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Abstract: Immunomics tools and databases play an important role in the designing of prophylactic
or therapeutic vaccines against pathogenic bacteria and viruses. Therefore, we aimed to illustrate
the different immunological databases and web servers used to design a chimeric vaccine candidate
against human cervix papilloma. Initially, cellular immunity inducing major histocompatibility
complex class I and II epitopes from L2 protein of papilloma 58 strain were predicted using the
IEDB, NetMHC, and Tepi tools. Then, the overlapped segments from the above analysis were used
to calculate efficiency on interferon-gamma and humoral immunity production. In addition, the
allergenicity, antigenicity, cross-reactivity with human proteomes, and epitope conservancy of elite
segments were determined. The chimeric vaccine candidate (SGD58) was constructed with two
different overlapped peptide segments (23–36) and (29–42), adjuvants (flagellin and RS09), two Th
epitopes, and amino acid linkers. The results of homology modeling demonstrated that SGD58 have
88.6% of favored regions based on Ramachandran plot. Protein–protein docking with Swarm Dock
reveals SGD58 with receptor complex have −54.74 kcal/mol of binding energy with more than 20
interacting residues. Docked complex are stable in 100ns of molecular dynamic simulation. Further,
coding sequences of SGD58 also show elevated gene expression in E. coli. In conclusion, SGD58
may prompt vaccine against cervix papilloma. This study provides insight of vaccine design against
different pathogenic microbes as well.

Dataset: http://doi.org/10.5281/zenodo.1997695

Keywords: cellular immunity; codon frequency distribution; HPV58; minor capsid protein;
TLR agonist; SGD58; prophylaxis

1. Summary

Currently, viral infection contributes to about 20% of the global burden of human cancer. Among
the broad viral spectrum, human papillomavirus (HPV) is reported in about 5% of all human cancers,
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specifically infection associated with the cervix with 250,000 mortalities every year [1]. HPV with its
double-stranded DNA contains a nonenvelope small virus, which infects a region of the cutaneous
epithelial membrane (skin or integumentary system), or the mucous membrane (i.e., coated as an
internal line in hollow spaced organs like the mouth, reproductive organ, urinary tract, or rectum) in
the host system [2]. The genomic relationship between different cancer types has demonstrated that
more than 99% of cervical cancer patients are infected with 15 different types of α-clade HPV, defined
as “high-risk” or “oncogenic” genital HPVs. The α-clade HPV (6 and 11) causes genital warts while
the remaining strains of HPV are related to the risk of cervical cancer. HPV infection is attributed to
more than 50% of oropharyngeal and anogenital cancers [3]. Generally, the human immune system
can clear the pathogenic infection caused by HPV within two years, but this also depends on the
efficiency of an individual’s immune system and the invading type of HPV. However, in the case of
a very weak immune system, it fails to remove the invading high-risk HPVs (hrHPV) that may lead
to the development of cervical cancer [4,5]. hrHPV infections are responsible for causing more than
99% of precancerous cervical intraepithelial neoplasias (CIN) and invasive cervical cancers (ICC) [6–8].
In China, HPV-mediated cervical cancer is a substantial public health issue, with 1 million new cervical
cancer incidences and 30,000 moralities registered every year [9,10]. In 2018, clinical, epidemiological,
and clinicopathological studies reported HPV58 to be the second or third most predominant genotypes
in precancerous CIN includes mild dysplasia (CIN I), mild to moderate dysplasia (CIN II), severe
dysplasia to cancer (CIN III), and ICC lesions. Higher grades of squamous intraepithelial, or cell
carcinoma, and adenocarcinoma of HPV positive patients were diagnosed in different geographical
regions of China [11]. Seven provinces of China that have reported hrHPV-mediated cervical cancer
incidences, include Guangdong, Liaocheng, Shanghai, Wenzhou, Wuhan, Southwestern China, and
Western China [11–17]. Zhang et al. [18] reported that the HPV16 (6.4%) and HPV58 (5.3%) genotypes
were predominantly found in males who had recently involved in sex, in Shanghai.

Cervarix®, Gardasil®, and Gardasil 9® are the three noninfectious prophylactic Food and Drug
Administration (FDA)-approved HPV licensed subunit vaccines in active usage. These vaccines were
developed from the major capsid L1 virus-like particles (VLPs) using recombinant DNA technology.
Cervarix is a bivalent vaccine based on the Baculovirus fermentation and it provides ~70% protection
to HPV (16 and 18)-mediated cervical cancer but not to genital warts [19]. Gardasil is a quadrivalent
HPV (6, 11, 16, and 18) vaccine based on yeast fermentation technology. It is efficiently used for
the prevention of genital warts and gives ~70% protection for cervical cancer [20]. In 2009, the
FDA approved a nine-valent Gardasil 9® that provides protection to HPV types 6, 11, 16, 18, 31,
33, 45, 52, and 58. It has been used for both males and females in the age groups of 9–15 and
9–26 [21]. The new nine-valent vaccine exhibited a positive outcome in high-grade lesions in the
absence of HPV (18 and 16) infections [22]. In October 2018, FDA extended the use of Gardasil 9
to the age group of 27–45 among both the sexes. In addition, the L1 VLP (absence of viral genomic
materials)-mediated vaccine production in the eukaryotic (ex. Baculovirus) host system is a complex
and tedious process [23,24]. The main limitations of currently available prophylactic vaccines are strain
specific, not therapeutic for patients already infected with HPV22, require multiple dosages, and is
expensive [25,26]. In addition, the effective straightforward delivery of HPV vaccines can enhance the
immunogenic potential against HPVs.

