Validation of Anthropogenic Emission Inventories in Japan: A WRF-Chem Comparison of PM2.5, SO2, NOx and CO Against Observations
Abstract
1. Introduction
- Representation accuracy: How well do REAS, CAMS-GLOB-ANT, ECLIPSE, and HTAP replicate observed PM2.5, NOx, SO2 and CO concentrations in Japan?
- Regional performance: How does the agreement between each inventory and observations vary across Japan’s major geographic regions?
2. Materials and Methods
2.1. WRF-Chem Description
2.2. Biogenic Emissions
2.3. Anthropogenic Emissions
2.3.1. REAS
2.3.2. CAMS-GLOB-ANT
2.3.3. ECLIPSE V6b
2.3.4. HTAP V3
2.4. Observation Dataset
2.5. Data Pre-Processing
- Data retrieval: Monthly emissions of PM2.5, SO2, CO, and NOx for 2010 and 2015 were downloaded in ASCII or NetCDF format from the repositories of the four anthropogenic inventories—REAS v3.2.1, CAMS-GLOB-ANT v6.2, ECLIPSE v6b and HTAP v3. Observation data came from the NIES Air-Pollution Monitoring platform. Meteorological boundary conditions were taken from the 0.25° NCEP-FNL analyses; chemical boundaries from the CAM-Chem reanalysis; land-cover from MODIS; and topography from GTOPO30. Natural-source inventories comprised FINN v1.5 (biomass burning) and MEGAN v2.1 (biogenic VOCs).
- Reprojection: All emissions were imported into GRASS GIS v8.1 and re-projected from their native geographic grids to the Lambert conformal conic 10 km × 10 km projection used by WRF-Chem.
- Sector aggregation: Inventory-specific sectors—6 in REAS, 11 in CAMS-GLOB-ANT, 10 in ECLIPSE, and 16 in HTAP—were collapsed into four common categories: residential & other, industry, energy, and transportation (see Tables S1–S4). This harmonization enables cross-inventory sectoral comparisons.
- Unit conversion: Monthly totals (t month−1) were converted to kg m−2 s−1, the unit required by WRF-Chem. Additional species such as NMVOCs and NH3 were included in the simulations but are not evaluated in this paper.
- Post-processing & evaluation: After each model run, spatial distributions of PM2.5, SO2, CO, and NOx were plotted. Regional mean concentrations were calculated for 2010 and 2015; model skill was assessed with root-mean-square error (RMSE) and mean bias against observations.
2.6. Comparison of Anthropogenic Emission Across Inventories
3. Results
3.1. Surface PM2.5 Concentration
3.2. Surface SO2 Concentration
3.3. Surface CO Concentration
3.4. Surface NOx Concentration
4. Discussion
4.1. Systematic over- and Under-Estimation Patterns
4.2. Regional and Pollutant Contrasts
4.3. Implications for Air Quality Modeling and Policy
4.4. Limitations of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Pollutants & Compounds | |
PM2.5 | Fine Particulate Matter (particles with diameter ≤ 2.5 μm) |
SO2 | Sulfur Dioxide |
NOx | Nitrogen Oxides (includes NO and NO2) |
CO | Carbon Monoxide |
HONO | Nitrous Acid |
Emission Inventories | |
REAS | Regional Emission inventory in Asia |
CAMS-GLOB-ANT | Copernicus Atmosphere Monitoring Service Global Anthropogenic Emissions |
ECLIPSE | Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants |
HTAP | Hemispheric Transport of Air Pollution |
Models & Datasets | |
WRF-Chem | Weather Research and Forecasting Model coupled with Chemistry |
MODIS | Moderate Resolution Imaging Spectroradiometer |
GTOPO30 | Global 30 Arc-Second Elevation Dataset |
NCEP FNL | National Centers for Environmental Prediction Final Analysis |
CAM-Chem | Community Atmosphere Model with Chemistry |
MOZART-4 | Model for Ozone and Related Chemical Tracers, version 4 |
MOSAIC | Model for Simulating Aerosol Interactions and Chemistry |
GOCART | Goddard Chemistry Aerosol Radiation and Transport |
FINN | Fire INventory from NCAR |
MEGAN | Model of Emissions of Gases and Aerosols from Nature |
Other Terms | |
RMSE | Root Mean Square Error |
NCAR | National Center for Atmospheric Research |
References
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 5 February 2025).
