Immunomics Datasets and Tools: To Identify Potential Epitope Segments for Designing Chimeric Vaccine Candidate to Cervix Papilloma
Abstract
:1. Summary
2. Data Description
3. Methods
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Frazer, I.H. Development and implementation of papillomavirus prophylactic vaccines. J. Immunol. 2014, 192, 4007–4011. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin-Drubin, M.E.; Munger, K. Oncogenic activities of human papillomaviruses. Virus Res. 2009, 143, 195–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haedicke, J.; Iftner, T. Human papillomaviruses and cancer. Radiother. Oncol. 2013, 108, 397–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, G.; Yaling, G.; Zhan, G.; Pu, L.; Miao, H. Human papillomavirus genotype distribution among HPV-positive women in Sichuan province, Southwest China. Arch. Virol. 2018, 163, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Dunne, E.F.; Unger, E.R.; Sternberg, M.; McQuillan, G.; Swan, D.C.; Patel, S.S.; Markowitz, L.E. Prevalence of HPV infection among females in the United States. JAMA 2007, 297, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Kenter, G.G.; Welters, M.J.; Valentijn, A.R.; Lowik, M.J.; Berends-van der Meer, D.M.; Vloon, A.P.; Drijfhout, J.W.; Wafelman, A.R.; Oostendorp, J.; Fleuren, G.J.; et al. Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin. Cancer Res. 2008, 14, 169–177. [Google Scholar] [CrossRef] [PubMed]
- De Vos van Steenwijk, P.J.; Ramwadhdoebe, T.H.; Lowik, M.J.; van der Minne, C.E.; Berends-van der Meer, D.M.; Fathers, L.M.; Valentijn, A.R.; Oostendorp, J.; Fleuren, G.J.; Hellebrekers, B.W.; et al. A placebo-controlled randomized HPV16 synthetic long-peptide vaccination study in women with high-grade cervical squamous intraepithelial lesions. Cancer Immunol. Immunother. 2012, 61, 1485–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rerucha, C.M.; Caro, R.J.; Wheeler, V.L. Cervical Cancer Screening. Am. Fam. Phys. 2018, 97, 441–448. [Google Scholar]
- Hong, Y.; Zhang, C.; Li, X.; Lin, D.; Liu, Y. HPV and cervical cancer related knowledge, awareness and testing behaviors in a community sample of female sex workers in China. BMC Public Health 2013, 13, 696. [Google Scholar] [CrossRef]
- Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin. 2016, 66, 115–132. [Google Scholar] [CrossRef]
- Zhou, H.L.; Zhang, W.; Zhang, C.J.; Wang, S.M.; Duan, Y.C.; Wang, J.X.; Yang, H.; Wang, X.Y. Prevalence and distribution of human papillomavirus genotypes in Chinese women between 1991 and 2016: A systematic review. J. Infect. 2018, 76, 522–528. [Google Scholar] [CrossRef] [PubMed]
- You, W.; Li, S.; Du, R.; Zheng, J.; Shen, A. Epidemiological study of high-risk human papillomavirus infection in subjects with abnormal cytological findings in cervical cancer screening. Exp. Ther. Med. 2018, 15, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Long, W.; Yang, Z.; Li, X.; Chen, M.; Liu, J.; Zhang, Y.; Sun, X. HPV-16, HPV-58, and HPV-33 are the most carcinogenic HPV genotypes in Southwestern China and their viral loads are associated with severity of premalignant lesions in the cervix. Virol. J. 2018, 15, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Huang, C.; Zheng, X.; Pan, D. Prevalence of human papillomavirus among Wenzhou women diagnosed with cervical intraepithelial neoplasia and cervical cancer. Infect. Agent. Cancer 2018, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Chen, L.; Li, J.; Wu, Y.; Hu, Y.; Xiang, F.; Guan, Q. Distribution characteristics of different human papillomavirus genotypes in women in Wuhan, China. Cancer Med. 2018, 32, e22581. [Google Scholar]
- Zhao, P.; Liu, S.; Zhong, Z.; Hou, J.; Lin, L.; Weng, R.; Su, L.; Lei, N.; Hou, T.; Yang, H. Prevalence and genotype distribution of human papillomavirus infection among women in northeastern Guangdong Province of China. J. Clin. Lab. Anal. 2018, 18, 204. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhong, Z.; Hou, J.; Lin, L.; Weng, R.; Su, L.; Lei, N.; Hou, T.; Yang, H.; Li, K.; et al. Analysis of HPV distribution in patients with cervical precancerous lesions in Western China. BMC Infect. Dis. 2017, 96, e7304. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, C.; Huang, J.; Shi, W. The Genotype of Human Papillomavirus and Associated Factors Among High Risk Males in Shanghai, China: A Molecular Epidemiology Study. Med. Sci. Monit. 2018, 24, 912–918. [Google Scholar] [CrossRef] [Green Version]
- FDA licensure of bivalent human papillomavirus vaccine (HPV2, Cervarix) for use in females and updated HPV vaccination recommendations from the Advisory Committee on Immunization Practices (ACIP). MMWR Morb. Mortal. Wkly. Rep. 2010, 59, 626–629.
