Video Recordings of Male Face and Neck Movements for Facial Recognition and Other Purposes
Abstract
1. Summary
2. Background
3. Experimental Design, Materials, and Methods
3.1. Equipment and Setup
3.2. Lighting
3.3. Subjects & Procedure
4. Comparison to Other Data Sets
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Denimarck, P.; Bellis, D.; McAllister, C. Biometric System and Method for Identifying a Customer upon Entering a Retail Establishment. U.S. Patent Application No. US2003/0018522 A1, 23 January 2003. [Google Scholar]
- Lu, D.; Kiewit, D.A.; Zhang, J. Market Research Method and System for Collecting Retail Store and Shopper Market Research Data. U.S. Patent US005331544A, 19 July 1994. [Google Scholar]
- Kail, K.J.; Williams, C.B.; Kail Richard, L. Access Control System with RFID and Biometric Facial Recognition. U.S. Patent Application No. US2007/0252001 A1, 1 November 2007. [Google Scholar]
- Introna, L.; Wood, D. Picturing algorithmic surveillance: The politics of facial recognition systems. Surveill. Soc. 2004, 2, 177–198. [Google Scholar] [CrossRef]
- Wiskott, L.; Fellous, J.-M.; Krüger, N.; von der Malsburg, C. Face Recognition and Gender Determination. In Proceedings of the International Workshop on Automatic Face and Gesture Recognition, Zurich, Switzerland, 26–28 June 1995; pp. 92–97. [Google Scholar]
- Ramesha, K.; Raja, K.B.; Venugopal, K.R.; Patnaik, L.M. Feature Extraction based Face Recognition, Gender and Age Classification. Int. J. Comput. Sci. Eng. 2010, 2, 14–23. [Google Scholar]
- Yeasin, M.; Sharma, R.; Yeasin, M.; Member, S.; Bullot, B. Recognition of facial expressions and measurement of levels of interest from video. IEEE Trans. Multimed. 2006, 8, 500–508. [Google Scholar] [CrossRef]
- Michel, P.; El Kaliouby, R. Real time facial expression recognition in video using support vector machines. In Proceedings of the 5th International Conference on Multimodal Interfaces-ICMI ’03, Vancouver, BC, Canada, 5–7 November 2003; ACM Press: New York, NY, USA, 2003; p. 258. [Google Scholar]
- Cohen, I.; Sebe, N.; Garg, A.; Lew, M.S.; Huang, T.S. Facial expression recognition from video sequences. In Proceedings of the IEEE International Conference on Multimedia and Expo, Lausanne, Switzerland, 26–29 August 2002; pp. 121–124. [Google Scholar]
- Littlewort, G.; Bartlett, M.S.; Fasel, I.; Susskind, J.; Movellan, J. Dynamics of facial expression extracted automatically from video. Image Vis. Comput. 2006, 24, 615–625. [Google Scholar] [CrossRef]
- Uddin, M.; Lee, J.; Kim, T.-S. An enhanced independent component-based human facial expression recognition from video. IEEE Trans. Consum. Electron. 2009, 55, 2216–2224. [Google Scholar] [CrossRef]
- Valstar, M.; Pantic, M.; Patras, I. Motion history for facial action detection in video. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics—Cover (IEEE Cat. No.04CH37583), The Hague, The Netherlands, 10–13 October 2004; pp. 635–640. [Google Scholar]
- Matta, F.; Dugelay, J.-L. Person recognition using facial video information: A state of the art. J. Vis. Lang. Comput. 2009, 20, 180–187. [Google Scholar] [CrossRef]
- Gorodnichy, D.O. Facial Recognition in Video. In Audio- and Video-Based Biometric Person Authentication, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 505–514. [Google Scholar]
- The Database of Faces. Available online: https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html (accessed on 29 January 2019).
- Guo, Y.; Zhang, L.; Hu, Y.; He, X.; Gao, J. MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition. arXiv. 2016. Available online: https://arxiv.org/abs/1607.08221 (accessed on 15 July 2019).