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air-pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; Breysse, P.N.; et al. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef]
- Pope, C.A., III; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Ministry of the Environment, Japan. Annual Report on the Environment, the Sound Material-Cycle Society and Biodiversity in Japan 2023; Ministry of the Environment: Tokyo, Japan, 2023; Available online: https://www.env.go.jp/content/000175165.pdf (accessed on 12 January 2025).
- Zhang, Q.; Jiang, X.; Tong, D.; Davis, S.J.; Zhao, H.; Geng, G.; Feng, T.; Zheng, B.; Lu, Z.; Streets, D.G.; et al. Transboundary health impacts of transported global air pollution and international trade. Nature 2017, 543, 705–709. [Google Scholar] [CrossRef]
- Soulie, A.; Granier, C.; Darras, S.; Zilbermann, N.; Doumbia, T.; Guevara, M.; Jalkanen, J.-P.; Keita, S.; Liousse, C.; Crippa, M.; et al. Global anthropogenic emissions (CAMS-GLOB-ANT) for the Copernicus Atmosphere Monitoring Service simulations of air quality forecasts and reanalyses. Earth Syst. Sci. Data 2024, 16, 2261–2279. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Huang, G.; Guizzardi, D.; Koffi, E.; Muntean, M.; Schieberle, C.; Friedrich, R.; Janssens-Maenhout, G. High-resolution temporal profiles in the Emissions Database for Global Atmospheric Research. Sci. Data 2020, 7, 121. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, J.; Ohara, T. Long-term historical trends in air-pollutant emissions in Asia: REAS version 3. Atmos. Chem. Phys. 2020, 20, 12761–12793. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Kurokawa, J.I.; Woo, J.H.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R.; et al. MIX: A mosaic Asian anthropogenic emission inventory. Atmos. Chem. Phys. 2017, 17, 935–963. [Google Scholar] [CrossRef]
- Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Dentener, F.; Muntean, M.; Pouliot, G.; Keating, T.; Zhang, Q.; Kurokawa, J.; Wankmüller, R.; et al. HTAP_v2.2: A mosaic of regional and global emission grid maps. Atmos. Chem. Phys. 2015, 15, 11411–11432. [Google Scholar] [CrossRef]
- Thunis, P.; Crippa, M.; Cuvelier, C.; Guizzardi, D.; de Meij, A.; Oreggioni, G.; Pisoni, E. Sensitivity of air quality modelling to different emission inventories: A case study over Europe. Atmos. Environ. X 2021, 10, 100111. [Google Scholar] [CrossRef]
- Guttikunda, S.K.; Goel, R.; Pant, P. Nature of air pollution, emission sources, and management in Indian cities. Atmos. Environ. 2014, 95, 501–510. [Google Scholar] [CrossRef]
- Stohl, A.; Aamaas, B.; Amann, M.; Baker, L.H.; Bellouin, N.; Berntsen, T.K.; Boucher, O.; Cherian, R.; Collins, W.; Daskalakis, N.; et al. Evaluating the climate and air quality impacts of short-lived pollutants. Atmos. Chem. Phys. 2015, 15, 10529–10566. [Google Scholar] [CrossRef]
- Nishitateno, S.; Burke, P.J.; Arimura, T.H. Road traffic flow and air pollution concentrations: Evidence from Japan. Int. J. Econ. Policy Stud. 2024, 18, 357–385. [Google Scholar] [CrossRef]
- Qu, Z.; Henze, D.K.; Worden, H.M.; Jiang, Z.; Gaubert, B.; Theys, N.; Wang, W. Sector-Based Top-Down Estimates of NOx, SO2, and CO Emissions in East Asia (2005–2012). Geophys. Res. Lett. 2022, 49, e2021GL096009. [Google Scholar] [CrossRef]
- Klimont, Z.; Kupiainen, K.; Heyes, C.; Purohit, P.; Cofala, J.; Rafaj, P.; Borken-Kleefeld, J.; Schöpp, W. Global anthropogenic emissions of particulate matter including black carbon. Atmos. Chem. Phys. 2017, 17, 8681–8723. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S.R.; Stuefer, M.; Fast, J.D. Inclusion of biomass burning in WRF-Chem: Impact of wildfires on weather forecasts. Atmos. Chem. Phys. 2011, 11, 5289–5303. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- National Center for Atmospheric Research (NCAR). NCEP FNL Operational Model Global Tropospheric Analyses, Continuing from July 1999. Research Data Archive. Available online: https://doi.org/10.5065/D6M043C6 (accessed on 12 March 2025).
