Mid-Cycle Observations of CR Boo and Estimation of the System’s Parameters
Abstract
1. Introduction and Object Details
2. Observational Details and Results
3. Calculations of the System Parameters and Observational Effects
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Podsiadlowski, P.; Han, Z.; Rappaport, S. Cataclysmic variables with evolved secondaries and the progenitors of AM CVn stars. Mon. Not. R. Astron. Soc. 2003, 340, 1214–1228. [Google Scholar] [CrossRef]
- Solheim, J.-E. AM CVn Stars: Status and Challenges. Publ. Astron. Soc. Pac. 2010, 122, 1133–1163. [Google Scholar] [CrossRef]
- Green, R.F.; Schmidt, M.; Liebert, J. The Palomar-Green catalog of ultraviolet-excess stellar objects. Astrophys. J. Suppl. Ser. 1986, 61, 305–352. [Google Scholar] [CrossRef]
- Wood, M.A.; Winget, D.E.; Nather, R.E.; Hessman, F.V.; Liebert, J.; Kurtz, D.W.; Wesemael, F.; Wegner, G. The exotic helium variable PG 1346 + 082. Astrophys. J. 1987, 313, 757. [Google Scholar] [CrossRef]
- Provencal, J.L.; Winget, D.E.; Nather, R.E.; Robinson, E.L.; Clemens, J.C.; Bradley, P.A.; Claver, C.F.; Kleinman, S.J.; Grauer, A.D.; Hine, B.P.; et al. Whole Earth Telescope Observations of the Helium Interacting Binary PG 1346+082 (CR Bootis). Astrophys. J. 1997, 480, 383–394. [Google Scholar] [CrossRef][Green Version]
- Isogai, K.; Kato, T.; Ohshima, T.; Kasai, K.; Oksanen, A.; Masumoto, K.; Fukushima, D.; Maeda, K.; Kawabata, M.; Matsuda, R.; et al. Superoutburst of CR Bootis: Estimation of mass ratio of a typical AM CVn star by stage A superhumps. Publ. Astron. Soc. Jpn. 2016, 68, 64. [Google Scholar] [CrossRef]
- Roelofs, G.H.A.; Groot, P.J.; Benedict, G.F.; McArthur, B.E.; Steeghs, D.; Morales-Rueda, L.; Marsh, T.R.; Nelemans, G. Hubble Space TelescopeParallaxes of AM CVn Stars and Astrophysical Consequences. Astrophys. J. 2007, 666, 1174–1188. [Google Scholar] [CrossRef][Green Version]
- Nelemans, G.; Zwart, S.F.P.; Verbunt, F.; Yungelson, L.R. Population synthesis for double white dwarfs. Astron. Astrophys. 2001, 368, 939–949. [Google Scholar] [CrossRef]
- Paczy’nski, B. Gravitational Waves and the Evolution of Close Binaries. Acta Astron. 1967, 17, 287. [Google Scholar]
- Faulkner, J.; Flannery, B.P.; Warner, B. Ultrashort-Period Binaries. II. HZ 29 (=AM CVn): A Double-White-Dwarf Semidetached Postcataclysmic Nova? Astrophys. J. 1972, 175, L79–L83. [Google Scholar] [CrossRef]
- Kato, T.; Nogami, D.; Baba, H.; Hanson, G.; Poyner, G. CR Boo: The ’helium ER UMa star’ with a 46.3-d supercycle. Mon. Not. R. Astron. Soc. 2000, 315, 140–148. [Google Scholar] [CrossRef][Green Version]
- Kato, T.; Baba, H.; Masuda, S.; Matsumoto, K.; Kunjaya, C. Disk Instabilities in Close Binary Systems; Universal Academy Press: Tokyo, Japan, 1999; p. 45. [Google Scholar]
