Dataset on Citizens’ Perceptions of Urban Resilience: Survey Results from Veracruz—Boca Del Río Metropolitan Area, Mexico
Abstract
1. Introduction
2. Data Description
2.1. Study Area
2.2. Dataset
3. Study Case: Preliminary Assessment of the Urban Resilience Perception by Using the Entropy Method
3.1. Methodology
- Organization to cope with disasters.
- Identification, understanding and use of risk scenarios.
- Financial capacity of the municipality, its population, and institutions.
- Urban design and development.
- Environmental capacity.
- Institutional capacity.
- Social capacity.
- Infrastructure.
- Adequate and effective response.
- Recovery and reconstruction.
3.2. Results
3.3. Conclusions
3.4. Limitations
4. Dataset Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| VBMA | Veracruz—Boca del Río Metropolitan Area |
| URI | Urban Resilience Index |
| URP | Urban Resilience Profile |
| IMPLAN | Municipal Planning Institute of the City of León, Guanajuato [Instituto Municipal de Planeación de la Ciudad de León, Guanajuato] |
| SEDATU | Secretariat of Agrarian, Territorial, and Urban Development |
| CONAPO | National Population Council |
| INEGI | National Institute of Statistics, Geography, and Informatics |
| TAMSA | Tubos de Acero de México S.A. |
References
- Galceran, M. La Reducción Del Riesgo de Los Desastres. Translación de La Agenda Global de Resiliencia al Ámbito Local. 2015. Available online: https://www.cidob.org/publicaciones/reduccion-del-riesgo-desastrestranslacion-agenda-global-resiliencia-al-ambito-local (accessed on 8 January 2026).
- González, L.; Alfonso Escudero Gómez, L.; Barreiro Quintáns, D.; Abedini, A.; Aram, F.; Khalili, A.; Mirzaei, E. Recognition and Evaluating the Indicators of Urban Resilient by Using the Network Analysis Process. Urban Sci. 2022, 6, 31. [Google Scholar] [CrossRef]
- Camacho Sanabria, J.M.; Chávez Alvarado, R.; Velázquez Torres, D. Propuesta Metodológica Para Medir La Resiliencia Urbana Ante Huracanes e Inundaciones En El Caribe Mexicano. Revista de Estudios Latinoamericanos Sobre Reducción del Riesgo de Desastres REDER 2019, 3, 28–43. [Google Scholar] [CrossRef]
- United Nations Office for Disaster Risk Reduction (UNDRR). How to Make Cities More Resilient: A Handbook for Local Government Leaders (2012); UNDRR: Geneva, Switzerland, 2017; ISBN 978-92-1-101496-9. [Google Scholar]
- United Nations Office for Disaster Risk Reduction (UNDRR). Sendai Framework for Disaster Risk Reduction 2015–2030; UNDRR: Sendai, Japan, 2015.
- ISO 37123:2019; Sustainable Cities and Communities—Indicators for Resilient Cities. International Organization for Standardization: Geneva, Switzerland, 2019. Available online: https://www.iso.org/standard/70428.html (accessed on 1 November 2025).