- Lamarque, J.-F.; Emmons, L.K.; Hess, P.G.; Kinnison, D.E.; Tilmes, S.; Vitt, F.; Heald, C.L.; Holland, E.A.; Lauritzen, P.H.; Neu, J.L.; et al. CAM-chem: Description and Evaluation of Interactive Atmospheric Chemistry in the Community Earth System Model. Geosci. Model Dev. 2012, 5, 369–411. [Google Scholar] [CrossRef]
- Emmons, L.K.; Walters, S.; Hess, P.G.; Lamarque, J.-F.; Pfister, G.G.; Fillmore, D.; Granier, C.; Guenther, A.; Kinnison, D.; Laepple, T.; et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev. 2010, 3, 43–67. [Google Scholar] [CrossRef]
- Zaveri, R.A.; Easter, R.C.; Fast, J.D.; Peters, L.K. Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). J. Geophys. Res. 2008, 113, D13204. [Google Scholar] [CrossRef]
- Ginoux, P.; Chin, M.; Tegen, I.; Prospero, J.M.; Holben, B.; Dubovik, O.; Lin, S.J. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. 2001, 106, 20255–20273. [Google Scholar] [CrossRef]
- Morrison, H.; Curry, J.A.; Khvorostyanov, V.I. A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci. 2005, 62, 1665–1677. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S.R. A scale- and aerosol-aware stochastic convective parameterization for weather and air-quality modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A revised scheme for the WRF surface-layer formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R. Implementation and verification of the unified Noah land-surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 11–15 January 2004; American Meteorological Society: Seattle, WA, USA, 2004. Paper 14.2A. [Google Scholar]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Wesely, M.L. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos. Environ. 1989, 23, 1293–1304. [Google Scholar] [CrossRef]
- Wiedinmyer, C.; Akagi, S.K.; Yokelson, R.J.; Emmons, L.K.; Al-Saadi, J.A.; Orlando, J.J.; Soja, A. The Fire INventory from NCAR (FINN): A high-resolution global model to estimate the emissions from open burning. Geosci. Model Dev. 2011, 4, 625–641. [Google Scholar] [CrossRef]
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN 2.1). Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef]
- Huang, G.; Brook, R.; Crippa, M.; Janssens-Maenhout, G.; Schieberle, C.; Dore, C.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Friedrich, R. Speciation of anthropogenic emissions of non-methane VOCs: A global gridded dataset for 1970–2012. Atmos. Chem. Phys. 2017, 17, 7683–7701. [Google Scholar] [CrossRef]
- National Institute for Environmental Studies (NIES). Atmospheric Environmental Regional Observation System (AEROS)/Air-Pollution Monitoring Data Download Service. Available online: https://tenbou.nies.go.jp/download/ (accessed on 30 January 2025).
- Central Environment Council (CEC). Future Policy for Motor Vehicle Emission Reduction (Seventh Report); Ministry of the Environment: Tokyo, Japan, 2003; Available online: https://www.env.go.jp/en/air/aq/mv/vehicle-7th.pdf (accessed on 5 May 2025).
- TransportPolicy.net. Japan: Fuels—Diesel and Gasoline. Available online: https://www.transportpolicy.net/standard/japan-fuels-diesel-and-gasoline/ (accessed on 5 May 2025).