- Recommendations on the use of quadrivalent human papillomavirus vaccine in males—Advisory Committee on Immunization Practices (ACIP), 2011. MMWR Morb. Mortal. Wkly. Rep. 2011, 60, 1705–1708.
- Petrosky, E.; Bocchini, J.A., Jr.; Hariri, S.; Chesson, H.; Curtis, C.R.; Saraiya, M.; Unger, E.R.; Markowitz, L.E. Use of 9-valent human papillomavirus (HPV) vaccine: Updated HPV vaccination recommendations of the advisory committee on immunization practices. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 300–304. [Google Scholar] [PubMed]
- Paz-Zulueta, M.; Alvarez-Paredes, L.; Rodriguez Diaz, J.C.; Paras-Bravo, P.; Andrada Becerra, M.E.; Rodriguez Ingelmo, J.M.; Ruiz Garcia, M.M.; Portilla, J.; Santibanez, M. Prevalence of high-risk HPV genotypes, categorised by their quadrivalent and nine-valent HPV vaccination coverage, and the genotype association with high-grade lesions. BMC Cancer 2018, 18, 112. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.T.; Schellenbacher, C.; Chackerian, B.; Roden, R.B. Progress and prospects for L2-based human papillomavirus vaccines. Expert Rev. Vaccines 2016, 15, 853–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chroboczek, J.; Szurgot, I.; Szolajska, E. Virus-like particles as vaccine. Acta Biochim. Pol. 2014, 61, 531–539. [Google Scholar] [PubMed]
- Pandhi, D.; Sonthalia, S. Human papilloma virus vaccines: Current scenario. Indian J. Sex. Transm. Dis. AIDS 2011, 32, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Monie, A.; Hung, C.F.; Roden, R.; Wu, T.C. Cervarix: A vaccine for the prevention of HPV 16, 18-associated cervical cancer. Biologics 2008, 2, 97–105. [Google Scholar] [PubMed]
- Angioli, R.; Lopez, S.; Aloisi, A.; Terranova, C.; De Cicco, C.; Scaletta, G.; Capriglione, S.; Miranda, A.; Luvero, D.; Ricciardi, R.; et al. Ten years of HPV vaccines: State of art and controversies. Crit. Rev. Oncol. Hematol. 2016, 102, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Karanam, B.; Jagu, S.; Huh, W.K.; Roden, R.B. Developing vaccines against minor capsid antigen L2 to prevent papillomavirus infection. Immunol. Cell Biol. 2009, 87, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Schiller, J.T.; Muller, M. Next generation prophylactic human papillomavirus vaccines. Lancet Oncol. 2015, 16, e217–e225. [Google Scholar] [CrossRef]
- Wang, J.W.; Roden, R.B. L2, the minor capsid protein of papillomavirus. Virology 2013, 445, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Chandrachud, L.M.; Grindlay, G.J.; McGarvie, G.M.; O’Neil, B.W.; Wagner, E.R.; Jarrett, W.F.; Campo, M.S. Vaccination of cattle with the N-terminus of L2 is necessary and sufficient for preventing infection by bovine papillomavirus-4. Virology 1995, 211, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Gaukroger, J.M.; Chandrachud, L.M.; O’Neil, B.W.; Grindlay, G.J.; Knowles, G.; Campo, M.S. Vaccination of cattle with bovine papillomavirus type 4 L2 elicits the production of virus-neutralizing antibodies. J. Gen. Virol. 1996, 77, 1577–1583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, D.Q.; Selvaraj, G.; Kaushik, A.C. Computational Perspective on the Current State of the Methods and New Challenges in Cancer Drug Discovery. Curr. Pharm. Des. 2018, 24, 3725–3726. [Google Scholar] [CrossRef] [PubMed]
- Kaliamurthi, S.; Selvaraj, G.; Junaid, M.; Khan, A.; Gu, K.; Wei, D.Q. Cancer Immunoinformatics: A Promising Era in the Development of Peptide Vaccines for Human Papillomavirus-induced Cervical Cancer. Curr. Pharm. Des. 2018, 24, 3791–3817. [Google Scholar] [CrossRef] [PubMed]
