Transcriptome Dataset of Soybean (Glycine max) Grown under Phosphorus-Deficient and -Sufficient Conditions
Abstract
:1. Introduction
2. Result
Archived Data Accessible to Users
3. Materials and Methods
3.1. Plant Material and Treatment
3.2. RNA Isolation, Library Preparation, and RNA Sequencing
3.3. Data Preprocessing
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Metson, G.S.; Wayant, K.A.; Childers, D.L. Introduction to P Sustainability. In Phosphorus, Food, and Our Future; Wyant, K.A., Corman, J.E., Elser, J.J., Eds.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Gaxiola, R.A.; Sanchez, C.A.; Paez-Valencia, J.; Ayre, B.G.; Elser, J.J. Genetic manipulation of a “Vacuolar” H+-PPase: From salt tolerance to yield enhancement under phosphorus-deficient soils. Plant Physiol. 2012, 159, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chang, W.; Zhang, C. Advances of soybean (Glycine max L.) phosphorus nutrition and high P-efficient germplasms screening in China. Soybean Sci. 2011, 30, 322–327. [Google Scholar]
- Zhang, D.; Liu, C.; Cheng, H.; Kan, G.; Cui, S.; Meng, Q.; Gai, J.; Yu, D. Quantitative trait loci associated with soybean tolerance to low phosphorus stress based on flower and pod abscission. Plant Breed. 2010, 129, 243–249. [Google Scholar] [CrossRef]
- Zhang, D.; Song, H.N.; Cheng, H.; Hao, D.R.; Wang, H.; Kan, G.Z.; Jin, H.X.; Yu, D.Y. The acid phosphatase-encoding gene GmACP1 contributes to soybean tolerance to low-phosphorus stress. PLoS Genet. 2014, 10, e1004061. [Google Scholar] [CrossRef] [PubMed]
- Cassman, K.G.; Whitney, A.S.; Stockinger, K.R. Root-growth and dry-matter distribution of soybean as affected by phosphorus stress, nodulation, and nitrogen-source. Crop Sci. 1980, 20, 239–244. [Google Scholar] [CrossRef]
- Olivera, M.; Tejera, N.; Iribarne, C.; Ocana, A.; Lluch, C. Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris): Effect of phosphorus. Physiol. Plant. 2004, 121, 498–505. [Google Scholar] [CrossRef]
- Jones, G.D.; Lutz, J.A.; Smith, T.J. Effects of phosphorus and potassium on soybean nodules and seed yield. Agro J. 1977, 69, 1003–1006. [Google Scholar] [CrossRef]
- Zhang, D.; Cheng, H.; Geng, L.Y.; Kan, G.Z.; Cui, S.Y.; Meng, Q.C.; Gai, J.Y.; Yu, D.Y. Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage. Euphytica 2009, 167, 313–322. [Google Scholar] [CrossRef]
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, H.; Chu, S.; Li, H.; Chi, Y.; Triebwasser-Freese, D.; Lv, H.; Yu, D. Integrating QTL mapping and transcriptomics identifies candidate genes underlying QTLs associated with soybean tolerance to low-phosphorus stress. Plant Mol. Biol. 2017, 93, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Yang, Y.M.; Zhang, H.Y.; Chu, S.S.; Zhang, X.G.; Yin, D.M.; Yu, D.Y.; Zhang, D. A genetic relationship between phosphorus efficiency and photosynthetic traits in soybean as revealed by QTL analysis using a high-density genetic map. Front. Plant Sci. 2016, 7, 924. [Google Scholar] [CrossRef] [PubMed]
- Hoagland, D.R.; Arnon, D.I. The Water-culture Method for Growing Plants without Soil. Circular, 2nd ed.; California Agricultural Experiment Station: Berkeley, CA, USA, 1950. [Google Scholar]
- Zou, H.D.; Tzarfati, R.; Hubner, S.; Krugman, T.; Fahima, T.; Abbo, S.; Saranga, Y.; Korol, A.B. Transcriptome profiling of wheat glumes in wild emmer, hulled landraces and modern cultivars. BMC Genom. 2015, 16, 777. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Shen, Y.T.; Zhou, Z.K.; Wang, Z.; Li, W.Y.; Fang, C.; Wu, M.; Ma, Y.M.; Liu, T.F.; Kong, L.A.; Peng, D.L.; et al. Global dissection of alternative splicing in paleopolyploid soybean. Plant Cell 2014, 26, 996–1008. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome. Biol. 2010, 11, R106. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
Samples | Raw Reads | Filtered Reads | NCBI SRA ID | Bioproject ID | ||
---|---|---|---|---|---|---|
Total Reads | Q30 | Total Reads | Q30 | |||
Roots+P | 21,096,949 | 86.42% | 18,064,338 | 94.95% | SRR5281856 | PRJNA356948 |
Roots−P | 21,305,403 | 85.85% | 18,258,283 | 95.33% | SRR5281855 | PRJNA356948 |
Leaves+P | 23,577,620 | 87.37% | 20,519,365 | 95.29% | SRR5281858 | PRJNA356948 |
Leaves−P | 22,291,144 | 86.07% | 18,967,411 | 94.93% | SRR5281857 | PRJNA356948 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Chu, S.; Zhang, D. Transcriptome Dataset of Soybean (Glycine max) Grown under Phosphorus-Deficient and -Sufficient Conditions. Data 2017, 2, 17. https://doi.org/10.3390/data2020017
Zhang H, Chu S, Zhang D. Transcriptome Dataset of Soybean (Glycine max) Grown under Phosphorus-Deficient and -Sufficient Conditions. Data. 2017; 2(2):17. https://doi.org/10.3390/data2020017
Chicago/Turabian StyleZhang, Hengyou, Shanshan Chu, and Dan Zhang. 2017. "Transcriptome Dataset of Soybean (Glycine max) Grown under Phosphorus-Deficient and -Sufficient Conditions" Data 2, no. 2: 17. https://doi.org/10.3390/data2020017
APA StyleZhang, H., Chu, S., & Zhang, D. (2017). Transcriptome Dataset of Soybean (Glycine max) Grown under Phosphorus-Deficient and -Sufficient Conditions. Data, 2(2), 17. https://doi.org/10.3390/data2020017