- Itahashi, S.; Yamaji, K.; Chatani, S.; Kitayama, K.; Morino, Y.; Nagashima, T.; Saito, M.; Takigawa, M.; Morikawa, T.; Kanda, I.; et al. Model Performance Differences in Fine-Mode Nitrate Aerosol during Wintertime over Japan in the J-STREAM Model Inter-Comparison Study. Atmosphere 2020, 11, 511. [Google Scholar] [CrossRef]
- Itahashi, S.; Hatakeyama, S.; Shimada, K.; Takami, A. Sources of High Sulfate Aerosol Concentration Observed at Cape Hedo in Spring 2012. Aerosol and Air Qual. Res. 2019, 19, 587–600. [Google Scholar] [CrossRef]
- Li, M.; Liu, H.; Geng, G.; Hong, C.; Liu, F.; Song, Y.; Tong, D.; Zheng, B.; Cui, H.; Man, H.; et al. Anthropogenic Emission Inventories in China: A Review. Natl. Sci. Rev. 2017, 4, 834–866. [Google Scholar] [CrossRef]
- Sadanaga, Y.; Shibata, S.; Hamana, M.; Takenaka, N.; Bandow, H. Weekday/Weekend Difference of Ozone and Its Precursors in Urban Areas of Japan, Focusing on Nitrogen Oxides and Hydrocarbons. Atmos. Environ. 2008, 42, 4708–4723. [Google Scholar] [CrossRef]
- Yamaji, K.; Li, J.; Uno, I.; Kanaya, Y.; Irie, H.; Takigawa, M.; Komazaki, Y.; Pochanart, P.; Liu, Y.; Tanimoto, H.; et al. Impact of open crop residual burning on air quality over Central Eastern China during the Mount Tai Experiment 2006 (MTX2006). Atmos. Chem. Phys. 2010, 10, 7353–7368. [Google Scholar] [CrossRef]
- Miyazaki, K.; Eskes, H.; Sudo, K.; Boersma, K.F.; Bowman, K.; Kanaya, Y. Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation. Atmos. Chem. Phys. 2017, 17, 807–820. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of improved PM2.5 air quality in China. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef]
Setting | Schemes | References |
---|---|---|
Chemistry and aerosols scheme | MOZART-MOSAIC | [22,23] |
Dust aerosols | GOCART | [24] |
Microphysics | Morrison double-moment | [25] |
Cumulus parameterization | New Grell 3D | [26] |
Surface layer | MM5 Monin-obukhov | [27] |
Land surface model | Unified Noah land-surface model | [28] |
Planetary boundary layer | YSU | [29] |
Long- and short-wave radiation | RRTMG | [30] |
Deposition | Wesely | [31] |
Inventories | Sectors | Hokkaido | Tohoku | Kanto | Chubu | Kinki | Chugoku | Shikoku | Kyushu |
---|---|---|---|---|---|---|---|---|---|
REAS | Residential and other sectors | 6792 | 20,208 | 38,808 | 23,796 | 20,820 | 8508 | 3576 | 14,040 |
Industry | 22,572 | 30,084 | 104,460 | 67,404 | 70,500 | 98,868 | 13,524 | 135,924 | |
Energy | 4440 | 4452 | 5640 | 4584 | 4344 | 6720 | 1176 | 3288 | |
Transportation | 29,196 | 49,728 | 106,800 | 83,928 | 71,748 | 31,020 | 14,712 | 50,508 | |
TOTAL | 63,000 | 104,472 | 255,708 | 179,712 | 167,412 | 145,116 | 32,988 | 203,760 | |
CAMS-GLOB-ANT | Residential and other sectors | 11,184 | 15,828 | 51,168 | 30,612 | 28,044 | 10,020 | 5352 | 20,952 |
