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Abstract: We describe a new high spatial resolution surface water classification dataset generated for
the Xingu river, Brazil, from its confluence with the Iriri river to the Pimental dam prior to construction
of the Belo Monte hydropower complex, and after its operationalization. This river is well-known for
its exceptionally high diversity and endemism in ichthyofauna. Pre-existing datasets generated from
moderate resolution satellite imagery (e.g., 30 m) do not adequately capture the extent of the river.
Accurate measurements of water extent are important for a range of applications utilizing surface
water data, including greenhouse gas emission estimation, land cover change mapping, and habitat
loss/change estimates, among others. We generated the new classifications from RapidEye imagery
(5 m pixel size) for 2011 and PlanteScope imagery (3 m pixel size) for 2019 using a Geographic Object
Based Image Analysis (GEOBIA) approach.

Dataset: DOI number: https://doi.org/10.6084/m9.figshare.12521900.v1

Dataset License: CC-BY 4.0.

Keywords: Altamira; endemic; freshwater fish; land cover change; PlanetScope; RapidEye; reservoir;
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1. Summary

The Xingu River, the fourth largest tributary of the Amazon basin, has exceptionally high
ichthyological diversity, with more than 600 species of fish, including many endangered fishes, such as
the zebra pleco (Hypancistrus zebra) [1–3]. It has been in the international spotlight over a high-profile
land conflict since the mid-1970s: the construction of the hydroelectric complex of Belo Monte [4,5].
Dam construction in the Amazon is relative recent, beginning in earnest in the 1980s (e.g., Balbina, Tucurui).
The many dams built over the last few decades have been shown to lead to substantial losses of natural
habitats and negative environmental effects on one of the most diverse biomes on the planet [6,7].

Efforts to study the impacts of the large scale landscape changes brought about by river
impoundment and dam construction have been carried out for the Xingu and other rivers in the
Amazon (for example [8–11]), but they rely primarily on pre-construction environmental impact
assessments, data sources that may be out of date, or do not have the necessary spatial resolution
to accurately document the changes (e.g., [12,13]). Continental-scale high-spatial resolution fluvial
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mapping initiatives such as [14] are not yet available for South America. The data readily available to
Brazilian agencies and others studying these regions are usually generated from moderate resolution
images with pixel sizes of 30 m or more, and can lead to substantial uncertainties in calculations of
impact area, greenhouse gas emissions, habitat loss, etc. [15]. In order to quantify the extent of the
flooded area due to the main and artificial reservoirs of the dam, we developed a high spatial resolution
surface water classification for 2011 (pre Belo Monte) and 2019 (after operationalization of the dam).
These datasets were produced from RapidEye (5 m) and PlanetScope (3 m) imagery classified with a
Geographic Object Based Image Analysis (GEOBIA) approach [14,16].

2. Data Description

The dataset for download from figshare (https://doi.org/10.6084/m9.figshare.12521900.v1)
comprises two high-spatial resolution surface water maps (dry season) for 2011 and 2019. The extent of
the surface water classification spans from the confluence of the Xingu and Iriri rivers to the Pimental
dam, downstream of the city Altamira (Figure 1). For the 2019 dataset, the artificial reservoir is also
included, beyond the power station where the outflow rejoins the Xingu river (Belo Monte dam).
The datasets are provided as ESRI shapefiles and in Geotiff format (native 5 and 3 m pixel sizes,
respectively). In the Geotiffs, pixels represent one of two classes: water (1) or land (0). All datasets are
projected in UTM 22S WGS84.
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Figure 1. (A) Satellite imagery (NIR/Red/Green composite) from which the surface water classification 
datasets were generated (B) Surface water classification described here. Dark blue illustrates the 
surface water classification for the year 2011 from RapidEye and 2019 from PlanetScope imagery. The 
letters A-F locate points of comparison shown in Figure 2. 