The implementation of L2 minor capsid protein is a potential alternative in the HPV prophylactic
vaccine production. Since the N-terminal region of the L2 protein is highly conserved in low-risk HPV
(6 and 11) and 13 different hrHPVs, it is contrasted with the type-specific protection of L1 prophylactic
VLPs [27]. The single copy of L2 protein (~473 amino acids (AA)) is present in each L1 capsomere,
resulting in 72 copies per virion [28]. Incidentally, L2 protein plays a vital role in L1 assembly into the
VLPs and enhances the encapsidation of double-stranded ~8kb circular viral genome [29]. Moreover,
the full-length or polypeptides (1–8 or 11–200 AA in length) of L2 protein enhance the production of
neutralizing antibodies in vaccinated experimental models including mice, cattle, and rabbit [30–32].
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To date, no L2 VLP-derived prophylactic vaccine has been approved in clinical trials due to their
limitation of weak immunogenicity, which imitates the incapability of multimerizing into the VLPs.

With this information, in this study, we aimed to design the novel chimeric vaccine from
the N-terminal region of the L2 sequence of HPV58 targets to hrHPVs. Immunomics tools and
databases play an important role in the designing of prophylactic or therapeutic vaccines against
pathogenic bacteria and viruses [33–35]. Immunomic tools include immune epitope database (IEDB)
and NetMHCv4.0, Tepitool, CTLPred, PAComplex, IFNepitope, ABCPred, AllerTOP, AllergenFPv
1.0, ANTIGENpro, program of protein information resource (PIR), and epitopes conservancy were
implemented to discover the overlapped epitope segment to induce B cell and T cell immunity.
Then, the chimeric vaccine (SGD58) was constructed using overlapped epitope segments, TLR
adjuvants, Th epitopes, and amino acid linkers. The physiochemical and immunological properties
of the chimeric vaccine was validated using Protparam, SolPro, VaxiJen, and ANTIGENpro tools.
In addition, homology modeling using iterative threading ASSEmbly refinement (I-TASSER), structural
refinement (GalaxyRefine and 3DRefine), and structural validation (protein structure analysis (ProSA),
Ramachandran plot, and ERRAT) were performed to obtain the best three-dimensional (3D) model
of the chimeric vaccine and target TLR5 receptor. Then, the interaction of the chimeric vaccine with
TLR5 and stability of this complex were determined through PP docking and molecular dynamic
(MD) simulation. Moreover, the virtual cloning and gene expression of the chimeric vaccine in E. coli
were analyzed to obtain a low-cost HPV vaccine. All the necessary supporting information for SGD58
design illustrated in the study and the original results was reported in our previous study [36].

2. Data Description

The specifications of the data description namely subject area, types of data, method of acquiring
data, format, experimental factors, source and accessibility of data for selection of potential epitope
segments and designing of chimeric vaccine was illustrated in Table 1.

Table 1. Specifications table.

Subject Area Immuno-Informatics, Structural Vaccinology

More specific subject area Chimeric vaccine for cervix papilloma

Type of data Image, Excel, doc

How data was acquired Online tools based on manual selective algorithms

Data format Raw and Manual Annotations

Experimental factors Epitopes, antigenicity, allergenicity, and modeled structures

Experimental features
The epitopes were identified from the proteome of papilloma virus. It has antigenic,

non-allergenic and INF inducing properties. The elite epitopes with designed vaccine
structure was modeled and validated.

Data source location Public databases and online tools based on manual selective algorithms

Data accessibility http://doi.org/10.5281/zenodo.1997695

The overlapped epitope segments obtained from the major histocompatibility complex class
I (MHC-I) prediction were compared with the results of both CTLPred and PAComplex servers.
Furthermore, the shared epitope segments obtained from the CTLPred and PAComplex were used for
epitope selection, and vaccine design as shown in Table 2.

The lowest percentile rank with strong binding affinity epitope segments with human MHC-II
alleles, such as the DQB1-, DRB1-, and DPB1-restricted epitopes, were obtained using IEDB consensus
and Tepitool servers. The overlapping promiscuous epitope segments from the above prediction
(Table 3) were selected and evaluated for their INF-γ production ability. The overlapped INF-γ
producing CD4+ (MHC-II) epitope segments are as given in Table 3. Therefore, the shared MHC-II
epitope segments could produce IFN-γ against viral infection. Interestingly, the above-obtained
overlapped CD4+ epitopes shared the CD8+ epitope segments. In addition, Table 3 illustrates
overlapped B cell epitopes predicted through the ABCPred tool.

http://doi.org/10.5281/zenodo.1997695
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Table 2. Overlapped epitope segments of major histocompatibility complex class I (MHC-I), CTL,
and TCR from the N-terminal region of HPV58 were predicted using different servers.