Industry | 3792 | 16,224 | 44,928 | 18,432 | 32,016 | 12,288 | 4608 | 16,680 | |
Energy | 1212 | 2640 | 9756 | 3024 | 4224 | 1812 | 1932 | 5568 | |
Transportation | 19,296 | 36,420 | 42,780 | 54,732 | 34,260 | 26,916 | 14,652 | 36,504 | |
TOTAL | 35,484 | 71,112 | 148,632 | 106,800 | 98,544 | 51,036 | 26,544 | 79,704 | |
ECLIPSE | Residential and other sectors | 38,808 | 144,732 | 111,156 | 138,312 | 65,040 | 35,532 | 20,568 | 104,796 |
Industry | 11,832 | 26,844 | 97,764 | 88,140 | 148,716 | 33,480 | 24,504 | 19,080 | |
Energy | 4584 | 9324 | 21,492 | 13,020 | 26,412 | 14,280 | 6600 | 25,788 | |
Transportation | 26,712 | 54,888 | 109,068 | 102,552 | 86,736 | 36,420 | 30,948 | 66,204 | |
TOTAL | 81,936 | 235,788 | 339,480 | 342,024 | 326,904 | 119,712 | 82,620 | 215,868 | |
HTAP | Residential and other sectors | 41,352 | 38,124 | 48,552 | 39,528 | 24,720 | 12,960 | 6900 | 27,912 |
Industry | 8604 | 14,400 | 36,132 | 34,116 | 25,560 | 19,872 | 9396 | 17,832 | |
Energy | 1692 | 2592 | 1632 | 1512 | 984 | 2916 | 2052 | 3756 | |
Transportation | 40,056 | 64,284 | 130,104 | 125,856 | 98,064 | 52,536 | 33,408 | 98,112 | |
TOTAL | 91,704 | 119,400 | 216,420 | 201,012 | 149,328 | 88,284 | 51,756 | 147,612 |
Inventories | Sectors | Hokkaido | Tohoku | Kanto | Chubu | Kinki | Chugoku | Shikoku | Kyushu |
---|---|---|---|---|---|---|---|---|---|
REAS | Residential and other sectors | 35,964 | 93,612 | 277,644 | 152,244 | 151,896 | 56,664 | 22,068 | 101,292 |
Industry | 57,996 | 149,340 | 648,168 | 421,692 | 406,320 | 669,888 | 163,056 | 755,076 | |
Energy | 167,484 | 81,348 | 209,988 | 104,604 | 220,152 | 229,584 | 57,420 | 90,708 | |
Transportation | 5016 | 9048 | 19,620 | 15,324 | 12,768 | 5424 | 2640 | 9240 | |
TOTAL | 266,460 | 333,348 | 1,155,420 | 693,864 | 791,136 | 961,560 | 245,184 | 956,316 | |
CAMS-GLOB-ANT | Residential and other sectors | 91,248 | 171,840 | 589,464 | 330,300 | 344,796 | 116,100 | 64,344 | 227,244 |
Industry | 168,072 | 601,308 | 1,664,880 | 766,560 | 1,228,512 | 546,024 | 205,368 | 611,496 | |
Energy | 185,412 | 271,968 | 747,348 | 248,220 | 328,596 | 203,904 | 230,280 | 636,804 | |
Transportation | 12,924 | 14,724 | 27,648 | 30,732 | 31,992 | 19,476 | 29,808 | 40,884 | |
TOTAL | 457,656 | 1,059,840 | 3,029,340 | 1,375,812 | 1,933,896 | 885,504 | 529,800 | 1,516,428 | |
ECLIPSE | Residential and other sectors | 21,720 | 60,432 | 87,840 | 75,540 | 66,660 | 50,964 | 16,272 | 48,276 |
Industry | 37,644 | 150,240 | 470,676 | 790,944 | 436,992 | 235,296 | 228,096 | 130,128 | |
Energy | 51,372 | 101,448 | 230,268 | 137,232 | 194,328 | 123,396 | 62,208 | 283,692 | |
Transportation | 17,772 | 41,052 | 87,576 | 83,652 | 223,788 | 64,740 | 152,112 | 143,160 | |
TOTAL | 128,508 | 353,172 | 876,360 | 1,087,368 | 921,768 | 474,396 | 458,688 | 605,256 | |