Figure 1. (A) Satellite imagery (NIR/Red/Green composite) from which the surface water classification
datasets were generated (B) Surface water classification described here. Dark blue illustrates the surface
water classification for the year 2011 from RapidEye and 2019 from PlanetScope imagery. The letters
A–F locate points of comparison shown in Figure 2.
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Figure 2. Points of comparison between the 2011 and 2019 satellite imagery. In (A), the difference in 
water level is attributed to yearly and seasonal differences in flow. The 2019 imagery was acquired 
later in the dry season (August) than the 2011 imagery (July). This area near the confluence with the 
Iriri river is outside of the influence of the main reservoir. Both (B) and (C) are within the range of the 
impacts of the main reservoir. A higher water level and clearing of vegetation from the islands can be 
seen in 2019 in comparison to 2011 (B,C). These comparisons are downstream of Altamira in the sector 
of the river with the greatest change caused by the main reservoir of the Pimental dam. Many islands 
can be seen in 2011 (D–F) which are underwater in 2019. In F, the intake for the canal can be seen on 
the eastern side of the image from 2019. 

3. Methods 

The 2011 dataset is a classification of 10 RapidEye scenes acquired on 4 July (Figure 1A, Table 
1). The RapidEye constellation is comprised of five satellites, each with a multispectral pushbroom 
imager acquiring five bands from the blue to the near infrared wavelengths. The images are acquired 

Figure 2. Points of comparison between the 2011 and 2019 satellite imagery. In (A), the difference in
water level is attributed to yearly and seasonal differences in flow. The 2019 imagery was acquired
later in the dry season (August) than the 2011 imagery (July). This area near the confluence with the
Iriri river is outside of the influence of the main reservoir. Both (B) and (C) are within the range of the
impacts of the main reservoir. A higher water level and clearing of vegetation from the islands can be
seen in 2019 in comparison to 2011 (B,C). These comparisons are downstream of Altamira in the sector
of the river with the greatest change caused by the main reservoir of the Pimental dam. Many islands
can be seen in 2011 (D–F) which are underwater in 2019. In F, the intake for the canal can be seen on
the eastern side of the image from 2019.

3. Methods

The 2011 dataset is a classification of 10 RapidEye scenes acquired on 4 July (Figure 1A, Table 1).
The RapidEye constellation is comprised of five satellites, each with a multispectral pushbroom imager
acquiring five bands from the blue to the near infrared wavelengths. The images are acquired at a
nadir ground sampling distance (GSD) of 6.5 m. The orthorectified imagery used here (level 3A) is
produced at a 5 m pixel size [17].

The 2019 dataset is a classification of 23 PlanetScope scenes acquired between 24 July and 24 August
(Table 2). PlanetScope is a constellation of more than 130 3U form factor CubeSats. The majority of
the images used for the classification are from Dove PS satellites [18]. Their 2D frame detector has
6600 columns × 4400 rows. The detector uses a Bayer pattern filter separating the blue, green and red
channels. The top half (2200 rows) are used for the RGB bands; a NIR filter restricts the wavelengths of
light. In the lower 2200 rows, another filter blocks all but the NIR wavelengths. The RGB half is combined
in processing with the NIR half to produce four-band multispectral scenes [18]. Our classification also
utilized one image from a next-generation Dove-R PS2.SD satellite (Table 2). The PS2.SD instrument
utilizes the same detector as the PS, but rather than a Bayer filter and NIR band-pass filter, a butcher
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block filter design segments the detector into four sections of 1100 rows of pixels, each with its own
filter for one of the four spectral bands. The final multispectral scene is generated by stacking a number
of consecutive frames on either side of a given frame [18]. All PlanetScope images used here are
‘multispectral analytic surface reflectance’ products (acquired at 3.7 m GSD, orthorectified to a 3 m
pixel size) [19,20]. Figure 2 illustrates points of comparison between the imagery from the two years
along the Iriri confluence to Pimental dam sector. Both the RapidEye and PlanetScope images were
downloaded through a subscription from https://www.planet.com/explorer, the web interface to the
catalogue of imagery from satellites managed by Planet Labs.