- Kaliamurthi, S.; Selvaraj, G.; Kaushik, A.C.; Gu, K.R.; Wei, D.Q. Designing of CD8+ and CD8+-overlapped CD4+ epitope vaccine by targeting late and early proteins of human papillomavirus. Biologics 2018, 12, 107. [Google Scholar] [PubMed]
- Kaliamurthi, S.; Selvaraj, G.; Chinnasamy, S.; Wang, Q.; Nangraj, A.S.; Cho, W.; Gu, K.; Wei, D.Q. Exploring the Papillomaviral Proteome to Identify Potential Candidates for a Chimeric Vaccine against Cervix Papilloma Using Immunomics and Computational Structural Vaccinology. Viruses 2019, 11, 63. [Google Scholar] [CrossRef] [PubMed]
- UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2017, 45, D158–D169. [CrossRef]
- Chen, S.; Hong, W.; Shao, H.; Fu, Y.; Liu, X.; Chen, D.; Xu, A. Allelic distribution of HLA class I genes in the Tibetan ethnic population of China. Int. J. Immunogenet. 2006, 33, 439–445. [Google Scholar] [CrossRef]
- Chen, S.; Hu, Q.; Xie, Y.; Zhou, L.; Xiao, C.; Wu, Y.; Xu, A. Origin of Tibeto-Burman speakers: Evidence from HLA allele distribution in Lisu and Nu inhabiting Yunnan of China. Hum. Immunol. 2007, 68, 550–559. [Google Scholar] [CrossRef]
- Chen, S.; Ren, X.; Liu, Y.; Hu, Q.; Hong, W.; Xu, A. Human leukocyte antigen class I polymorphism in Miao, Bouyei, and Shui ethnic minorities of Guizhou, China. Hum. Immunol. 2007, 68, 928–933. [Google Scholar] [CrossRef]
- Wang, X.C.; Sun, L.Q.; Ma, L.; Li, H.X.; Wang, X.L.; Wang, X.; Yun, T.; Meng, N.L.; Lv, D.L. Prevalence and genotype distribution of human papillomavirus among women from Henan, China. Asian Pac. J. Cancer Prev. 2014, 15, 7333–7336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Fei, M.D.; Jiang, Y.; Fei, Q.Y.; Qian, H.; Xu, L.; Jin, Y.N.; Jiang, C.Q.; Li, H.X.; Tiggelaar, S.M.; et al. The diversity of human papillomavirus infection among human immunodeficiency virus-infected women in Yunnan, China. Virol. J. 2014, 11, 202. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.F.; Shen, G.R.; Li, Q.; Chen, X.; Ma, C.F.; Zhu, T.H. Genotype distribution characteristics of multiple human papillomavirus in women from the Taihu River Basin, on the coast of eastern China. BMC Infect. Dis. 2017, 17, 226. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xue, J. Distribution and role of high-risk human papillomavirus genotypes in women with cervical intraepithelial neoplasia: A retrospective analysis from Wenzhou, southeast China. Cancer Med. 2018. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Chen, L.; Li, J.; Wu, Y.; Hu, Y.; Vita, R.; Overton, J.A.; Greenbaum, J.A.; Ponomarenko, J.; Clark, J.D.; et al. The immune epitope database (IEDB) 3.0. Cancer Med. 2015, 43, D405–D412. [Google Scholar]
- Moutaftsi, M.; Peters, B.; Pasquetto, V.; Tscharke, D.C.; Sidney, J.; Bui, H.H.; Grey, H.; Sette, A. A consensus epitope prediction approach identifies the breadth of murine T(CD8+)-cell responses to vaccinia virus. Nat. Biotechnol. 2006, 24, 817–819. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.; Lundegaard, C.; Worning, P.; Lauemoller, S.L.; Lamberth, K.; Buus, S.; Brunak, S.; Lund, O. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003, 12, 1007–1017. [Google Scholar] [CrossRef] [Green Version]
- Bhasin, M.; Raghava, G.P. Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine 2004, 22, 3195–3204. [Google Scholar] [CrossRef]
- Liu, I.H.; Lo, Y.S.; Yang, J.M. PAComplex: A web server to infer peptide antigen families and binding models from TCR-pMHC complexes. Nucleic Acids Res. 2011, 39, W254–W260. [Google Scholar] [CrossRef]
