74.7 | 73.4 | 49.4 | 48.6 |
2006–2007 | 72.8 | 71.6 | 48.3 | 48.0 |
2007–2008 | 73.8 | 72.5 | 55.3 | 54.7 |
2008–2009 | 73.4 | 71.9 | 57.6 | 57.1 |
2009–2020 | 70.6 | 69.1 | 49.8 | 49.5 |
2010–2011 | 68.6 | 67.7 | 49.5 | 49.3 |
2011–2012 | 67.4 | 66.4 | 47.2 | 46.7 |
2012–2013 | 75.7 | 74.1 | 50.7 | 50.2 |
2013–2014 | 96.6 | 96.1 | 78.5 | 78.1 |
2014–2015 | 98.2 | 97.6 | 84.9 | 84.5 |
2015–2016 | 99.1 | 98.5 | 86.3 | 86.0 |
2016–2017 | 98.6 | 98.0 | 94.2 | 94.1 |
Initial Classification | After 230 Cycles of Optimization | |||
---|---|---|---|---|
Year | Training Set | Validation Set | Training Set | Validation Set |
(Kappa) | ||||
2004–2005 | 0.432 | 0.423 | 0.471 | 0.466 |
2005–2006 | 0.747 | 0.734 | 0.493 | 0.486 |
2006–2007 | 0.728 | 0.715 | 0.482 | 0.479 |
2007–2008 | 0.738 | 0.725 | 0.553 | 0.547 |
2008–2009 | 0.733 | 0.719 | 0.576 | 0.571 |
2009–2020 | 0.705 | 0.691 | 0.498 | 0.495 |
2010–2011 | 0.685 | 0.677 | 0.494 | 0.493 |
2011–2012 | 0.674 | 0.664 | 0.471 | 0.467 |
2012–2013 | 0.757 | 0.741 | 0.506 | 0.501 |
2013–2014 | 0.966 | 0.961 | 0.785 | 0.781 |
2014–2015 | 0.982 | 0.976 | 0.849 | 0.845 |
2015–2016 | 0.991 | 0.985 | 0.863 | 0.860 |
2016–2017 | 0.986 | 0.980 | 0.942 | 0.941 |
Class | Superclass | Description | Class Areas | Classification Accuracy (%) | |
---|---|---|---|---|---|
(km2) | Producer’s | User’s | |||
1 | 1 | bare ground in fall | 398.3 | 55.8 | 56.5 |
2 +12 +44 | 1 | full straw Annual ryegrass +fall plant Annual ryegrass +Annual ryegrass pasture | 646.3 | 70.3 | 59.1 |
3 +41 | 1 | spring plant new grass seed +spring plant GS, peas | 121.2 | 74.0 | 74.5 |
4 | 2 | established PR | 426.3 | 70.2 | 63.6 |
5 | 2 | established OG | 78.6 | 73.4 | 71.7 |
6 | 2 | established TF | 489.4 | 67.9 | 58.5 |
7 +10 | 2 | pasture +haycrop | 1191.0 | 65.7 | 32.0 |
8 | 2 | established clover | 37.6 | 76.6 | 82.9 |
9 | 2 | established mint | 7.2 | 61.7 | 93.2 |
13 | 1 | fall plant PR | 147.6 | 65.9 | 74.8 |
14 | 1 | fall plant TF | 17.9 | 64.0 | 82.5 |
15 | 1 | fall plant clover | 27.4 | 54.8 | 85.9 |
16 | 1 | wheat or other cereals | 407.1 | 68.7 | 67.4 |
17 | 1 | meadowfoam | 5.8 | 43.1 | 92.0 |
18 | 2 | established bentgrass | 10.8 | 46.3 | 84.4 |
19 | 2 | established fine fescue | 78.1 | 69.4 | 71.2 |
21 | 2 | wild rice | 23.3 | 76.6 | 80.9 |
22 | 2 | wetland restoration | 4.0 | 70.3 | 97.0 |
23 | 2 | established alfalfa | 1.6 | 55.8 | 95.4 |
24 | 2 | established blueberries | 24.0 | 84.4 | 74.4 |
25 | 2 | filberts | 361.5 | 87.3 | 36.3 |
26 | 2 | caneberries | 77.2 | 54.1 | 47.9 |