Table 1. RapidEye scenes used for the 2011 surface water classification.

Date (DD-MM-YY) Scene ID Satellite

04-07-11 2237610 RE2
04-07-11 2237609 RE2
04-07-11 2237509 RE2
04-07-11 2237510 RE2
04-07-11 2237508 RE2
04-07-11 2237410 RE2
04-07-11 2237408 RE2
04-07-11 2237409 RE2
04-07-11 2237307 RE2
04-07-11 2237308 RE2

Table 2. PlanetScope scenes used for the 2019 surface water classification.

Date (DD-MM-YY) Scene ID Satellite Sector

24-07-19 132529 101f Artificial reservoir
24-07-19 132530 101f Artificial reservoir
24-07-19 132531 101f Artificial reservoir
24-07-19 132532 101f Artificial reservoir
11-08-19 130512 1020 Iriri to Pimental
11-08-19 130514 1020 Iriri to Pimental
11-08-19 130515 1020 Iriri to Pimental
11-08-19 130516 1020 Iriri to Pimental
11-08-19 130517 1020 Iriri to Pimental
11-08-19 132859 1006 Iriri to Pimental
11-08-19 132900 1006 Iriri to Pimental
13-08-19 143914 53-106a 1 Iriri to Pimental
24-08-19 130314 104e Iriri to Pimental
24-08-19 130315 104e Iriri to Pimental
24-08-19 130316 104e Iriri to Pimental
24-08-19 130317 104e Iriri to Pimental
24-08-19 130318 104e Iriri to Pimental
24-08-19 130632 1020 Iriri to Pimental
24-08-19 132930 0f17 Iriri to Pimental
24-08-19 132931 0f17 Iriri to Pimental
24-08-19 132932 0f17 Iriri to Pimental
24-08-19 132933 0f17 Iriri to Pimental
24-08-19 132934 0f17 Iriri to Pimental
11-07-19 132719 2 1032 Artificial reservoir

1 This image is from a next generation Dove-R PS2.SD instrument, all others are from Dove PS
instruments. 2 This image was not used in the classification. It was only used as a guide in editing
the vertices of the surface water polygons contaminated by cloud cover in the final classification.).

The images from Tables 1 and 2 were classified through a GEOBIA approach in eCognition
Developer 9.4 (Trimble Geospatial, Sunnyvale, CA, USA). The objective of GEOBIA is to improve upon
and replicate human interpretation of imagery in an automated manner [21], allowing for large areas

https://www.planet.com/explorer
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to be analyzed efficiently [14], and is effective for land cover classifications of high spatial resolution
imagery with a low spectral resolution [16,22]. Images were first segmented with the multiresolution
segmentation algorithm using the following parameters: scale = 75, shape = 0.1 and compactness = 0.5.
This algorithm is a bottom-up process that begins with one-pixel objects, and through an iterative
process, merges neighboring pixels based on the relative homogeneity criteria of shape and colour [23].
Each of the four bands had different weights applied for the segmentation to maximize the separation
of water from other materials: blue = 0.2, green = 0.2, red = 0.5 and NIR = 1 (Figure 3). For consistency,
the red-edge band from RapidEye was not used. Training samples of segments representing “water”,
“forest,” “non-forest” and “cloud” were manually selected. For classification, the nearest neighbor
feature space was comprised of object level mean values of all four bands, brightness (average of the
means of the four bands), maximum difference (maximum difference between bands) and the standard
deviations of the objects in all four bands. These metrics served as the training data for a nearest
neighbor classification.
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tree in ENVI 5.5 (L3 Harris Geospatial, Boulder, CO, USA) and mosaicked into a single binary raster 
for each period (2011 and 2019). The mosaics were converted to polygon datasets in ArcMap 10.7 
(ESRI, Redlands, CA). Polygons representing the “land” class were removed and each water polygon 
was inspected through an overlay with the image from which it was generated. Erroneous water 
polygons, such as those representing dark shadows (from topography or tree crowns), were removed. 
For the few areas where small clouds obstructed the shoreline, the polygon vertices were edited to 
trace the shoreline without cloud contamination (Figure 4). Baseline images from either WorldView 

Figure 3. (A) Example of a NIR/Red/Green false color composite of a part of PS scene 132,531 (2019)
from the artificial reservoir. (B) Outlines of the segments from the same image as shown in (A). (C) Final
GEOBIA classification of the segments into water, forest, and non-forest classes.