MHC-1 CTL TCR–Peptide/Peptide-MHC Interfaces

IEDB a NetMHC 4.0 b CTLPred c PAComplex d

23–36 23–35 16–24 19–27
30–43 29–42 40–48 38–46
10–23 9–22 16–244–12 4–12
29–42 28–41 38–46 38–46

MHC-I overlapped epitope segments prediction by using different tools as a IEDB consensus and b NetMHCV4.0;
CTL epitopes prediction by using c CTLPred; TCR–peptide and peptide-MHC interface predicted by d PAComplex.

Table 3. The overlapped epitope segments of MHC-II, INF-gamma-producing, and B cell epitopes
N-terminal region of HPV58 by using different servers.

MHC-II INF-γ Producing Epitopes B Cell Epitopes
a IEDB Consensus b Tepitool c INFepitope d ABCPred

23–36 23–36 0.51
26–4123–37 23–37 0.53

29–43 29–43 +1
26–4130–44 30–44 +1

7–21 7–21 +1
7–226–20 6–20 +1

29–43 29–43 +1
33–4828–42 28–42 +1

MHC-II overlapped epitope segments prediction by using different tools as a IEDB consensus and b Tepitool; INF-γ
production of the overlapped epitope segments by using c INFepitope; Overlapped B cell linear epitope segments
prediction by using d ABCPred.

Table 4 gives the comprehensive analysis of overlapped epitope (>=30%), positions, subsequences
identity, and hrHPV. The conservation of selected epitopes has cross-protection to the 15 hrHPV as
shown in Figure 1.Data 2019, 4 FOR PEER REVIEW  6 
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Table 6. Validation of 3D structures of the TLR5 obtained by the I-TASSER and its refinement by the 
GalaxyRefine (named as I-T Gal) and 3Drefine (named as I-T 3DR). 

Model 
ProSA ERRAT RAMPAGE 
z-Score Overall Quality Factor Favored Region Allowed Region Outlier Region 

I-TASSER  −5.93 79.7619 635 (74.2%) 169 (19.7%) 52 (6.1%) 
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Figure 1. Conservation of two overlapped epitope segments (Epitope 1: KVEGTTIADQILRY; Epitope
2: IADQILRYGSLGVF) in fifteen hrHPV strains. Fifteen hrHPV strains conserved epitope segments
were represented in X-axis. Percentage (%) of epitope conservancy among the hrHPV strains were
showed in Y-axis.
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Table 4. Conservation across- high-risk human papillomavirus (hrHPV) strains by the overlapped
HPV58 epitope segments.

No. Epitopes Positions Protein Sub Sequences Identity (%) Name of the Strain

1 CKASGTCPPDVIPK 21–34 CKASGTCPPDVIPK 100.00 HPV52
2 21–34 CKASGTCPPDVIPK 100.00 HPV58
3 21–34 CKATGTCPPDVIPK 92.86 HPV33
4 22–35 CKAAGTCPPDVIPK 92.86 HPV35
5 21–34 CKAAGTCPPDVIPK 92.86 HPV69
6 21–34 CKAAGTCPPDVIPK 92.86 HPV82
7 21–34 CKQSGTCPPDVVPK 85.71 HPV18
8 22–35 CKAAGTCPSDVIPK 85.71 HPV31
9 21–34 CKQSGTCPPDVINK 85.71 HPV45

10 23–36 CKQAGTCPPDVIPK 85.71 HPV73
11 22–35 CKQAGTCPPDIIPK 78.57 HPV16
12 21–34 CKQSGTCPPDVVDK 78.57 HPV39
13 21–34 CKAAGTCPPDVVNK 78.57 HPV51
14 21–34 CKQSGTCPSDVINK 78.57 HPV68
15 21–34 CKLSGTCPEDVVNK 71.43 HPV56
16 21–34 CKQAGTCPSDVINK 71.43 HPV59
1 KVEGTTIADQILRY 34–47 KVEGTTIADQILRY 100.00 HPV58
2 35–48 KIEHTTIADQILRY 85.71 HPV31
3 34–47 KVEGSTIADQILKY 85.71 HPV33
4 34–47 KVEGTTIADQLLKY 85.71 HPV52
5 35–48 KVEGKTIAEQILQY 78.57 HPV16
6 35–48 KVEGNTVADQILKY 78.57 HPV35
7 36–49 KVEGSTIADNILKY 78.57 HPV73
8 34–47 KVEGTTLADKILQW 71.43 HPV18
9 34–47 KVEGTTLADKILQW 71.43 HPV39