27 | 1 | corn or sorghum | 48.6 | 53.9 | 60.2 |
28 | 2 | nursery crops | 624.5 | 60.3 | 33.1 |
29 | 2 | orchards (apple, cherry) | 55.1 | 56.8 | 69.9 |
30 | 1 | fallow | 26.1 | 49.3 | 71.4 |
32 | 2 | vineyards | 115.4 | 76.4 | 62.3 |
35 | 1 | beans summer annuals | 43.9 | 53.3 | 65.2 |
36 | 1 | flowers | 2.3 | 30.5 | 91.7 |
38 | 2 | established hops | 18.6 | 75.7 | 69.0 |
40 | 1 | NT (no till) fall plant TF | 0.2 | 10.8 | 96.9 |
42 | 1 | new planting filberts, hops, blueberries | 1.8 | 36.2 | 86.9 |
43 | 1 | new planting alfalfa | 12.2 | 50.8 | 81.3 |
55 | 1 | radish, brassicas | 4.4 | 37.7 | 90.0 |
56 | 2 | strawberries | 0.1 | 49.3 | 99.7 |
Producer’s Accuracy by Year and Class from Ground-Truth Training Datasets for Final Optimized Classifications of 35 Agricultural Land-Uses (%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | Class |
1 | 43.5 | 60.8 | 62.0 | 48.4 | 61.3 | 53.6 | 47.1 | 50.9 | 57.3 | 49.2 | 63.1 | 84.9 | 79.9 | 98.2 |
2 * | 63.1 | 68.9 | 70.2 | 55.7 | 69.1 | 64.4 | 64.8 | 52.3 | 64.8 | 86.4 | 89.0 | 96.6 | 95.8 | 97.8 |
3 * | 81.4 | 72.2 | 60.5 | 70.1 | 74.9 | 70.1 | 76.8 | 77.0 | 70.7 | 94.7 | 95.7 | 96.2 | ||
4 | 57.4 | 50.2 | 73.5 | 69.6 | 71.9 | 71.8 | 69.5 | 52.1 | 61.0 | 77.7 | 92.5 | 84.1 | 95.2 | 93.8 |
5 | 77.5 | 63.8 | 72.7 | 64.2 | 83.6 | 66.2 | 78.1 | 59.5 | 56.0 | 67.7 | 86.3 | 94.4 | 84.0 | 97.5 |
6 | 36.3 | 31.0 | 58.7 | 72.9 | 67.7 | 78.2 | 69.2 | 53.5 | 77.5 | 78.8 | 92.7 | 93.1 | 92.4 | 95.6 |
7 * | 63.0 | 56.1 | 51.1 | 55.7 | 57.6 | 63.6 | 65.0 | 67.1 | 64.7 | 79.0 | 94.3 | 97.0 | 96.2 | 97.9 |
8 | 57.9 | 52.8 | 85.8 | 81.2 | 75.1 | 85.5 | 80.1 | 80.7 | 82.8 | 71.1 | 92.9 | 78.9 | 56.1 | 98.2 |
9 | 65.1 | 64.4 | 76.6 | 46.0 | 38.4 | 38.9 | 84.4 | 48.5 | 86.7 | 61.0 | 53.1 | 89.5 | ||
13 | 58.5 | 61.9 | 55.1 | 67.7 | 73.5 | 64.1 | 56.1 | 65.0 | 66.2 | 83.5 | 92.0 | 84.4 | 98.7 | |
14 | 59.7 | 85.3 | 67.1 | 54.2 | 68.1 | 71.1 | 43.8 | 55.7 | 63.1 | 67.6 | 99.9 | 81.5 | ||
15 | 79.5 | 54.5 | 39.2 | 63.0 | 50.6 | 45.2 | 46.6 | 43.5 | 44.8 | 51.5 | 81.7 | 63.9 | 96.9 | |
16 | 46.9 | 58.1 | 69.6 | 60.0 | 74.6 | 68.1 | 45.9 | 70.7 | 63.3 | 72.1 | 89.3 | 95.2 | 89.8 | 96.8 |
17 | 33.8 | 34.3 | 34.3 | 53.7 | 45.1 | 25.0 | 43.7 | 47.3 | 9.9 | 45.9 | 86.4 | 0.0 | 98.1 | |
18 | 52.0 | 31.6 | 21.3 | 33.2 | 51.5 | 51.3 | 77.5 | 65.4 | 47.6 | 49.5 | 39.3 | 45.9 | 99.8 | 99.8 |
19 | 53.1 | 72.4 | 72.5 | 52.8 | 65.5 | 63.9 | 78.4 | 59.9 | 62.9 | 75.5 | 90.8 | 80.1 | 93.0 | 96.7 |
21 | 97.0 | 97.0 | 100.0 | 98.6 | 98.5 | 76.7 | 46.4 | 28.7 | 41.2 | 71.3 | 99.2 | 99.3 | 99.2 | 99.2 |