- Kato, T.; Imada, A.; Uemura, M.; Nogami, D.; Maehara, H.; Ishioka, R.; Baba, H.; Matsumoto, K.; Iwamatsu, H.; Kubota, K.; et al. Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae. Publ. Astron. Soc. Jpn. 2009, 61, S395–S616. [Google Scholar] [CrossRef]
- Groot, P.J.; Nelemans, G.; Steeghs, D.; Marsh, T.R. The Quiescent Spectrum of the AM Canum Venaticorum Star CP Eridani. Astrophys. J. 2001, 558, L123–L127. [Google Scholar] [CrossRef]
- Kato, T.; Hambsch, F.J.; Maehara, H.; Masi, G.; Miller, I.; Noguchi, R.; Aakasaka, C.; Aoki, T.; Kobayashi, H.; Matsumoto, K.; et al. Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae. IV. The Fourth Year (2011–2012). Publ. Astron. Soc. Jpn. 2013, 65, 76. [Google Scholar] [CrossRef]
- Honeycutt, R.K.; Adams, B.R.; Turner, G.W.; Robertson, J.W.; Ost, E.M.; Maxwell, J.E. Light Curve of CR Bootis 1990–2012 from the Indiana Long-Term Monitoring Program. Publ. Astron. Soc. Pac. 2013, 125, 126–142. [Google Scholar] [CrossRef][Green Version]
- Kato, T.; Kunjaya, C. Discovery of a Peculiar SU UMa-Type Dwarf Nova ER Ursae Majoris. Publ. Astron. Soc. Jpn. 1995, 47, 163–168. [Google Scholar]
- Warner, B. The AM canum venaticorum stars. Astrophys. Space Sci. 1995, 225, 249–270. [Google Scholar] [CrossRef]
- Osaki, Y.; Meyer, F. Early humps in WZ Sge stars. Astron. Astrophys. 2002, 383, 574–579. [Google Scholar] [CrossRef]
- Tody, D. IRAF in the Nineties. ASP Conf. 1993, 52, 173. [Google Scholar]
- Stone, G.; Smolka, M.; Smagin, V. AAVSO Observers and Contributors 2019. 2020. Available online: www.aavso.org (accessed on 13 June 2020).
- Stellingwerf, R.F. Period determination using phase dispersion minimization. Astrophys. J. 1978, 224, 953–960. [Google Scholar] [CrossRef]
- Gullbring, E.; Hartmann, L.; Briceno, C.; Calvet, N. Disk Accretion Rates for T Tauri Stars. Astrophys. J. 1998, 492, 323–341. [Google Scholar] [CrossRef]
- Herczeg, G.J.; Hillenbrand, L.A. UV Excess Measures of Accretion onto Young Very Low Mass Stars and Brown Dwarfs. Astrophys. J. 2008, 681, 594–625. [Google Scholar] [CrossRef]
- Patterson, J.; Kemp, J.; Shambrook, A.; Thomas, E.; Halpern, J.P.; Skillmand, D.R.; Harvey, D.A.; Vanmunster, T.; Retter, A.; Fried, R.; et al. Superhumps in Cataclysmic Binaries. XII. CR Bootis, a Helium Dwarf Nova. Publ. Astron. Soc. Pac. 1997, 109, 1100. [Google Scholar] [CrossRef]
- Marsh, T.R.; Nelemans, G.; Steeghs, D. Mass transfer between double white dwarfs. Mon. Not. R. Astron. Soc. 2004, 350, 113–128. [Google Scholar] [CrossRef]
- Verbunt, F.; Rappaport, S. Mass transfer instabilities due to angular momentum flows in close binaries. Astrophys. J. 1988, 332, 193–198. [Google Scholar] [CrossRef]
- Eggleton, P.P. Approximations to the radii of Roche lobes. Astrophys. J. 1983, 268, 368. [Google Scholar] [CrossRef]
- Zapolsky, H.S.; Salpeter, E.E. The mass-radius relation for cold spheres of low mass. Astrophys. J. 1969, 158, 809. [Google Scholar] [CrossRef]