10 34–47 KVEGTTLADKILQW 71.43 HPV45
11 34–47 KVEGTTLADKILQW 71.43 HPV51
12 34–47 KVEGTTLADKILQW 71.43 HPV59
13 34–47 KVEGTTLADKILQW 71.43 HPV68
14 34–47 KVEGTTLADKILQW 71.43 HPV82
15 34–47 KIEGSTLADKILQW 57.14 HPV69
16 34–47 KIEQKTWADRILQW 50.00 HPV56
1 IADQILRYGSLGVF 40–53 IADQILRYGSLGVF 100.00 HPV58
2 41–54 IADQILRYGSMGVF 92.86 HPV31
3 40–53 IADQILKYGSLGVF 92.86 HPV33
4 40–53 IADQLLKYGSLGVF 85.71 HPV52
5 41–54 IAEQILQYGSMGVF 78.57 HPV16
6 42–55 IADNILKYGSIGVF 78.57 HPV73
7 41–54 VADQILKYGSMAVF 71.43 HPV35
8 40–53 LADKILQWSSLGIF 57.14 HPV18
9 40–53 LADKILQWTSLGIF 57.14 HPV39

10 40–53 LADKILQWSSLGIF 57.14 HPV45
11 40–53 LADKILQWTSLGIF 57.14 HPV59
12 40–53 LADKILQWTSLGIF 57.14 HPV68
13 40–53 LADKILQWSGLGIF 50.00 HPV51
14 40–53 WADRILQWGSLFTY 50.00 HPV56
15 40–53 LADKILQWSGLGIF 50.00 HPV69
16 40–53 LADKILQWSGLGIF 50.00 HPV82

1 ADQILRYGSLGVFF 41–54 ADQILRYGSLGVFF 100.00 HPV58
2 42–55 ADQILRYGSMGVFF 92.86 HPV31
3 41–54 ADQILKYGSLGVFF 92.86 HPV33
4 41–54 ADQLLKYGSLGVFF 85.71 HPV52
5 42–55 AEQILQYGSMGVFF 78.57 HPV16
6 42–55 ADQILKYGSMAVFF 78.57 HPV35
7 43–56 ADNILKYGSIGVFF 78.57 HPV73
8 41–54 ADKILQWSSLGIFL 57.14 HPV18
9 41–54 ADKILQWTSLGIFL 57.14 HPV39

10 41–54 ADKILQWSSLGIFL 57.14 HPV45
11 41–54 ADRILQWGSLFTYF 57.14 HPV56
12 41–54 ADKILQWTSLGIFL 57.14 HPV59
13 41–54 ADKILQWTSLGIFL 57.14 HPV68
14 41–54 ADKILQWSGLGIFL 50.00 HPV51
15 41–54 ADKILQWSGLGIFL 50.00 HPV69
16 41–54 ADKILQWSGLGIFL 50.00 HPV82

Residues that are different from their corresponding residues in the reference sequence are highlighted in bold with
gray shadow. Identity indicates the number (%) of residues in the homologous sequences that are identical to the
corresponding residues in the reference sequence.
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The refined 3D structure obtained in the above section underwent quality improvement using
three potential tools: ProSA-web, RAMPAGE, and the ERRAT. The z-score (ProSA), overall quality
factor (ERRAT), and favored, allowed, and the outlier region (RAMPAGE) of the validated 3D structure
of SGD58 are given in Table 5 and TLR5 in Table 6.

Table 5. Validation of 3D structures of the designed SGD58 obtained by the iterative threading
ASSEmbly refinement (I-TASSER) and its refinement by the Galaxy Refine (named as I-T Gal) and
3Drefine (named as I-T 3DR).

Model
ProSA ERRAT RAMPAGE

z-Score Overall Quality Factor Favored Region Allowed Region Outlier Region

I-TASSER −5.76 83.2258 249 (78.8%) 44 (13.9%) 23 (7.3%)
I-T Gal1 −5.54 75.6494 282 (89.2%) 23 (7.3%) 11 (3.5%)
I-T Gal2 −5.55 75.1613 281 (88.9%) 22 (7.0%) 13 (4.1%)
I-T Gal3 −5.77 88.889 280 (88.6%) 24 (7.6%) 12 (3.8%)
I-T Gal4 −5.63 79.8701 279 (88.3%) 24 (7.6%) 13 (4.1%)
I-T Gal5 −5.75 77.7419 280 (88.6%) 24 (7.6%) 12 (3.8%)
I-T 3DR1 −5.72 86.8056 261 (82.6%) 35 (11.1%) 20 (6.3%)
I-T 3DR2 −5.72 88.8114 259 (82.0%) 32 (10.1%) 25 (7.9%)
I-T 3DR3 −5.87 88.8112 258 (81.6%) 35 (11.1%) 23 (7.3%)
I-T 3DR4 −5.86 88.8112 259 (82.0%) 30 (9.5%) 27 (8.5%)
I-T 3DR5 −5.89 80.9677 259 (82.0%) 30 (9.5%) 27 (8.5%)

The I-T Gal.3 structure was chosen as the most appropriate model, which is shown in bold.

Table 6. Validation of 3D structures of the TLR5 obtained by the I-TASSER and its refinement by the
GalaxyRefine (named as I-T Gal) and 3Drefine (named as I-T 3DR).