22 | 39.0 | 38.8 | 39.1 | 35.7 | 39.7 | 53.2 | 44.9 | 54.6 | 79.9 | 91.0 | 96.1 | 98.9 | 99.3 | |
23 | 71.2 | 40.8 | 50.0 | 80.7 | 86.5 | 72.6 | 22.1 | 47.6 | 70.7 | 99.7 | 76.5 | 75.9 | 95.7 | 100.0 |
24 | 89.6 | 90.5 | 97.7 | 97.0 | 94.6 | 86.7 | 75.2 | 54.1 | 70.6 | 81.8 | 95.3 | 93.4 | 98.0 | 97.9 |
25 | 87.7 | 86.9 | 89.2 | 89.7 | 87.0 | 78.7 | 79.3 | 75.8 | 80.9 | 89.6 | 80.8 | 93.7 | 95.4 | 96.7 |
26 | 37.3 | 44.9 | 46.0 | 42.3 | 38.9 | 36.7 | 27.4 | 36.3 | 51.7 | 77.8 | 90.3 | 95.3 | 92.7 | 96.4 |
27 | 48.9 | 89.2 | 90.5 | 73.3 | 57.3 | 37.2 | 59.9 | 53.7 | 48.3 | 88.8 | 64.5 | 17.6 | 100.0 | |
28 | 58.3 | 44.3 | 51.8 | 62.3 | 54.4 | 64.9 | 56.3 | 51.4 | 56.5 | 81.8 | 93.3 | 91.8 | 97.0 | 96.9 |
29 | 48.0 | 53.3 | 63.3 | 65.0 | 57.9 | 50.8 | 46.5 | 35.5 | 37.6 | 65 | 78.2 | 85.3 | 25.4 | 46.5 |
30 | 51.5 | 46.0 | 51.2 | 53.2 | 66.2 | 54.0 | 57.7 | 31.6 | 74.9 | 54.1 | 6.3.0 | 94.7 | ||
32 | 49.3 | 45.1 | 56.7 | 70.5 | 74.3 | 78.3 | 77.1 | 73.6 | 71.9 | 86.3 | 95.7 | 96.9 | 99.8 | 99.8 |
35 | 80.6 | 60.9 | 53.8 | 37.8 | 68.7 | 56.0 | 90.6 | 81.9 | 29.4 | 36.8 | 67.1 | 44.1 | 99.8 | |
36 | 97.6 | 22.7 | 29.6 | 29.5 | 38.3 | 34.1 | 15.9 | 11.3 | 100.0 | 15.3 | 71.8 | 98.0 | 97.8 | |
38 | 72.4 | 67.3 | 75.7 | 78.5 | 81.2 | 72.3 | 65.7 | 45.3 | 88.3 | 95.4 | 98.6 | 99.7 | 99.6 | 99.6 |
40 | 0.0 | 25.5 | 0.1 | 0.0 | 42.8 | 0.0 | 0.0 | 3.6 | ||||||
42 | 0.0 | 1.2 | 14.3 | 0.0 | 50.0 | 6.6 | 0.0 | 68.5 | 78.8 | 0.0 | 90.6 | |||
43 | 26.0 | 0.6 | 35.8 | 19.1 | 47.0 | 61.4 | 43.9 | 77.1 | 46.0 | 65.2 | 76.5 | 36.8 | 98.8 | |
55 | 96.0 | 33.9 | 36.1 | 64.9 | 2.3 | 63.2 | 39.1 | 9.2 | 20.2 | 24.3 | 41.9 | 35.7 | 9.7 | 98.8 |
56 | 95.0 | 98.6 | 98.6 | 36.9 | 89.0 | 98.4 | 4.2 | 77.1 | 11.4 | 72.3 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strimbu, B.M.; Mueller-Warrant, G.; Trippe, K. Agricultural Crop Change in the Willamette Valley, Oregon, from 2004 to 2017. Data 2021, 6, 17. https://doi.org/10.3390/data6020017
Strimbu BM, Mueller-Warrant G, Trippe K. Agricultural Crop Change in the Willamette Valley, Oregon, from 2004 to 2017. Data. 2021; 6(2):17. https://doi.org/10.3390/data6020017
Chicago/Turabian StyleStrimbu, Bogdan M., George Mueller-Warrant, and Kristin Trippe. 2021. "Agricultural Crop Change in the Willamette Valley, Oregon, from 2004 to 2017" Data 6, no. 2: 17. https://doi.org/10.3390/data6020017
APA StyleStrimbu, B. M., Mueller-Warrant, G., & Trippe, K. (2021). Agricultural Crop Change in the Willamette Valley, Oregon, from 2004 to 2017. Data, 6(2), 17. https://doi.org/10.3390/data6020017