The individual classifications were simplified to “water” and “land” classes through a decision
tree in ENVI 5.5 (L3 Harris Geospatial, Boulder, CO, USA) and mosaicked into a single binary raster for
each period (2011 and 2019). The mosaics were converted to polygon datasets in ArcMap 10.7 (ESRI,
Redlands, CA). Polygons representing the “land” class were removed and each water polygon was
inspected through an overlay with the image from which it was generated. Erroneous water polygons,
such as those representing dark shadows (from topography or tree crowns), were removed. For the
few areas where small clouds obstructed the shoreline, the polygon vertices were edited to trace the
shoreline without cloud contamination (Figure 4). Baseline images from either WorldView 1 (acquired
in 2011) or other PlanetScope scenes acquired close to the date of the classification (Table 2) were used
to guide the vertex editing.

The final edited polygon layer was dissolved to create a single polygon layer representing surface
water. For validation, mosaics of the imagery (Tables 1 and 2) were created and points representing
water and land were generated through visual interpretation of the image mosaics. Tables 3 and 4
illustrate the confusion matrices for the two classifications. For 2011, 658 and 885 points were generated
for water and land (consisting of rock, sand, or vegetation), respectively. For 2019, 750 and 813 points
were generated for water and land, respectively. The points were generated throughout the entire
study area. Boundary (edge) pixels between classes were avoided due to the potential mixing of
materials in these pixels.
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Producer’s Accuracy (%) 99.4 94.9 OA = 96.8 

Figure 4. (A) RapidEye imagery from Arapujá island (4 July 2011) with cloud contamination obscuring
the shoreline. (B) Worldview 1 imagery over the same area as A, acquired on 17 June 2011, used as a
baseline to edit the shoreline vertices from the RapidEye classification in areas of cloud contamination.
(C) PlanetScope imagery from 13 August 2019 of the entrance to the artificial reservoir with cloud
contamination and sun glint artifacts. (D) PlanetScope imagery from the same area as (C), acquired on
11 July 2019, used as a baseline to edit the shoreline vertices from the PlanetScope classification in areas
of cloud contamination.

Table 3. Confusion matrix for the 2011 classification.

Water-Reference Land-Reference User’s Accuracy (%)

Water-Classification 654 45 93.6
Land-Classification 4 840 99.5

Producer’s Accuracy (%) 99.4 94.9 OA = 96.8

Table 4. Confusion matrix for the 2019 classification.

Water-Reference Land-Reference User’s Accuracy (%)

Water-Classification 748 1 99.9
Land-Classification 2 812 99.8

Producer’s Accuracy (%) 99.7 99.9 OA = 99.8

The total surface water area was calculated as 426.89 km2 for 2011 and 569.63 km2 for 2019.
We estimate the surface area within the impact zone of the main reservoir to be 220.9 km2 in 2011 and
426.4 km2, a difference of 205.5 km2. Figure 5 illustrates the area of greatest change in surface water
extent from the Xingu’s confluence with the Iriri river to the Pimental dam (including the artificial
reservoir) following the operationalization of the Belo Monte dam.
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Figure 5. Map illustrating the area of greatest change in surface water extent pre and post
operationalization of the Belo Monte dam. The light blue illustrates the classification from 2011,
while the dark blue illustrates the classification from 2019.