- Wang, P.; Sidney, J.; Dow, C.; Mothe, B.; Sette, A.; Peters, B. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput. Biol. 2008, 4, e1000048. [Google Scholar] [CrossRef]
- Paul, S.; Sidney, J.; Sette, A.; Peters, B. TepiTool: A Pipeline for Computational Prediction of T Cell Epitope Candidates. Curr. Protoc. Immunol. 2016, 114, 18.19.1–18.19.24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhanda, S.K.; Vir, P.; Raghava, G.P. Designing of interferon-gamma inducing MHC class-II binders. Biol. Direct. 2013, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Raghava, G.P. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 2006, 65, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, I.; Bangov, I.; Flower, D.R.; Doytchinova, I. AllerTOP v.2—A server for in silico prediction of allergens. J. Mol. Model. 2014, 20, 2278. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, I.; Naneva, L.; Doytchinova, I.; Bangov, I. AllergenFP: Allergenicity prediction by descriptor fingerprints. Bioinformatics 2014, 30, 846–851. [Google Scholar] [CrossRef] [PubMed]
- El-Manzalawy, Y.; Dobbs, D.; Honavar, V. Predicting protective bacterial antigens using random forest classifiers. In Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine, Orlando, FL, USA, 7–10 October 2012; pp. 426–433. [Google Scholar]
- Chen, C.; Li, Z.; Huang, H.; Suzek, B.E.; Wu, C.H. A fast Peptide Match service for UniProt Knowledgebase. Bioinformatics 2013, 29, 2808–2809. [Google Scholar] [CrossRef] [PubMed]
- Bui, H.H.; Sidney, J.; Li, W.; Fusseder, N.; Sette, A. Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinform. 2007, 8, 361. [Google Scholar] [CrossRef]
- Magnan, C.N.; Randall, A.; Baldi, P. SOLpro: Accurate sequence-based prediction of protein solubility. Bioinformatics 2009, 25, 2200–2207. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.E.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar]
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007, 8, 4. [Google Scholar] [CrossRef]
- Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinform. 2008, 9, 40. [Google Scholar] [CrossRef]
- Ko, J.; Park, H.; Heo, L.; Seok, C. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 2012, 40, W294–W297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, D.; Cheng, J. i3Drefine software for protein 3D structure refinement and its assessment in CASP10. PLoS ONE 2013, 8, e69648. [Google Scholar] [CrossRef] [PubMed]
- Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007, 35, W407–W410. [Google Scholar] [CrossRef] [PubMed]
- Lovell, S.C.; Davis, I.W.; Arendall, W.B.; de Bakker, P.I.; Word, J.M.; Prisant, M.G.; Richardson, J.S.; Richardson, D.C. Structure validation by Calpha geometry: Phi,psi and Cbeta deviation. Proteins 2003, 50, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Colovos, C.; Yeates, T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 1993, 2, 1511–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kringelum, J.V.; Lundegaard, C.; Lund, O.; Nielsen, M. Reliable B cell epitope predictions: Impacts of method development and improved benchmarking. PLoS Comput. Biol. 2012, 8, e1002829. [Google Scholar] [CrossRef] [PubMed]
- Torchala, M.; Moal, I.H.; Chaleil, R.A.; Fernandez-Recio, J.; Bates, P.A. SwarmDock: A server for flexible protein-protein docking. Bioinformatics 2013, 29, 807–809. [Google Scholar] [CrossRef]
- Rice, P.; Longden, I.; Bleasby, A. EMBOSS: The European molecular biology open software suite. Trends Genet. 2000, 16, 276–277. [Google Scholar] [CrossRef]
- The GenScript Rare Codon Analysis. Available online: https://www.genscript.com/tools/rare-codon-analysis (accessed on 1 October 2018).