Model
ProSA ERRAT RAMPAGE

z-Score Overall Quality Factor Favored Region Allowed Region Outlier Region

I-TASSER −5.93 79.7619 635 (74.2%) 169 (19.7%) 52 (6.1%)
I-T Gal1 −6.52 68.9781 779 (91.0%) 71 (8.3%) 6 (0.7%)
I-T Gal2 −6.35 73.7864 778 (90.9%) 70 (8.2%) 8 (0.9%)
I-T Gal3 −6.64 73.3414 783 (91.5%) 65 (7.6%) 8 (0.9%)
I-T Gal4 −6.65 70.3163 785 (91.7%) 63 (7.4%) 8 (0.9%)
I-T Gal5 −6.61 72.6176 782 (91.4%) 68 (7.9%) 6 (0.7%)
I-T 3DR1 −6.47 85.967 699 (81.7%) 118 (13.8%) 39 (4.6%)
I-T 3DR2 −6.52 86.3208 708 (82.7%) 109 (12.7%) 39 (4.6%)
I-T 3DR3 −6.53 86.6745 714 (83.4%) 102 (11.9%) 40 (4.7%)
I-T 3DR4 −6.63 86.4387 713 (83.3%) 102 11.9%) 41 (4.8%)
I-T 3DR5 −6.77 87.6179 712 (83.2%) 103 (12.0%) 41 (4.8%)

The I-T 3DR5 structure was chosen as the most appropriate model, which is shown in bold.

From overall comparison of the results, model 3 of GalaxyRefine of SGD58 (Figure 2a) and model
5 of 3Drefine of TLR5 (Figure 2b) using UCSF Chimera were selected for further analysis.

Table 7 explains the respective amino acid, residue with contact number, propensity, and Discotope
score of the predicted B cell epitopes.
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Figure 2. Refined 3D structure of the SGD58 and mTLR5 by using UCSF Chimera. (a) The 3D structure
of the SGD58 was obtained through homology modeling by using i-TASSER, and then the best proposed
model was refined by using GalaxyRefine. (b) The 3D structure of the mouse TLR5 was obtained
through homology modeling by using i-TASSER, and then the best proposed model was refined by
using 3Drefine.

Table 7. Dis-continuous B cell epitopes identified in the refined 3D structure of designed vaccine
constructs of HPV58 by using Discotope 2.0.

S.No. Residue Number Amino Acid Contact Number Propensity Score DiscoTope Score

1 12 ASN 5 −3.272 −3.471
2 25 ILE 7 −3.159 −3.601
3 37 ALA 0 −3.037 −2.688
4 38 LYS 5 −2.621 −2.895
5 41 ALA 0 −3.549 −3.141
6 42 ALA 3 −3.414 −3.366
7 55 LYS 6 −3.291 −3.602
8 99 THR 0 −1.665 −1.474
9 101 SER 3 −1.96 −2.079
10 103 SER 0 −2.842 −2.515
11 107 SER 6 −2.739 −3.114
12 130 GLY 5 −2.944 −3.181
13 265 GLY 8 −2.67 −3.283
14 266 ASN 5 −0.617 −1.121
15 269 THR 6 −2.481 −2.886
16 270 ASN 7 −2.764 −3.251
17 284 ALA 1 −3.567 −3.272
18 288 SER 5 −3.336 −3.528

SwarmDock modeling demonstrated the list of clusters with SGD58 and TLR5 complex. The
clusters are ranked based on interacting residues between the complexes with binding energies. The
input TLR5 receptor contains 858 amino acids and SGD58 contains 2923 amino acids. The human TLR5
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sequence contains 21 different leucine-rich repeats (LRR) segments with 443 amino acids. Flagellin
contains two D1/D0 TLR binding domains in the N and C terminals of the sequence. After restraining
the residues in TLR5 (45–68, 71–93, 95–117, 120–143, 146–166, 171–192, 197–211, 214–229, 234–235,
260–284, 289–301, 313–334, 337–355, 385–401, 412–431, 449–470, 474–495, 503–524, 527–546, 549–567,
and 579–631) and in SGD58 (5–143 and 419–504) were chosen for docking. The initial preprocessing of
receptor and ligand took 20 h and 10 min, and restrained docking took 7 h and 40 min in SwarmDock
web server. In total, 352 docked complexes were obtained from the docking results. The result
demonstrated that each best model interacts with the LRR segments. The binding energies of the top
10 models are −54.74, −49.12, −49.07, −46.84, −42.57, −41.31, −40.59, −40.53, −38.78, and −33.51,
respectively. The energy function is calculated based on van der Waals and a Coulombic term on
individual interacting atoms in receptor and ligand. In addition, the highest percentage of interacting
residues (88.87%) and the lowest percentage of interacting residues (57.71%) were observed in models
1 and 9 of the SGD58 and TLR5 complex, respectively. Table 8 provides the list of top ten clusters,
binding residues, and interaction energies.