- Savonije, G.J.; de Kool, M.; van den Heuvel, E.P.J. The minimum orbital period for ultra-compact binaries with helium burning secondaries. Astron. Astrophys. 1986, 155, 51–57. [Google Scholar]
- Nasser, M.R.; Solheim, J.-E.; Semionoff, D.A. NLTE accretion disc models for the AM Canum Venaticorum systems. Astron. Astrophys. 2001, 373, 222–235. [Google Scholar] [CrossRef]
- Nelemans, G. The Astrophysics of Cataclysmic Variables and Related Objects; ASP: San Francisco, CA, USA, 2005; p. 330. [Google Scholar]
- Sion, E.M.; Linnell, A.P.; Godon, P.; Ballouz, R.-L. The Hot Components of AM CVn Helium Cataclysmics. Astrophys. J. 2011, 741, 63. [Google Scholar] [CrossRef]
- Patterson, J.; McGraw, J.T.; Coleman, L.; Africano, J.L. A photometric study of the dwarf nova WZ Sagittae in outburst. Astrophys. J. 1981, 248, 1067–1075. [Google Scholar] [CrossRef]
- Camenzind, M. Compact Objects in Astrophysics White Dwarfs, Neutron Stars and Black Holes; Springer: Berlin/Heidelberg, Germany, 2007; ISSN 0941–7834. [Google Scholar]
- Provencal, L.; HLShipman EHog, P. Thejll: Testing the white dwarf mass–radius relation with Hipparcos. Astrophys. J. 1998, 494, 759. [Google Scholar] [CrossRef]
- Provencal, J.L.; Shipman, H.L.; Koester, D.; Wesemael, F.; Bergeron, P. Bergeron: Procyon B: Outside the iron box. Astrophys. J. 2002, 568, 324. [Google Scholar] [CrossRef]
- Frank, J.; King, A.; Raine, D. Accretion Power in Astrophysics, 3rd ed.; Cambridge University Press: New York, NY, USA, 2002. [Google Scholar]


| M1 (M⊙) | M2 (M⊙) | q | M (M1 + M2) | P (min) | τ (d) | R1 (R⊙) | R2 (R⊙) | a (R⊙) |
|---|---|---|---|---|---|---|---|---|
| 0.80 | 0.07 | 0.087 | 0.87 | 24.5 | ~46 | 0.012 | 0.0526 | 0.266 |
| Date\Band | V1 | V2 | U | B_sh | B_vid |
|---|---|---|---|---|---|
| 1 July 2019 | 0.0279 0.0318 0.0352 | ||||
| 5 July 2019 | 0.0154 0.0171 0.0194 | 0.0372 0.0406 0.0461 | 0.0143 0.0161 0.0184 | 0.0138 0.0166 0.0196 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boneva, D.; Boeva, S.; Nikolov, Y.; Cvetković, Z.; Zamanov, R. Mid-Cycle Observations of CR Boo and Estimation of the System’s Parameters. Data 2020, 5, 113. https://doi.org/10.3390/data5040113
Boneva D, Boeva S, Nikolov Y, Cvetković Z, Zamanov R. Mid-Cycle Observations of CR Boo and Estimation of the System’s Parameters. Data. 2020; 5(4):113. https://doi.org/10.3390/data5040113
Chicago/Turabian StyleBoneva, Daniela, Svetlana Boeva, Yanko Nikolov, Zorica Cvetković, and Radoslav Zamanov. 2020. "Mid-Cycle Observations of CR Boo and Estimation of the System’s Parameters" Data 5, no. 4: 113. https://doi.org/10.3390/data5040113
APA StyleBoneva, D., Boeva, S., Nikolov, Y., Cvetković, Z., & Zamanov, R. (2020). Mid-Cycle Observations of CR Boo and Estimation of the System’s Parameters. Data, 5(4), 113. https://doi.org/10.3390/data5040113

