High-Resolution Surface Water Classifications of the Xingu River, Brazil, Pre and Post Operationalization of the Belo Monte Hydropower Complex
Abstract
1. Summary
2. Data Description
3. Methods
4. User Notes
Author Contributions
Funding
Conflicts of Interest
References
- Dagosta, F.C.P.; De Pinna, M. The fishes of the Amazon: Distribution and biogeographical patterns, with a comprehensive list of species. Bull. Am. Mus. Nat. Hist. 2019, 431, 1–163. [Google Scholar] [CrossRef]
- Camargo, M.; Giarrizzo, T.; Isaac, V. Review of the geographic distribution of fish fauna of the Xingu river basin. Ecotropica 2004, 10, 123–147. [Google Scholar]
- Jézéquel, C.; Tedesco, P.A.; Bigorne, R.; Maldonado-Ocampo, J.A.; Ortega, H.; Hidalgo, M.; Martens, K.; Torrente-Vilara, G.; Zuanon, J.; Acosta, A.; et al. A database of freshwater fish species of the Amazon Basin. Sci. Data 2020, 7, 96. [Google Scholar] [CrossRef] [PubMed]
- Bratman, E.; Dias, C.B. Development blind spots and environmental impact assessment: Tensions between policy, law and practice in Brazil’s Xingu river basin. Environ. Impact Assess. Rev. 2018, 70, 1–10. [Google Scholar] [CrossRef]
- Perez, M.S. Where the Xingu bends and will soon break. Am. Sci. 2015, 103, 395–397. [Google Scholar] [CrossRef]
- Latrubesse, E.M.; Arima, E.Y.; Dunne, T.; Park, E.; Baker, V.R.; d’Horta, F.M.; Wight, C.; Wittmann, F.; Zuanon, J.; Baker, P.A.; et al. Damming the rivers of the Amazon basin. Nature 2017, 546, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Winemiller, K.O.; McIntyre, P.B.; Castello, L.; Fluet-Chouinard, E.; Giarrizzo, T.; Nam, S.; Baird, I.G.; Darwall, W.; Lujan, N.K.; Harrison, I.; et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 2016, 351, 128–129. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, K.R.; Sawakuchi, H.O.; Bertassoli Jr, D.J.; Sawakuchi, A.O.; da Silva, K.D.; Vieira, T.B.; Ward, N.D.; Pereira, T.S. Carbon dioxide (CO2) concentrations and emission in the newly constructed Belo Monte hydropower complex in the Xingu River, Amazonia. Biogeosciences 2019, 16, 3527–3542. [Google Scholar] [CrossRef]
- Fearnside, P.M. Dams in the Amazon: Belo Monte and Brazil’s hydroelectric development of the Xingu River basin. Environ. Manag. 2006, 38, 16. [Google Scholar] [CrossRef] [PubMed]
- Fearnside, P.M. Greenhouse gases in the environmental impact study for the Belo Monte Hydroelectric Dam. Novos Cad. NAEA 2011, 14, 5–19. [Google Scholar]
- Fearnside, P.M. Belo Monte: Actors and arguments in the struggle over Brazil’s most controversial Amazonian dam. DIE ERDE J. Geogr. Soc. Berl. 2017, 148, 14–26. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- MapBiomas Project. MapBiomas Project-Collection v3.1 of the Annual Land Use Land Cover Maps of Brazil. Available online: https://mapbiomas.org/en (accessed on 1 August 2019).
- Demarchi, L.; van de Bund, W.; Pistocchi, A. Object-based ensemble learning for pan-european riverscape units mapping based on copernicus VHR and EU-DEM data fusion. Remote Sens. 2020, 12, 1222. [Google Scholar] [CrossRef]
- Kalacska, M.; Arroyo-Mora, J.P.; Lucanus, O.; Sousa, L.; Pereira, T.; Vieira, T. Deciphering the many maps of the Xingu–an assessment of land cover classifications at multiple scales. bioRxiv 2019. [Google Scholar] [CrossRef]
- Chen, G.; Weng, Q.H.; Hay, G.J.; He, Y.N. Geographic object-based image analysis (GEOBIA): Emerging trends and future opportunities. Gisci. Remote Sens. 2018, 55, 159–182. [Google Scholar] [CrossRef]
- RapidEye, A.G. Satellite Imagery Product Specifications. Available online: https://www.planet.com/products/satellite-imagery/files/160625-RapidEye%20Image-Product-Specifications.pdf (accessed on 5 June 2020).
- Planet Team. Understanding PlanetScope Instruments. Available online: https://developers.planet.com/docs/data/sensors/ (accessed on 5 June 2020).
- Planet Team. Planet Imagery Product Specification: PlanetScope & RapidEye; Planet: San Francisco, CA, USA, 2016; Available online: https://www.planet.com/products/satellite-imagery/files/1610.06_Spec%20Sheet_Combined_Imagery_Product_Letter_ENGv1.pdf (accessed on 5 June 2020).
- Planet Team. Planet. Surface Reflectance v2.0; Planet: San Francisco, CA, USA. p. 18. Available online: https://assets.planet.com/marketing/PDF/Planet_Surface_Reflectance_Technical_White_Paper.pdf (accessed on 5 June 2020).