- Kaliamurthi, S.; Selvaraj, G.; Wei, D.Q. Immunomics datasets: To identify potential candidates for chimeric vaccine design to cervix papilloma [Data set]. Zenodo 2018. [Google Scholar] [CrossRef]
Subject Area | Immuno-Informatics, Structural Vaccinology |
---|---|
More specific subject area | Chimeric vaccine for cervix papilloma |
Type of data | Image, Excel, doc |
How data was acquired | Online tools based on manual selective algorithms |
Data format | Raw and Manual Annotations |
Experimental factors | Epitopes, antigenicity, allergenicity, and modeled structures |
Experimental features | The epitopes were identified from the proteome of papilloma virus. It has antigenic, non-allergenic and INF inducing properties. The elite epitopes with designed vaccine structure was modeled and validated. |
Data source location | Public databases and online tools based on manual selective algorithms |
Data accessibility | http://doi.org/10.5281/zenodo.1997695 |
MHC-1 | CTL | TCR–Peptide/Peptide-MHC Interfaces | |
---|---|---|---|
IEDB a | NetMHC 4.0 b | CTLPred c | PAComplex d |
23–36 | 23–35 | 16–24 | 19–27 |
30–43 | 29–42 | 40–48 | 38–46 |
10–23 | 9–22 | 16–244–12 | 4–12 |
29–42 | 28–41 | 38–46 | 38–46 |
MHC-II | INF-γ Producing Epitopes | B Cell Epitopes | |
---|---|---|---|
a IEDB Consensus | b Tepitool | c INFepitope | d ABCPred |
23–36 | 23–36 | 0.51 | 26–41 |
23–37 | 23–37 | 0.53 | |
29–43 | 29–43 | +1 | 26–41 |
30–44 | 30–44 | +1 | |
7–21 | 7–21 | +1 | 7–22 |
6–20 | 6–20 | +1 | |
29–43 | 29–43 | +1 | 33–48 |
28–42 | 28–42 | +1 |
No. | Epitopes | Positions | Protein Sub Sequences | Identity (%) | Name of the Strain |
---|---|---|---|---|---|
1 | CKASGTCPPDVIPK | 21–34 | CKASGTCPPDVIPK | 100.00 | HPV52 |
2 | 21–34 | CKASGTCPPDVIPK | 100.00 | HPV58 | |
3 | 21–34 | CKATGTCPPDVIPK | 92.86 | HPV33 | |
4 | 22–35 | CKAAGTCPPDVIPK | 92.86 | HPV35 | |
5 | 21–34 | CKAAGTCPPDVIPK | 92.86 | HPV69 | |
6 | 21–34 | CKAAGTCPPDVIPK | 92.86 | HPV82 | |
7 | 21–34 | CKQSGTCPPDVVPK | 85.71 | HPV18 | |
8 | 22–35 | CKAAGTCPSDVIPK | 85.71 | HPV31 | |
9 | 21–34 | CKQSGTCPPDVINK | 85.71 | HPV45 | |
10 | 23–36 | CKQAGTCPPDVIPK | 85.71 | HPV73 | |
11 | 22–35 | CKQAGTCPPDIIPK | 78.57 | HPV16 | |
12 | 21–34 | CKQSGTCPPDVVDK | 78.57 | HPV39 | |
13 | 21–34 | CKAAGTCPPDVVNK | 78.57 | HPV51 | |
14 | 21–34 | CKQSGTCPSDVINK | 78.57 | HPV68 | |
15 | 21–34 | CKLSGTCPEDVVNK | 71.43 | HPV56 | |