- Instituto Municipal de Planeación de la Ciudad de León. Perfil de Resiliencia Urbana Para La Ciudad de Nuevo León; Instituto Municipal de Planeación de la Ciudad de León: León, Guanajuato, 2016. [Google Scholar]
- Villada Estrada, P. Construcción de Un Índice de Resiliencia Urbana Frente a La Variabilidad y El Cambio Climático; Caso de Estudio: Medellín, Colombia, 2020. [Google Scholar]
- Secretaría de Desarrollo Agrario, T. y U. (SEDATU); Gobierno Municipal de Tijuana; Universidad Mexiquense del Bicentenario. Perfil de Resiliencia Urbana, Tijuana, Baja California; Diseño Editorial Rojo Red: Tijuana, Mexico, 2017. [Google Scholar]
- Secretaría de Finanzas y Planeación (SEFIPLAN). Cuadernillos Municipales: Veracruz; SEFIPLAN: Xalapa, Mexico, 2023. [Google Scholar]
- Secretaría de Finanzas y Planeación (SEFIPLAN). Cuadernillos Municipales: Boca Del Río; SEFIPLAN: Xalapa, Mexico, 2023. [Google Scholar]
- Secretaría de Finanzas y Planeación (SEFIPLAN). Cuadernillos Municipales; SEFIPLAN: Xalapa, Mexico, 2023. [Google Scholar]
- Instituto Nacional de Estadística y Geografía. Compendio de Información Geográfica Municipal 2010: Veracruz, Veracruz de Ignacio de La Llave; Instituto Nacional de Estadística y Geografía: Veracruz de Ignacio de la Llave, Mexico, 2010. [Google Scholar]
- Instituto Nacional de Estadística y Geografía. Compendio de Información Geográfica Municipal 2010: Boca Del Río, Veracruz de Ignacio de La Llave; Instituto Nacional de Estadística y Geografía: Veracruz de Ignacio de la Llave, Mexico, 2010. [Google Scholar]
- Secretaría de Desarrollo Social (SEDESOL); C.N. de P. (CONAPO); I.N. de E.G. e I. (INEGI). Delimitación de Las Zonas Metropolitanas de México; SEDESOL–CONAPO–INEGI: Mexico City, México, 2004. [Google Scholar]
- Secretaría de Desarrollo Social (SEDESOL); C.N. de P. (CONAPO); I.N. de G.E. e I. (INEGI). Metrópolis de México; SEDESOL–CONAPO–INEGI: Mexico City, México, 2024. [Google Scholar]
- Instituto Nacional de Estadística y Geografía (INEGI). Censo de Población y Vivienda 2020: Presentación de Resultados; Instituto Nacional de Estadística y Geografía: Veracruz de Ignacio de la Llave, Mexico, 2020. [Google Scholar]
- Gobierno del Estado de Veracruz. Programa de Ordenamiento Territorial de La Zona Metropolitana de Veracruz (POT ZMV); Gobierno del Estado de Veracruz: Xalapa, Mexico, 2021. [Google Scholar]
- Secretaría de Finanzas y Planeación (SEFIPLAN). Cuadernillos Municipales: Alvarado; SEFIPLAN: Xalapa, Mexico, 2023. [Google Scholar]
- Secretaría de Finanzas y Planeación (SEFIPLAN). Cuadernillos Municipales: Medellín de Bravo; SEFIPLAN: Xalapa, Mexico, 2023. [Google Scholar]
- Pérez Gutiérrez, M. Teoría Matemática de La Comunicación y Teoría Semántica de La Información on JSTOR. Teorema 1999, 18, 77–100. [Google Scholar]
- Wang, B.; Han, S.; Ao, Y.; Liao, F. Evaluation and Factor Analysis for Urban Resilience: A Case Study of Chengdu–Chongqing Urban Agglomeration. Buildings 2022, 12, 962. [Google Scholar] [CrossRef]
- Estrada García, J.M. Entropía. Asignación de Pesos No Subjetivos, Para La Valuación; Instituto Tecnológico de la Construcción: Ciudad de México, Mexico, 2002. [Google Scholar]
- Márquez-Domínguez, S.; Barradas-Hernández, J.E.; Carpio-Santamaria, F.A.; Vargas-Colorado, A.; Delgado-Reyes, G.; Piña-Flores, J.; Aguilar-Meléndez, A.; Gómez-Velasco, B.d.J.; Ramírez-González, I.; Mota-López, B.J.; et al. Hydrometeorological Resilience Assessment: The Case of the Veracruz–Boca Del Río Urban Conurbation, Mexico. Sustainability 2025, 17, 9986. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, G.; Tian, Y.; Chen, Y.; Wang, Z. Environmental Vulnerability Assessment for Mainland China Based on Entropy Method. Ecol. Indic. 2018, 91, 410–422. [Google Scholar] [CrossRef]