- Johansen, K.; Sohlbach, M.; Sullivan, B.; Stringer, S.; Peasley, D.; Phinn, S. Mapping banana plants from high spatial resolution orthophotos to facilitate plant health assessment. Remote Sens. 2014, 6, 8261–8286. [Google Scholar] [CrossRef]
- Ma, L.; Li, M.C.; Ma, X.X.; Cheng, L.; Du, P.J.; Liu, Y.X. A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Silva, J.P.; Pereira, D.I.; Aguiar, A.M.; Rodrigues, C. Geodiversity assessment of the Xingu drainage basin. J. Maps 2013, 9, 254–262. [Google Scholar] [CrossRef]
- Barbosa, T.A.P.; Rosa, D.C.O.; Soares, B.E.; Costa, C.H.A.; Esposito, M.C.; Montag, L.F.A. Effect of flood pulses on the trophic ecology of four piscivorous fishes from the eastern Amazon. J. Fish Biol. 2018, 93, 30–39. [Google Scholar] [CrossRef] [PubMed]
Date (DD-MM-YY) | Scene ID | Satellite |
---|---|---|
04-07-11 | 2237610 | RE2 |
04-07-11 | 2237609 | RE2 |
04-07-11 | 2237509 | RE2 |
04-07-11 | 2237510 | RE2 |
04-07-11 | 2237508 | RE2 |
04-07-11 | 2237410 | RE2 |
04-07-11 | 2237408 | RE2 |
04-07-11 | 2237409 | RE2 |
04-07-11 | 2237307 | RE2 |
04-07-11 | 2237308 | RE2 |
Date (DD-MM-YY) | Scene ID | Satellite | Sector |
---|---|---|---|
24-07-19 | 132529 | 101f | Artificial reservoir |
24-07-19 | 132530 | 101f | Artificial reservoir |
24-07-19 | 132531 | 101f | Artificial reservoir |
24-07-19 | 132532 | 101f | Artificial reservoir |
11-08-19 | 130512 | 1020 | Iriri to Pimental |
11-08-19 | 130514 | 1020 | Iriri to Pimental |
11-08-19 | 130515 | 1020 | Iriri to Pimental |
11-08-19 | 130516 | 1020 | Iriri to Pimental |
11-08-19 | 130517 | 1020 | Iriri to Pimental |
11-08-19 | 132859 | 1006 | Iriri to Pimental |
11-08-19 | 132900 | 1006 | Iriri to Pimental |
13-08-19 | 143914 | 53-106a 1 | Iriri to Pimental |
24-08-19 | 130314 | 104e | Iriri to Pimental |
24-08-19 | 130315 | 104e | Iriri to Pimental |
24-08-19 | 130316 | 104e | Iriri to Pimental |
24-08-19 | 130317 | 104e | Iriri to Pimental |
24-08-19 | 130318 | 104e | Iriri to Pimental |
24-08-19 | 130632 | 1020 | Iriri to Pimental |
24-08-19 | 132930 | 0f17 | Iriri to Pimental |
24-08-19 | 132931 | 0f17 | Iriri to Pimental |
24-08-19 | 132932 | 0f17 | Iriri to Pimental |
24-08-19 | 132933 | 0f17 | Iriri to Pimental |
24-08-19 | 132934 | 0f17 | Iriri to Pimental |
11-07-19 | 132719 2 | 1032 | Artificial reservoir |
Water-Reference | Land-Reference | User’s Accuracy (%) | |
---|---|---|---|
Water-Classification | 654 | 45 | 93.6 |
Land-Classification | 4 | 840 | 99.5 |
Producer’s Accuracy (%) | 99.4 | 94.9 | OA = 96.8 |
Water-Reference | Land-Reference | User’s Accuracy (%) | |
---|---|---|---|
Water-Classification | 748 | 1 | 99.9 |
Land-Classification | 2 | 812 | 99.8 |
Producer’s Accuracy (%) | 99.7 | 99.9 | OA = 99.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalacska, M.; Lucanus, O.; Sousa, L.; Arroyo-Mora, J.P. High-Resolution Surface Water Classifications of the Xingu River, Brazil, Pre and Post Operationalization of the Belo Monte Hydropower Complex. Data 2020, 5, 75. https://doi.org/10.3390/data5030075
Kalacska M, Lucanus O, Sousa L, Arroyo-Mora JP. High-Resolution Surface Water Classifications of the Xingu River, Brazil, Pre and Post Operationalization of the Belo Monte Hydropower Complex. Data. 2020; 5(3):75. https://doi.org/10.3390/data5030075
Chicago/Turabian StyleKalacska, Margaret, Oliver Lucanus, Leandro Sousa, and J. Pablo Arroyo-Mora. 2020. "High-Resolution Surface Water Classifications of the Xingu River, Brazil, Pre and Post Operationalization of the Belo Monte Hydropower Complex" Data 5, no. 3: 75. https://doi.org/10.3390/data5030075
APA StyleKalacska, M., Lucanus, O., Sousa, L., & Arroyo-Mora, J. P. (2020). High-Resolution Surface Water Classifications of the Xingu River, Brazil, Pre and Post Operationalization of the Belo Monte Hydropower Complex. Data, 5(3), 75. https://doi.org/10.3390/data5030075