HTAP | Residential and other sectors | 73,236 | 114,420 | 258,300 | 184,440 | 140,100 | 55,848 | 36,132 | 119,040 |
Industry | 105,228 | 137,760 | 377,220 | 331,380 | 291,336 | 286,536 | 128,472 | 212,508 | |
Energy | 181,476 | 103,572 | 58,284 | 99,000 | 72,132 | 181,668 | 69,084 | 225,060 | |
Transportation | 29,496 | 29,784 | 90,576 | 74,052 | 79,320 | 69,852 | 74,616 | 156,552 | |
TOTAL | 389,436 | 385,536 | 784,380 | 688,872 | 582,888 | 593,904 | 308,304 | 713,160 |
Inventories | Sectors | Hokkaido | Tohoku | Kanto | Chubu | Kinki | Chugoku | Shikoku | Kyushu |
---|---|---|---|---|---|---|---|---|---|
REAS | Residential and other sectors | 253,884 | 589,488 | 1,331,508 | 822,576 | 685,056 | 283,956 | 154,464 | 501,504 |
Industry | 785,244 | 657,660 | 3,371,124 | 2,277,468 | 2,381,172 | 2,908,908 | 635,628 | 1,619,844 | |
Energy | 134,724 | 64,728 | 223,404 | 127,584 | 175,776 | 163,536 | 33,900 | 67,692 | |
Transportation | 1,336,644 | 3,080,436 | 9,065,676 | 6,008,928 | 5,129,484 | 2,040,804 | 1,083,720 | 3,786,204 | |
TOTAL | 2,510,496 | 4,392,312 | 1,399,1712 | 9,236,556 | 8,371,488 | 5,397,204 | 1,907,712 | 5,975,244 | |
CAMS-GLOB-ANT | Residential and other sectors | 306,888 | 531,420 | 1,477,728 | 968,328 | 819,936 | 328,452 | 168,864 | 657,324 |
Industry | 84,840 | 364,896 | 6,677,304 | 430,548 | 2,742,300 | 267,252 | 102,924 | 5,615,712 | |
Energy | 36,756 | 86,928 | 1,389,108 | 199,908 | 423,456 | 91,632 | 60,804 | 633,528 | |
Transportation | 2,324,952 | 4,873,452 | 5,199,948 | 6,786,852 | 3,897,216 | 3,238,548 | 1,769,640 | 4,932,252 | |
TOTAL | 2,753,436 | 5,856,696 | 14,744,088 | 8,385,636 | 7,882,908 | 3,925,884 | 2,102,232 | 11,838,816 | |
ECLIPSE | Residential and other sectors | 240,948 | 1,035,444 | 603,372 | 724,560 | 376,044 | 189,276 | 83,952 | 534,732 |
Industry | 430,188 | 1,255,224 | 4,125,792 | 3,371,820 | 8,197,884 | 839,064 | 1,185,000 | 695,628 | |
Energy | 63,744 | 150,312 | 303,840 | 255,972 | 270,216 | 127,116 | 66,516 | 244,392 | |
Transportation | 892,212 | 2,007,744 | 5,700,444 | 4,109,748 | 2,641,056 | 1,265,820 | 575,124 | 2,163,684 | |
TOTAL | 1,627,092 | 4,448,724 | 10,733,448 | 8,462,100 | 11,485,200 | 2,421,276 | 1,910,592 | 3,638,436 | |
HTAP | Residential and other sectors | 319,788 | 263,544 | 621,228 | 386,244 | 112,968 | 112,968 | 65,208 | 270,456 |
Industry | 625,572 | 861,720 | 2,270,064 | 1,789,320 | 1,617,240 | 1,494,924 | 681,156 | 1,619,148 | |
Energy | 117,624 | 183,228 | 26,400 | 85,512 | 16,920 | 143,448 | 65,376 | 204,384 | |
Transportation | 1,746,876 | 3,970,992 | 9,236,640 | 7,591,056 | 5,895,660 | 2,574,636 | 1,488,888 | 5,328,672 | |
TOTAL | 2,809,860 | 5,279,484 | 12,154,332 | 9,852,132 | 7,642,788 | 4,325,976 | 2,300,628 | 7,422,660 |
Inventories | Sectors | Hokkaido | Tohoku | Kanto | Chubu | Kinki | Chugoku | Shikoku | Kyushu |