16 | 21–34 | CKQAGTCPSDVINK | 71.43 | HPV59 | |
1 | KVEGTTIADQILRY | 34–47 | KVEGTTIADQILRY | 100.00 | HPV58 |
2 | 35–48 | KIEHTTIADQILRY | 85.71 | HPV31 | |
3 | 34–47 | KVEGSTIADQILKY | 85.71 | HPV33 | |
4 | 34–47 | KVEGTTIADQLLKY | 85.71 | HPV52 | |
5 | 35–48 | KVEGKTIAEQILQY | 78.57 | HPV16 | |
6 | 35–48 | KVEGNTVADQILKY | 78.57 | HPV35 | |
7 | 36–49 | KVEGSTIADNILKY | 78.57 | HPV73 | |
8 | 34–47 | KVEGTTLADKILQW | 71.43 | HPV18 | |
9 | 34–47 | KVEGTTLADKILQW | 71.43 | HPV39 | |
10 | 34–47 | KVEGTTLADKILQW | 71.43 | HPV45 | |
11 | 34–47 | KVEGTTLADKILQW | 71.43 | HPV51 | |
12 | 34–47 | KVEGTTLADKILQW | 71.43 | HPV59 | |
13 | 34–47 | KVEGTTLADKILQW | 71.43 | HPV68 | |
14 | 34–47 | KVEGTTLADKILQW | 71.43 | HPV82 | |
15 | 34–47 | KIEGSTLADKILQW | 57.14 | HPV69 | |
16 | 34–47 | KIEQKTWADRILQW | 50.00 | HPV56 | |
1 | IADQILRYGSLGVF | 40–53 | IADQILRYGSLGVF | 100.00 | HPV58 |
2 | 41–54 | IADQILRYGSMGVF | 92.86 | HPV31 | |
3 | 40–53 | IADQILKYGSLGVF | 92.86 | HPV33 | |
4 | 40–53 | IADQLLKYGSLGVF | 85.71 | HPV52 | |
5 | 41–54 | IAEQILQYGSMGVF | 78.57 | HPV16 | |
6 | 42–55 | IADNILKYGSIGVF | 78.57 | HPV73 | |
7 | 41–54 | VADQILKYGSMAVF | 71.43 | HPV35 | |
8 | 40–53 | LADKILQWSSLGIF | 57.14 | HPV18 | |
9 | 40–53 | LADKILQWTSLGIF | 57.14 | HPV39 | |
10 | 40–53 | LADKILQWSSLGIF | 57.14 | HPV45 | |
11 | 40–53 | LADKILQWTSLGIF | 57.14 | HPV59 | |
12 | 40–53 | LADKILQWTSLGIF | 57.14 | HPV68 | |
13 | 40–53 | LADKILQWSGLGIF | 50.00 | HPV51 | |
14 | 40–53 | WADRILQWGSLFTY | 50.00 | HPV56 | |
15 | 40–53 | LADKILQWSGLGIF | 50.00 | HPV69 | |
16 | 40–53 | LADKILQWSGLGIF | 50.00 | HPV82 | |
1 | ADQILRYGSLGVFF | 41–54 | ADQILRYGSLGVFF | 100.00 | HPV58 |
2 | 42–55 | ADQILRYGSMGVFF | 92.86 | HPV31 | |
3 | 41–54 | ADQILKYGSLGVFF | 92.86 | HPV33 | |
4 | 41–54 | ADQLLKYGSLGVFF | 85.71 | HPV52 | |
5 | 42–55 | AEQILQYGSMGVFF | 78.57 | HPV16 | |
6 | 42–55 | ADQILKYGSMAVFF | 78.57 | HPV35 | |
7 | 43–56 | ADNILKYGSIGVFF | 78.57 | HPV73 | |
8 | 41–54 | ADKILQWSSLGIFL | 57.14 | HPV18 | |
9 | 41–54 | ADKILQWTSLGIFL | 57.14 | HPV39 | |
10 | 41–54 | ADKILQWSSLGIFL | 57.14 | HPV45 | |
11 | 41–54 | ADRILQWGSLFTYF | 57.14 | HPV56 | |
12 | 41–54 | ADKILQWTSLGIFL | 57.14 | HPV59 | |
13 | 41–54 | ADKILQWTSLGIFL | 57.14 | HPV68 | |
14 | 41–54 | ADKILQWSGLGIFL | 50.00 | HPV51 | |
15 | 41–54 | ADKILQWSGLGIFL | 50.00 | HPV69 | |
16 | 41–54 | ADKILQWSGLGIFL | 50.00 | HPV82 |
Model | ProSA | ERRAT | RAMPAGE | ||
---|---|---|---|---|---|