- Learned-Miller, E.; Huang, G.B.; RoyChowdhury, A.; Li, H.; Hua, G. Labeled Faces in the Wild: A Survey. In Advances in Face Detection and Facial Image Analysis; Kawulok, M., Celebi, M.E., Eds.; Springer: Basel, Switzerland, 2016. [Google Scholar]
- Salari, S.R.; Rostami, H. Pgu-Face: A dataset of partially covered facial images. Data Brief 2016, 9, 288–291. [Google Scholar] [CrossRef]
- Ahonen, T.; Rahtu, E.; Ojansivu, V.; Heikkila, J. Recognition of blurred faces using Local Phase Quantization. In Proceedings of the 19th International Conference on Pattern Recognition, Tampa, FL, USA, 8–11 December 2008; pp. 1–4. [Google Scholar]
- Klare, B.; Klein, B.; Taborsky, E.; Blanton, A.; Cheney, J.; Allen, K.E.; Grother, P.; Mah, A.; Jain, A.K.; Burge, M.; et al. Pushing the Frontiers of Unconstrained Face Detection and Recognition: IARPA Janus Benchmark A. In Proceedings of the Computer Vision and Pattern Recognition Conference, Boston, MA, USA, 7–12 June 2015; pp. 1931–1939. [Google Scholar]
- Lucey, P.; Cohn, J.F.; Kanade, T.; Saragih, J.; Ambadar, Z.; Matthews, I. The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, San Francisco, CA, USA, 13–18 June 2010; pp. 94–101. [Google Scholar]
- Gros, C.; Straub, J. Human face images from multiple perspectives with lighting from multiple directions with no occlusion, glasses and hat. Data Brief 2018, 22, 522–529. [Google Scholar] [CrossRef]
- Gros, C.; Straub, J. A Dataset for Comparing Mirrored and Non-Mirrored Male Bust Images for Facial Recognition. Data 2019, 4, 26. [Google Scholar] [CrossRef]
- Nefian, A.V. Georgia Tech Face Database. Available online: http://www.anefian.com/research/face_reco.htm (accessed on 15 July 2019).
- Martinez, A.M. AR Face Database Webpage. Available online: http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html (accessed on 22 August 2019).
- Georghiades, A.S.; Belhumeur, P.N.; Kriegman, D.J. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 643–660. [Google Scholar] [CrossRef]
Location | X Coordinate | Y Coordinate |
---|---|---|
Subject Light | 84.5 | 127.5 |
Background 1 | 43.5 | 50.5 |
Background 2 | 129 | 47 |
Camcorder | 97 | 132 |
Subject | 96.5 | 63.5 |
Configuration | Light Settings | Lumens |
---|---|---|
Warm | 60% brightness on warm (3200 k) | 280 |
Cold | 60% brightness on cold (5500 k) | 391 |
Low | 10% brightness on warm (3200 k) and 10% brightness on cold (5500 k) | 155 |
Medium | 40% brightness on warm (3200 k) and 40% on brightness on cold (5500 k) | 492 |
High | 70% brightness on warm (3200 k) and 70% brightness on cold (5500 k) | 745 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gros, C.; Straub, J. Video Recordings of Male Face and Neck Movements for Facial Recognition and Other Purposes. Data 2019, 4, 130. https://doi.org/10.3390/data4030130
Gros C, Straub J. Video Recordings of Male Face and Neck Movements for Facial Recognition and Other Purposes. Data. 2019; 4(3):130. https://doi.org/10.3390/data4030130
Chicago/Turabian StyleGros, Collin, and Jeremy Straub. 2019. "Video Recordings of Male Face and Neck Movements for Facial Recognition and Other Purposes" Data 4, no. 3: 130. https://doi.org/10.3390/data4030130
APA StyleGros, C., & Straub, J. (2019). Video Recordings of Male Face and Neck Movements for Facial Recognition and Other Purposes. Data, 4(3), 130. https://doi.org/10.3390/data4030130