---|---|---|---|---|---|---|---|---|---|
REAS | Residential and other sectors | 97,800 | 277,704 | 769,140 | 429,384 | 390,744 | 165,060 | 73,260 | 275,856 |
Industry | 225,024 | 376,596 | 1,798,428 | 931,752 | 998,568 | 1,051,656 | 153,564 | 756,060 | |
Energy | 219,540 | 154,992 | 649,236 | 307,356 | 425,400 | 410,748 | 77,916 | 192,204 | |
Transportation | 620,772 | 1,134,432 | 2,707,404 | 2,009,772 | 1,749,528 | 710,028 | 360,672 | 1,197,372 | |
TOTAL | 1,163,136 | 1,943,724 | 5,924,208 | 3,678,264 | 3,564,240 | 2,337,492 | 665,412 | 2,421,492 | |
CAMS-GLOB-ANT | Residential and other sectors | 93,624 | 130,164 | 475,044 | 253,596 | 258,528 | 81,132 | 45,720 | 170,100 |
Industry | 96,312 | 294,600 | 1,026,348 | 415,728 | 717,588 | 357,108 | 127,524 | 408,744 | |
Energy | 150,264 | 328,980 | 1,457,244 | 506,604 | 631,656 | 258,132 | 241,296 | 536,880 | |
Transportation | 346,428 | 637,224 | 760,128 | 975,648 | 631,668 | 493,416 | 280,260 | 654,732 | |
TOTAL | 686,628 | 1,390,968 | 3,718,764 | 2,151,576 | 2,239,440 | 1,189,788 | 694,800 | 1,770,456 | |
ECLIPSE | Residential and other sectors | 124,464 | 260,652 | 395,784 | 280,416 | 217,812 | 130,512 | 55,908 | 175,272 |
Industry | 68,256 | 208,332 | 915,456 | 805,476 | 572,136 | 415,752 | 125,256 | 199,680 | |
Energy | 95,040 | 164,916 | 442,728 | 346,092 | 373,776 | 153,888 | 66,480 | 417,852 | |
Transportation | 292,548 | 613,032 | 1,514,316 | 1,201,836 | 1,082,712 | 435,468 | 403,644 | 801,120 | |
TOTAL | 580,308 | 1,246,932 | 3,268,284 | 2,633,820 | 2,246,436 | 1,135,620 | 651,288 | 1,593,924 | |
HTAP | Residential and other sectors | 236,088 | 293,916 | 737,640 | 472,320 | 395,100 | 143,892 | 85,716 | 303,156 |
Industry | 238,920 | 321,732 | 909,048 | 760,860 | 723,960 | 588,348 | 279,660 | 556,056 | |
Energy | 125,892 | 260,976 | 160,356 | 183,540 | 111,732 | 232,344 | 96,564 | 276,360 | |
Transportation | 551,388 | 937,836 | 2,195,904 | 1,805,016 | 1,423,428 | 688,188 | 439,320 | 1,299,336 | |
TOTAL | 1,152,288 | 1,814,460 | 4,002,948 | 3,221,736 | 2,654,220 | 1,652,772 | 901,260 | 2,434,908 |
Inventories | Metrics | Year | Hokkaido | Tohoku | Kanto | Chubu | Kinki | Chugoku | Shikoku | Kyushu | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
Observed | Mean | 2010 | 4.36 | 11.63 | 16.06 | 12.93 | 15.97 | 18.83 | 15.27 | 13.22 | 14.55 |
Mean | 2015 | 9.03 | 10.91 | 12.26 | 11.78 | 12.5 | 14.03 | 14.18 | 15.18 | 12.80 | |
REAS | Mean | 2010 | 13.3 | 4.01 | 22.3 | 7.9 | 22.27 | 34.87 | 4.35 | 36.91 | 18.42 |
RMSE | 9.92 | 8.83 | 10.9 | 13.02 | 17.63 | 26.76 | 11.37 | 47.28 | 20.77 | ||
MBIAS 1 | 8.94 | −7.62 | 6.24 | −5.03 | 6.3 | 16.05 | −10.92 | 23.68 | 3.87 | ||
Mean | 2015 | 10.09 | 2.81 | 12.45 | 6.76 | 10.9 | 15.29 | 2.82 | 14.39 | 10.28 | |
RMSE | 12.54 | 9.32 | 9.28 | 11.38 | 11.33 | 18.97 | 12.14 | 26.97 | 15.59 | ||