Figure 3 illustrates that potential energy (PE), temperature, total energy (TE), and pressure of
SGD58 was stable during the simulation period. The average TE of SGD58 is −7,206,525.282 with a
standard deviation of 4373.407. In addition, the average PE of SGD58 is −8,984,582.127 with a standard
deviation of 3472.905. PE and TE attained equilibrium at a temperature of 300 K. The result of the
radius of gyration (Rg) analysis is shown in Figure 4. The simultaneous changes in Rg plots of the
SGD58 and (Figure 4a) and complex with TLR5 (Figure 4b) indicate that the substantial nature of the
complex frequently increases. Rg plots compression of SGD58 with TLR5 and are similar to the RMSD
parameter, which indicates the effort of SGD58 to reach internal configuration in TLR5
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dynamic (MD) simulation for mTLR5- SGD58 complex in simulations of 20 ns.

The maximal protein expression of this optimized coding sequence in the host (E. coli) was
analyzed by the GenScript’s Optimum GeneTM codon optimization tool. Figure 5 illustrates the CAI,
GC, and CFD of the gene transcript. The gene (reverse translated coding sequence of the vaccine
construct) having ideal CAI value of 1.00 (>0.8) is more suitable for the above expression (E. coli) in the
host organism. Moreover, 59.92% of ideal GC content is presented in the gene (between 30% and 70%).
However, the outside of these peak ranges would severely inhibit the transcriptional and translational
efficiency of the gene products. The CFD value of the gene is 100%, representing their highest codon
frequency distribution in the preferred expression organism.
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Table 8. List of top ten clusters, binding residues, and interaction energy of SGD58 and TLR5 complex.

Model Number Reference
Model Number

Starting Amino
Acid in TLR5

Binding
Energy

Number of
Clusters

Total Number of
Contacts between
the SGD58 and
TLR5 Complex

Number of
Contact
Residues in
Receptor

Number of
Contact
Residues in
Ligand

Percentage of
Interacting Residues
between the SGD58 and
TLR5 Complex

Model 1 64a.pdb 112 −54.74 3 663 538 208 88.87
Model 2 63c.pdb 111 −49.12 1 1172 969 682 70.98
Model 3 57d.pdb 104 −49.07 1 731 615 361 74.89
Model 4 84d.pdb 183 −46.84 7 802 693 403 73.17
Model 5 56b.pdb 103 −42.57 7 687 459 386 81.30
Model 6 57c.pdb 104 −41.31 1 634 543 387 68.17
Model 7 72c.pdb 121 −40.59 1 668 603 506 60.23
Model 8 49c.pdb 96 −40.53 1 592 511 414 64.00
Model 9 46d.pdb 92 −38.78 2 793 604 770 57.71

Model 10 68b.pdb 115 −33.51 1 508 508 267 65.55
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Figure 5. Codon optimization and in silico cloning of the gene. (a) The gene (reverse translated coding
sequence of the vaccine construct) having ideal CAI value of 1.00 (>0.8), which is more suitable for
higher expression in the E. coli host organism. (b) The percentage of GC content in the gene is 59.92%,
which is in the ideal range of GC content (between 30 to 70%). (c) CFD value of the gene is 100%.
The value of 100 is set for the codon with the highest usage frequency for a given amino acid in the
desired expression organism.

We conclude SGD58 may prompt vaccine against cervix papilloma. This study provides insight
of vaccine design against different pathogenic microbes as well.

3. Methods

The L2 protein of HPV58 (Accession No.: P26538), flagellin of Salmonella enterica serovar Dublin
(Accession No.: Q06971), and human TLR5 (Accession No.: O60602) sequences were obtained from the
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Swiss-Prot reviewed universal protein knowledgebase (UniProt) [37]. The designed chimeric vaccine
was named SGD58, using the name of the first and principal authors along with the strain number. Two
servers—IEDB and NetMHCv4.0—have been exploited for identification of major histocompatibility
complex class I (MHC-I) binding epitopes from the N-terminal region of the L2 sequence. Specific
human MHC-I alleles such as human leukocyte antigen (HLA)-A* (01:01, 02:01, 02:07, 11:01, 24:01),
HLA-B* (46:01, 58:01), and HLA-C* (07:02, 12:03) were abundantly diagnosed in different regions
of China, including Guizhou, Henan, Taihu River Basin, Tibetan, Yunnan, Wenzhou, and Wuhan.
These 11 alleles were selected for epitope prediction [38–44]. IEDB [45] is a freely available analysis
resource with specified algorithms for the identification and determination of immunogenic epitopes.
A consensus method was implemented to predict the MHC-I binding epitopes and its production
pathway [46]. In this consensus method, three algorithms, including neural network (artificial), matrix
method (stabilized), and peptide libraries (combinatorial), were combined to predict the promising
CTL epitope segments. The epitopes involve proteasomal cleavage (pCle), transporter associated with
antigen processing (TAP), and MHC-I binding pathway. The lowest percentile rank (<10%) indicated
the good binding efficiency of epitopes with the restricted alleles. NetMHCV4.0 is another potential
tool implemented to find MHC-I binding peptides with the best Pearson’s correlation coefficient
(PCC) of 0.895, based on the combined neural network. The strong and weak binding peptides were
predicted based on the thresholds of <0.5 and <2, respectively [47]. The CTLPred tool is a direct
method for the prediction of CTL epitope segments instead of MHC binders. The prominent combined
approaches were implemented to find the epitopes, based on both the artificial neural networks
(ANN) trained by the Stuttgart neural network simulator (SNNS) and support vector machine (SVM)
methods. The combined methods demonstrate a higher level of accuracy (75.8 %) compared with other
individual methods of prediction such as ANN (72.2%) and SVM (75.4%). The default cutoff scores of
0.51 of ANN and 0.36 of SVM were used to find the epitopes or nonepitopes at which the sensitivity
and specificity of the predictions are almost similar [48]. A web server PAComplex provides access
to examine and visualize the TCR–peptide and peptide–MHC interface (pMHC), respectively. For a
given viral protein query sequence, the joint Z-value obtained with threshold 2.5. Moreover, it allows
the selection of only limited allotypes of MHC class I such as HLA-A0201, HLA-B (0801, 3501, 3508,
and 4405), and HLA-E, respectively. The Z-value was calculated using the following formula.