4. User Notes

The fine spatial resolution of the imagery from both RapidEye and PlanetScope allowed for an
accurate and more detailed classification of surface water than is possible from moderate resolution
optical satellite imagery such as Landsat (30 m) or Sentinel-2 (10–60 m) (e.g., [12]). There are many
different types of rocks, soils and landforms that comprise the shoreline and small islands (Figures 6
and 7). In areas of higher flow, riverweed (Podostomaceaea) can be found adhering to rocks in a range
of states from dry plants to green leaves and flowers (Figure 6). These all add to the complexity of the
classification. Despite the benefits the 3–5 m pixel sizes provide, some challenges remain where some
features are smaller than a pixel. Channels that are narrower than the pixel size of the imagery are
likely to have been missed in the classification. Small boulders (e.g., Figure 7) in the river may have
been misclassified as water if they occupied less than a pixel in area. Conversely, large patches of dead
trees in forest flooded by the reservoir (e.g., Figure 7) that occupy areas larger than a pixel may have
led to false negatives in the classification.
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Figure 6. Field photos showing a range of rock types and sand that are present in the study area 
outside of the impact zone of the dam located within the pre-Cambrian Complex of the Xingu (see 
[24] for a description of the geology of the region). Dry and live riverweed (Podostomaceaea) can be 
seen covering many of the surfaces ranging in colour from green and brown (leaves) to pink (flowers) 
and white (dry plants). Many of the rock formations are smaller than medium spatial resolution 
satellite imagery (e.g., 30 m Landsat or 10 m Sentinel-2). 

Figure 6. Field photos showing a range of rock types and sand that are present in the study area outside
of the impact zone of the dam located within the pre-Cambrian Complex of the Xingu (see [24] for
a description of the geology of the region). Dry and live riverweed (Podostomaceaea) can be seen
covering many of the surfaces ranging in colour from green and brown (leaves) to pink (flowers) and
white (dry plants). Many of the rock formations are smaller than medium spatial resolution satellite
imagery (e.g., 30 m Landsat or 10 m Sentinel-2).

Furthermore, it is important to take into consideration the highly seasonal water flow
and the natural flood pulse of the river. The river has four hydrological periods, low water
(September–November), flooding (December–February), high water (March–May) and receding
water (June-August) [25], with discharge rates ranging from, on average, ~2000 m3/s in October to
~21,000 m3/s in April [8]. It has one of the highest annual variations in flow of all Amazon tributaries.
The imagery from 2011 (4 July) is earlier in the receding period than that of 2019 (11–24 August) due
to the availability of imagery with minimal cloud cover for the entire area. There is an approximate
1000 m3/s difference in discharge between July and August [8]. The effect of this difference can be seen
in the southern sector of the data near the confluence of the Iriri river, outside the impact zone of the
reservoir. In Figure 2A, for example, the higher water level is seen in the RapidEye imagery from 2011
in comparison to the PlanetScope image from 2019, where there is a larger amount of rock exposed in



Data 2020, 5, 75 10 of 12

the channels. With continuous acquisition of daily revisit satellite imagery, over time it may be possible
to acquire minimal cloud cover imagery for the high water periods as well, providing a more thorough
assessment of the seasonal extents of the river.Data 2020, 5, x FOR PEER REVIEW 11 of 13 
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reservoir. In Figure 2A, for example, the higher water level is seen in the RapidEye imagery from 
2011 in comparison to the PlanetScope image from 2019, where there is a larger amount of rock 
exposed in the channels. With continuous acquisition of daily revisit satellite imagery, over time it 
may be possible to acquire minimal cloud cover imagery for the high water periods as well, providing 
a more thorough assessment of the seasonal extents of the river.  

Figure 7. Field photos from the zone impacted by the reservoir at the boundary of the pre-Cambrian
Complex of the Xingu and the Amazon Sedimentary Basin (see [24] for a description of the geology
of the region). The rock formations differ in this sector compared to Figure 6. Cleared islands with
flooding and flooded forest (vegetation not cleared prior to flooding) from within the reservoir near the
Pimental dam can also be seen.
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