z-Score | Overall Quality Factor | Favored Region | Allowed Region | Outlier Region | |
I-TASSER | −5.76 | 83.2258 | 249 (78.8%) | 44 (13.9%) | 23 (7.3%) |
I-T Gal1 | −5.54 | 75.6494 | 282 (89.2%) | 23 (7.3%) | 11 (3.5%) |
I-T Gal2 | −5.55 | 75.1613 | 281 (88.9%) | 22 (7.0%) | 13 (4.1%) |
I-T Gal3 | −5.77 | 88.889 | 280 (88.6%) | 24 (7.6%) | 12 (3.8%) |
I-T Gal4 | −5.63 | 79.8701 | 279 (88.3%) | 24 (7.6%) | 13 (4.1%) |
I-T Gal5 | −5.75 | 77.7419 | 280 (88.6%) | 24 (7.6%) | 12 (3.8%) |
I-T 3DR1 | −5.72 | 86.8056 | 261 (82.6%) | 35 (11.1%) | 20 (6.3%) |
I-T 3DR2 | −5.72 | 88.8114 | 259 (82.0%) | 32 (10.1%) | 25 (7.9%) |
I-T 3DR3 | −5.87 | 88.8112 | 258 (81.6%) | 35 (11.1%) | 23 (7.3%) |
I-T 3DR4 | −5.86 | 88.8112 | 259 (82.0%) | 30 (9.5%) | 27 (8.5%) |
I-T 3DR5 | −5.89 | 80.9677 | 259 (82.0%) | 30 (9.5%) | 27 (8.5%) |
Model | ProSA | ERRAT | RAMPAGE | ||
---|---|---|---|---|---|
z-Score | Overall Quality Factor | Favored Region | Allowed Region | Outlier Region | |
I-TASSER | −5.93 | 79.7619 | 635 (74.2%) | 169 (19.7%) | 52 (6.1%) |
I-T Gal1 | −6.52 | 68.9781 | 779 (91.0%) | 71 (8.3%) | 6 (0.7%) |
I-T Gal2 | −6.35 | 73.7864 | 778 (90.9%) | 70 (8.2%) | 8 (0.9%) |
I-T Gal3 | −6.64 | 73.3414 | 783 (91.5%) | 65 (7.6%) | 8 (0.9%) |
I-T Gal4 | −6.65 | 70.3163 | 785 (91.7%) | 63 (7.4%) | 8 (0.9%) |
I-T Gal5 | −6.61 | 72.6176 | 782 (91.4%) | 68 (7.9%) | 6 (0.7%) |
I-T 3DR1 | −6.47 | 85.967 | 699 (81.7%) | 118 (13.8%) | 39 (4.6%) |
I-T 3DR2 | −6.52 | 86.3208 | 708 (82.7%) | 109 (12.7%) | 39 (4.6%) |
I-T 3DR3 | −6.53 | 86.6745 | 714 (83.4%) | 102 (11.9%) | 40 (4.7%) |
I-T 3DR4 | −6.63 | 86.4387 | 713 (83.3%) | 102 11.9%) | 41 (4.8%) |
I-T 3DR5 | −6.77 | 87.6179 | 712 (83.2%) | 103 (12.0%) | 41 (4.8%) |
S.No. | Residue Number | Amino Acid | Contact Number | Propensity Score | DiscoTope Score |
---|---|---|---|---|---|
1 | 12 | ASN | 5 | −3.272 | −3.471 |
2 | 25 | ILE | 7 | −3.159 | −3.601 |
3 | 37 | ALA | 0 | −3.037 | −2.688 |
4 | 38 | LYS | 5 | −2.621 | −2.895 |
5 | 41 | ALA | 0 | −3.549 | −3.141 |
6 | 42 | ALA | 3 | −3.414 | −3.366 |
7 | 55 | LYS | 6 | −3.291 | −3.602 |
8 | 99 | THR | 0 | −1.665 | −1.474 |
9 | 101 | SER | 3 | −1.96 | −2.079 |
10 | 103 | SER | 0 | −2.842 | −2.515 |
11 | 107 | SER | 6 | −2.739 | −3.114 |
12 | 130 | GLY | 5 | −2.944 | −3.181 |
13 | 265 | GLY | 8 | −2.67 | −3.283 |
14 | 266 | ASN | 5 | −0.617 | −1.121 |
15 | 269 | THR | 6 | −2.481 | −2.886 |