Jz = ZMHC × ZTCR (1)

where, ZMHC and ZTCR are the score of a TCR-pMHC complex, calculated by (E-µ)/σ. E denotes
interaction score, µ denotes mean, and σ denotes standard deviation from 10,000 random interfaces [49].
MHC-II alleles include DQB1*(03:01, 03:03, 06:01), DRB1*(07, 09, 14:01:01, 15:01, 15:07:01), and DPB1*
(05:01,05:02:01), specific to Henan, Taihu River Basin, Tibetan, Yunnan, Wenzhou, and Wuhan provinces
of China, which have been selected for epitope prediction [38–44]. The IEDB consensus approaches
were used to predict MHC-II binding epitope segments using neural network-based alignment,
stabilized matrix methods-based alignment, and combinatorial library-based algorithms [50].
The peptides with the lowest percentile rank were considered as the higher binding affinity. Tepitool is
a tool from IEDB analysis resources, which provides accession to the prediction of both class I and
II binders. The peptides which show the lowest percentile rank (IC50 < or = 500 nM) are potentially
considered as higher affinity binding peptides [51]. IFNepitope is a potential server useful for the
prediction and design of INF-γ inducing epitopes. INF-γ inducing epitopes were identified based on
motif-based SVM or hybrid algorithms. The hybrid method using residue or dipeptide composition
shows 81.39% accuracy [52]. ABCPred is used to predict linear B cell epitopes. It provides 65.93% of
accuracy with the involvement of the recurrent neural network (RNN) algorithm. It consists of 700
B cell and non-B cell epitope segment datasets each with a length of 20 amino acids [53]. AllerTOP
is the first proper alignment-free allergenicity server. In this, five machine learning methods such as
partial least squares, logistic regression, decision tree, naive Bayes, or k nearest neighbors (kNN = 1)
were implemented to find the allergen. It shows 88.7%, 90.7%, and 86.7% for accuracy, specificity, and
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sensitivity, respectively [54]. AllergenFPv 1.0 is another essential tool for the allergenicity prediction
based on novel descriptor fingerprint approaches. Twenty naturally existing amino acids in the
protein sequences were classified into five descriptors (E) such as E1 (hydrophobicity), E2 (size),
E3 (helix-forming propensity), E4 (relative abundance of amino acids), and E5 (β-strand forming
propensity). Based on this, the strings were transformed into normal vectors by ACC transformation
to find the allergen protein. It exhibits accuracy (87%), specificity (89%), and sensitivity (86%) [55].
ANTIGENpro is the potential alignment-free and sequence-based antigenicity prediction server with
79% accuracy and area under curve (AUC) of 0.89. It shows results based on amino acid composition
and random-forest algorithm. The datasets were trained using 5-fold cross-validation. It consists of
both protective antigen (193) and nonantigen (193) sequences. It predicts whether the given query
epitope segments is antigenic or nonantigenic with their respective probability [56]. The presence or
absence of similarity in predicted epitope segments with the human proteome was analyzed using
the peptide matching program of PIR [57]. The EC tool [58] was employed to find the degree of
conservancy of the epitope segments within the set of given hrHPV L2 protein sequences. The selected
epitope segments of HPV58 with 14 hrHPV (16, 18, 31, 33, 35, 39, 45, 51, 56, 59, 68, 69, 73, and 82)
strains performed the EC analysis.