- Ouyang, S.; Liu, Z.W.; Li, Q.; Shi, Y.L. A New Improved Entropy Method and Its Application in Power Quality Evaluation. Adv. Mat. Res. 2013, 706–708, 1726–1733. [Google Scholar] [CrossRef]
- Kurhade, M.; Wankhade, R. An Overview on Decision Making Under Risk and Uncertainty. Int. J. Sci. Res. 2016, 5, 416–422. [Google Scholar] [CrossRef]
- Savage, L.J. The Foundations of Statistics; Dover Publications: New York, NY, USA, 1954; ISBN 0486623491. [Google Scholar]
- Wald, A. Statistical Decision Functions. In Breakthroughs in Statistics: Foundations and Basic Theory; Springer: New York, NY, USA, 1992; pp. 342–357. [Google Scholar] [CrossRef]
- Kmietowicz, Z.W.; Pearman, A.D. Decision Theory and Incomplete Knowledge; Gower: Surrey, UK, 1981; ISBN 0566003279. [Google Scholar]
- Gaspars-Wieloch, H.; Gaspars-Wieloch, H. Modifications of the Hurwicz’s Decision Rule. Cent. Eur. J. Oper. Res. 2013, 22, 779–794. [Google Scholar] [CrossRef]
- Pataki, B. A Critique of Some Classical Theories of Decisions Under Uncertainty. Polytech. Soc. Manag. Sci. 1996, 4, 79–92. [Google Scholar]
- Ayan, B.; Abacıoğlu, S.; Basilio, M.P. A Comprehensive Review of the Novel Weighting Methods for Multi-Criteria Decision-Making. Information 2023, 14, 285. [Google Scholar] [CrossRef]
- Raudeli, J.; Maqbool, R.; Du, J.; Chang, K.-H. Integrating Subjective–Objective Weights Consideration and a Combined Compromise Solution Method for Handling Supplier Selection Issues. Systems 2023, 11, 74. [Google Scholar] [CrossRef]
- Wu, R.M.X. Which Objective Weight Method Is Better: PCA or Entropy? Sci. J. Res. Rev. 2022, 3, 1–3. [Google Scholar] [CrossRef]
- Wu, R.M.X.; Zhang, Z.; Yan, W.; Fan, J.; Gou, J.; Liu, B.; Gide, E.; Soar, J.; Shen, B.; Fazal-E-Hasan, S.; et al. A Comparative Analysis of the Principal Component Analysis and Entropy Weight Methods to Establish the Indexing Measurement. PLoS ONE 2022, 17, e0262261. [Google Scholar] [CrossRef] [PubMed]
- Cherchye, L.; Moesen, W.; Rogge, N.; Puyenbroeck, T. Van An Introduction to ‘Benefit of the Doubt’ Composite Indicators. Soc. Indic. Res. 2006, 82, 111–145. [Google Scholar] [CrossRef]
- OECD; European Union; European Commission; Joint Research Centre. Handbook on Constructing Composite Indicators: Methodology and User Guide; OECD Publishing: París, France, 2008. [Google Scholar]
- Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining Objective Weights in Multiple Criteria Problems: The Critic Method. Comput. Oper. Res. 1995, 22, 763–770. [Google Scholar] [CrossRef]
- Hollnagel, E.; Pariès, J.; Woods, D.; Wreathall, J. Resilience Engineering in Practice: A Guidebook, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781317065265. [Google Scholar]
- Vieira Passos, M.; Barquet, K.; Kan, J.C.; Destouni, G.; Kalantari, Z. Hydrometeorological Resilience Assessment of Interconnected Critical Infrastructures. Sustain. Resilient Infrastruct. 2025, 10, 267–283. [Google Scholar] [CrossRef]
- Huang, Z.; Feng, C. Comprehensive Evaluation of Urban Storm Flooding Resilience by Integrating AHP–Entropy Weight Method and Cloud Model. Water 2025, 17, 2576. [Google Scholar] [CrossRef]
- Acosta Rivera, R. Estudio de La Resiliencia Aplicado a La Zona Conurbada Veracruz–Boca Del Río; Universidad Veracruzana: Boca del Río, Veracruz, 2022. [Google Scholar]
- Bahena-Ayala, R.; Arreguín-Cortés, F.I.; Cervantes-Jaimes, C.E. Assessing Resilience of Cities to Hydrometeorological Hazards. Tecnol. Y Cienc. Del Agua 2021, 12, 192–260. [Google Scholar] [CrossRef]
- Redacción Imagen del Golfo. Karl y Stan: Los 2 Huracanes Que Devastaron a Veracruz. Imagen De Veracruz, 18 September 2024. Available online: https://imagendeveracruz.mx/veracruz/Karl-y-Stan-los-2-huracanes-que-devastaron-a-Veracruz-20240918-0045.html (accessed on 8 January 2026).