16 | 270 | ASN | 7 | −2.764 | −3.251 |
17 | 284 | ALA | 1 | −3.567 | −3.272 |
18 | 288 | SER | 5 | −3.336 | −3.528 |
Model Number | Reference Model Number | Starting Amino Acid in TLR5 | Binding Energy | Number of Clusters | Total Number of Contacts between the SGD58 and TLR5 Complex | Number of Contact Residues in Receptor | Number of Contact Residues in Ligand | Percentage of Interacting Residues between the SGD58 and TLR5 Complex |
---|---|---|---|---|---|---|---|---|
Model 1 | 64a.pdb | 112 | −54.74 | 3 | 663 | 538 | 208 | 88.87 |
Model 2 | 63c.pdb | 111 | −49.12 | 1 | 1172 | 969 | 682 | 70.98 |
Model 3 | 57d.pdb | 104 | −49.07 | 1 | 731 | 615 | 361 | 74.89 |
Model 4 | 84d.pdb | 183 | −46.84 | 7 | 802 | 693 | 403 | 73.17 |
Model 5 | 56b.pdb | 103 | −42.57 | 7 | 687 | 459 | 386 | 81.30 |
Model 6 | 57c.pdb | 104 | −41.31 | 1 | 634 | 543 | 387 | 68.17 |
Model 7 | 72c.pdb | 121 | −40.59 | 1 | 668 | 603 | 506 | 60.23 |
Model 8 | 49c.pdb | 96 | −40.53 | 1 | 592 | 511 | 414 | 64.00 |
Model 9 | 46d.pdb | 92 | −38.78 | 2 | 793 | 604 | 770 | 57.71 |
Model 10 | 68b.pdb | 115 | −33.51 | 1 | 508 | 508 | 267 | 65.55 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaliamurthi, S.; Selvaraj, G.; Chinnasamy, S.; Wang, Q.; Nangraj, A.S.; Cho, W.C.; Gu, K.; Wei, D.-Q. Immunomics Datasets and Tools: To Identify Potential Epitope Segments for Designing Chimeric Vaccine Candidate to Cervix Papilloma. Data 2019, 4, 31. https://doi.org/10.3390/data4010031
Kaliamurthi S, Selvaraj G, Chinnasamy S, Wang Q, Nangraj AS, Cho WC, Gu K, Wei D-Q. Immunomics Datasets and Tools: To Identify Potential Epitope Segments for Designing Chimeric Vaccine Candidate to Cervix Papilloma. Data. 2019; 4(1):31. https://doi.org/10.3390/data4010031
Chicago/Turabian StyleKaliamurthi, Satyavani, Gurudeeban Selvaraj, Sathishkumar Chinnasamy, Qiankun Wang, Asma Sindhoo Nangraj, William C. Cho, Keren Gu, and Dong-Qing Wei. 2019. "Immunomics Datasets and Tools: To Identify Potential Epitope Segments for Designing Chimeric Vaccine Candidate to Cervix Papilloma" Data 4, no. 1: 31. https://doi.org/10.3390/data4010031
APA StyleKaliamurthi, S., Selvaraj, G., Chinnasamy, S., Wang, Q., Nangraj, A. S., Cho, W. C., Gu, K., & Wei, D.-Q. (2019). Immunomics Datasets and Tools: To Identify Potential Epitope Segments for Designing Chimeric Vaccine Candidate to Cervix Papilloma. Data, 4(1), 31. https://doi.org/10.3390/data4010031