The complete chimeric vaccine was designed by joining the optimized epitope segments (02),
TLR adjuvants (02), and Th epitopes (02) with suitable amino acid linkers. Moreover, it is required
to find the solubility of the designed chimeric vaccine on overexpression in E. coli. SOLpro is a
useful tool to find the solubility of protein based on the two-stage SVM algorithm. It achieves an
overall accuracy of 74%, which develops on standard evaluation metrics with 10-fold cross-validation.
It predicts the query protein to be soluble or insoluble at p >= 0.5 [59]. A range of physiochemical
characteristics of the designed chimeric vaccine was also determined through ProtParam [60]. VaxiJen
is the primary server used for prediction of antigenicity of the input sequence against different
targets such as virus, bacteria, fungi, parasites, and tumors. Antigenicity was calculated based on
the physicochemical properties of the protein sequences. Every target organism dataset contained
100 antigens and nonantigens. Moreover, the model organisms were validated using leave-one-out
cross-validation (LOO-CV): providing 89% and 0.964 of accuracy and AUC at the threshold of 0.4 [61].
I-TASSER tool was employed to design the 3D structure of SGD58 and TLR5. It is a potential server
that depends on the secondary-structure-mediated program of “Profile-Profile threading alignment
(PPA) and iterative implementation of the TASSER”. It has predicted a number of protein structures on
request basis from 35 countries in the world. For the query inputs, the user obtains the confidence score,
TM score (topology similarity assessments of the two various protein structures), root-mean-square
deviation (RMSD), and cluster density values. Nevertheless, the higher C-score (ranging from −5
to +2) determines the best model with a higher confidence level [62]. Moreover, the 3D structure
of the modeled protein was visualized using UCSF Chimera. Besides, unavailability of the crystal
structure of TLR5, we have chosen TLR5 (PDB ID: 3J0A) as a template model to perform the homology
modeling using I-TASSER. The high C-score model of the designed vaccine from the I-TASSER was
further refined using the GalaxyRefine and 3DRefine tools. The GalaxyRefine is tool accessible in
the GalaxyWeb server, is useful to refine the structure of a protein from the given query sequences
based on template-based modeling, and undergoes loop and terminus portion refinement through
the ab initio modeling method. The ninth critical assessment of techniques for protein structure
prediction (CASP9) optimizes refinement and produces consistent core structures [63]. Another tool is
3Drefine, which prompts iteration analysis for ~300 amino acid residues efficiently in less than 5 min.
It performs post-refinement model analysis with both or single MolProbity and random walk (RW)
plus methods. The results are visualized using Javascript-based molecular viewer JSmol [64]. The
top five models of each tool were used for further validation. The refined 3D models from the above
steps were validated using the three interactive services such as ProSA, Ramachandran plot analysis,
and ERRAT. ProSA-web is a potential tool for the refinement, validation, prediction, and modeling
of protein structures. It indicates the difference in the protein structures through the respective score
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and energy spot. It also facilitates the validation process of the protein structure that is acquired from
X-ray, nuclear magnetic resonance (NMR) spectroscopy analysis, and theoretical calculations. As an
output, the Z-score corresponds to the overall feature of the validated model [65]. RAMPAGE is used
to validate the percentage (%) of favored, allowed, and the outlier region in the given query chimeric
vaccine [66]. The statistics of noncovalent interactions between carbon, nitrogen, and oxygen atoms in
the input sequence with best-resolution crystallographic structures were compared using the ERRAT
tool. It implements empirical atom-based approach for verification of the protein structure and are
more sensitive to errors (1.5A) [67]. Similar steps were followed to validate the TLR5 model. DiscoTope
2.0 is a potential tool used to analyze the conformational (discontinuous) B cell epitopes from the input
sequence. It showed a highly significant prediction performance with AUC at 0.824. The default −3.7
of threshold limit provides significant specificity (0.75) and sensitivity (0.47). It was selected for the
present analysis, and the final score was evaluated by the combined calculation of the propensity score
(PS) and contact numbers [68].

The PP interactions are the midpoint for all the biochemical pathways that involved in the
biological functions. SwarmDock is a potential server for producing the 3D structure of the PP
complexes. The validated best model of the vaccine construct (GalaxyRefine 3 model), and TLR5
(3DRefine 5 model) was chosen as a ligand and receptor respectively. The SwarmDock algorithm
was implemented to perform the docking by restrained mode with the success rate of 71.6%.
The following steps are majorly involved in this server such as input structures stepped into in
preprocessing and minimization, docking by applying the hybrid algorithm of particle swarm
optimization (PSO), minimizing (CHARMM), reranking and return the clustered structures into the
users [69]. The molecular dynamics (MD) simulation determines the strength of the docked complex
and designed vaccine SGD58. GROMACS 5.1.2 package with CHARMM force field was used to
perform MD simulation. The details of MD simulation illustrated in our previous study [36]. EMBOSS
Backtranseq v1.0 [70] is a suitable tool to uptake the query protein sequences, reverse translated and
returned the optimizing coding sequences. The GenScript rare codon analysis [71] is a prominent
tool for codon usage and its distribution analysis (codon adaptation index-CAI, glycine–cystine (GC)
content, and codon frequency distribution (CFD) in the individual expression host organism based on
the Optimum GeneTM algorithm. The details of virtual gene expression and cloning illustrated in our
previous study [36]. All the supporting information deposited in Zenodo database [72].
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