- Flores Danytza. El Miedo Sigue Presente a 10 Años Del Paso de “Karl”. Inundaciones Medellín Veracruz Boca Del Río Huracán—El Sol de Orizaba | Noticias Locales, Policiacas, Sobre México, Veracruz y El Mundo. El Sol de Orizaba 2020. Available online: https://oem.com.mx/elsoldeorizaba/local/el-miedo-sigue-presente-a-10-anos-del-paso-de-karl-inundaciones-medellin-veracruz-boca-del-rio-huracan-14961364 (accessed on 8 January 2026).
- Miao, C.; Na, M.; Chen, H.; Ding, M. Urban Resilience Evaluation Based on Entropy-TOPSIS Model: A Case Study of County-Level Cities in Ningxia, Northwest China. Int. J. Environ. Sci. Technol. 2025, 22, 4187–4202. [Google Scholar] [CrossRef]
- Deng, J.; Jiao, L.; Zhu, Y.; Zhang, Y.; Song, X. Evaluation of Urban Resilience Based on Entropy Weight Cloud Model—31 Provinces in China. In Proceedings of the 25th International Symposium on Advancement of Construction Management and Real Estate; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1477–1489. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, J.; Li, X.; Zheng, H.; Liu, Y. Urban Resilience Assessment and Its Spatial Correlation from the Multidimensional Perspective: A Case Study of Four Provinces in North-South Seismic Belt, China. Sustain. Cities Soc. 2024, 101, 105109. [Google Scholar] [CrossRef]
- Gobierno del Estado de Veracruz. Ley de Protección de Datos Personales En Posesión de Sujetos Obligados Del Estado de Veracruz de Ignacio de La Llave; Gobierno del Estado de Veracruz: Veracruz, Mexico, 2025. [Google Scholar]
- Cámara de Diputados del H. Congreso de la Unión. Reglamento de La Ley General de Salud En Materia de Investigación Para La Salud; Cámara de Diputados del H. Congreso de la Unión: Mexico City, Mexico, 2014. [Google Scholar]
- Cámara de Diputados del H. Congreso de la Unión. Ley General de Salud; Cámara de Diputados del H. Congreso de la Unión: Mexico City, Mexico, 2024. [Google Scholar]





| Municipality | Population 2020 | % |
|---|---|---|
| Alvarado | 57,035 | 6.07 |
| Boca del Río | 144,550 | 15.39 |
| Jamapa | 11,132 | 1.18 |
| Manlio Fabio Altamirano | 23,918 | 2.54 |
| Medellín de Bravo | 95,202 | 10.13 |
| Veracruz | 607,209 | 64.66 |
| VBMA | 939,046 | 100.00 |
| Veracruz State | 8,062,579 | VBMA: 11.65 |
| Age Range | Number of Subjects Surveyed |
|---|---|
| 16–20 | 63 |
| 21–25 | 56 |
| 26–30 | 7 |
| 31–35 | 1 |
| 41–45 | 6 |
| 46–50 | 8 |
| 51–55 | 3 |
| +61 | 3 |
| Municipality | Population 2020 | % | Number of Respondents | % | Difference % |
|---|---|---|---|---|---|
| Veracruz | 607,209 | 67.17 | 89 | 60.54 | 6.63 |
| Boca del Río | 144,550 | 15.99 | 35 | 23.81 | −7.82 |
| Medellín de Bravo | 95,202 | 10.53 | 15 | 10.20 | 0.33 |
| Alvarado | 57,035 | 6.31 | 8 | 5.44 | 0.87 |
| Totally | 903,996 | 100.00 | 147 | 100.00 |
| Criterion | Number of Ranges | URI |
|---|---|---|
| Age | 8 | 0.4627 |
| Gender | 3 | 0.4277 |
| Municipalities | 4 | 0.4810 |
| Axes | Criterion | Average | ||
|---|---|---|---|---|
| Age | Gender | Municipality | ||
| 1 | 0.51 | 0.46 | 0.52 | 0.50 |
| 2 | 0.53 | 0.44 | 0.51 | 0.49 |
| 3 | 0.50 | 0.42 | 0.49 | 0.47 |
| 4 | 0.49 | 0.42 | 0.52 | 0.48 |
| 5 | 0.45 | 0.41 | 0.51 | 0.46 |
| 6 | 0.48 | 0.43 | 0.51 | 0.47 |
| 7 | 0.49 | 0.45 | 0.54 | 0.49 |
| 8 | 0.46 | 0.42 | 0.47 | 0.45 |
| 9 | 0.45 | 0.39 | 0.44 | 0.43 |
| 10 | 0.33 | 0.27 | 0.39 | 0.33 |
| Criterion | URI |
|---|---|
| Age | 0.4627 |
| Gender | 0.4277 |
| Municipalities | 0.4810 |
| Average | 0.4571 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Martínez-Cosío, M.d.l.Á.; Barradas-Hernández, J.E.; Márquez-Domínguez, S.; Vargas-Colorado, A.; García-Ramírez, P.J.; Ortigoza-Capetillo, G.M.; Piña-Flores, J.; Carpio-Santamaría, F.A.; Zamora-Hernández, A.; Ramírez-Martínez, E.A.; et al. Dataset on Citizens’ Perceptions of Urban Resilience: Survey Results from Veracruz—Boca Del Río Metropolitan Area, Mexico. Data 2026, 11, 13. https://doi.org/10.3390/data11010013
Martínez-Cosío MdlÁ, Barradas-Hernández JE, Márquez-Domínguez S, Vargas-Colorado A, García-Ramírez PJ, Ortigoza-Capetillo GM, Piña-Flores J, Carpio-Santamaría FA, Zamora-Hernández A, Ramírez-Martínez EA, et al. Dataset on Citizens’ Perceptions of Urban Resilience: Survey Results from Veracruz—Boca Del Río Metropolitan Area, Mexico. Data. 2026; 11(1):13. https://doi.org/10.3390/data11010013
Chicago/Turabian StyleMartínez-Cosío, María de los Ángeles, José Eriban Barradas-Hernández, Sergio Márquez-Domínguez, Alejandro Vargas-Colorado, Pedro Javier García-Ramírez, Gerardo Mario Ortigoza-Capetillo, José Piña-Flores, Franco Antonio Carpio-Santamaría, Abigail Zamora-Hernández, Erick Alejandro Ramírez-Martínez, and et al. 2026. "Dataset on Citizens’ Perceptions of Urban Resilience: Survey Results from Veracruz—Boca Del Río Metropolitan Area, Mexico" Data 11, no. 1: 13. https://doi.org/10.3390/data11010013
APA StyleMartínez-Cosío, M. d. l. Á., Barradas-Hernández, J. E., Márquez-Domínguez, S., Vargas-Colorado, A., García-Ramírez, P. J., Ortigoza-Capetillo, G. M., Piña-Flores, J., Carpio-Santamaría, F. A., Zamora-Hernández, A., Ramírez-Martínez, E. A., & Barrera-Jiménez, D. d. J. (2026). Dataset on Citizens’ Perceptions of Urban Resilience: Survey Results from Veracruz—Boca Del Río Metropolitan Area, Mexico. Data, 11(1), 13. https://doi.org/10.3390/data11010013