MBIAS | 1.06 | −8.1 | 0.19 | −5.01 | −1.61 | 1.26 | −11.36 | −0.79 | −2.52 | ||
CAMS-GLOB-ANT | Mean | 2010 | 9.96 | 6.8 | 16.77 | 5.16 | 11.59 | 3.05 | 3.6 | 10.13 | 9.33 |
RMSE | 6.76 | 9.6 | 12.98 | 10.1 | 15.29 | 16.71 | 12.16 | 19.87 | 13.72 | ||
MBIAS | 5.61 | −4.83 | 0.71 | −7.77 | −4.37 | −15.77 | −11.66 | −3.1 | −5.22 | ||
Mean | 2015 | 4.41 | 2.66 | 6.28 | 3.47 | 4.95 | 2.84 | 2.19 | 2.78 | 4.05 | |
RMSE | 5.95 | 9.56 | 9.5 | 9.54 | 10.37 | 12.48 | 12.7 | 13.48 | 10.86 | ||
MBIAS | −4.62 | −8.25 | −5.98 | −8.3 | −7.55 | −11.19 | −11.99 | −12.4 | −8.76 | ||
ECLIPSE | Mean | 2010 | 11.75 | 7 | 50.29 | 15.65 | 51.9 | 12.04 | 15.22 | 15.72 | 29.80 |
RMSE | 9.2 | 6.93 | 41.26 | 18.36 | 53.22 | 10.82 | 8.49 | 14.7 | 33.45 | ||
MBIAS | 7.39 | −4.63 | 34.23 | 2.72 | 35.93 | −6.79 | −0.05 | 2.5 | 15.25 | ||
Mean | 2015 | 7.36 | 8.02 | 25.96 | 16.81 | 33.51 | 8.23 | 11.2 | 9.93 | 18.50 | |
RMSE | 4.94 | 7.64 | 23.42 | 18.76 | 37.52 | 9.2 | 8.73 | 8.2 | 21.38 | ||
MBIAS | −1.67 | −2.9 | 13.7 | 5.04 | 21.01 | −5.8 | −2.98 | −5.25 | 5.70 | ||
HTAP | Mean | 2010 | 53.05 | 12.12 | 35.6 | 12.24 | 22.78 | 10.68 | 23.45 | 31.99 | 22.25 |
RMSE | 49.36 | 8.59 | 41.28 | 8.27 | 17.99 | 10.86 | 17.11 | 31.32 | 24.12 | ||
MBIAS | 48.7 | 0.49 | 19.54 | −0.68 | 6.81 | −8.15 | 8.19 | 18.77 | 7.71 | ||
Mean | 2015 | 15 | 6.13 | 11.89 | 9.1 | 9.82 | 8.81 | 9.29 | 7.51 | 9.42 | |
RMSE | 12.4 | 7.92 | 14.28 | 9.83 | 11.09 | 10.49 | 13.44 | 11.96 | 11.72 | ||
MBIAS | 5.97 | −4.78 | −0.37 | −2.68 | −2.68 | −5.22 | −4.89 | −7.67 | −3.38 |
Inventories | Metrics | Year | Hokkaido | Tohoku | Kanto | Chubu | Kinki | Chugoku | Shikoku | Kyushu | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
Observed | Mean | 2010 | 6.54 | 3.07 | 5.11 | 5.07 | 6.97 | 6.1 | 10.74 | 7.55 | 5.93 |
Mean | 2015 | 3.57 | 2.19 | 3.59 | 4.18 | 4.83 | 5.92 | 7.83 | 5.87 | 4.57 | |
REAS | Mean | 2010 | 3.09 | 1.39 | 5.92 | 2.39 | 8.27 | 7.95 | 3.33 | 7.33 | 5.22 |
RMSE | 4.96 | 3.72 | 7.09 | 6.78 | 10.84 | 10.19 | 9.96 | 13.65 | 9.06 | ||
MBIAS | −3.45 | −1.69 | 0.82 | −2.68 | 1.3 | 1.85 | −7.41 | −0.22 | −0.71 | ||
Mean | 2015 | 3.16 | 1.29 | 6.63 | 2.25 | 6.45 | 7.87 | 2.71 | 6.52 | 5.00 | |
RMSE | 4.22 | 3.27 | 8.63 | 5.95 | 7.82 | 10.17 | 7.89 | 12.42 | 8.55 | ||
MBIAS | −0.41 | −0.9 | 3.04 | −1.93 | 1.61 | 1.95 | −5.11 | 0.65 | 0.42 | ||
CAMS-GLOB-ANT | Mean | 2010 | 21.9 | 17.35 | 49.74 | 14.47 | 42.56 | 23.63 | 31.31 | 24.08 | 29.99 |
RMSE | 50.21 | 37.8 | 134.46 | 23.19 | 98.72 | 60.2 | 51.63 | 51.98 | 81.64 | ||
MBIAS | 15.37 | 14.27 | 44.63 | 9.4 | 35.59 | 17.53 | 20.57 | 16.53 | 24.05 | ||
Mean | 2015 | 21.02 | 14.69 | 42.03 | 17.85 | 35.23 | 22.62 | 24.43 | 20.64 | 26.61 | |
RMSE | 50.07 | 32.99 | 102.59 | 38.02 | 81.11 | 54.45 | 44.4 | 50.62 | 67.06 | ||
MBIAS | 17.45 | 12.5 | 38.44 | 13.66 | 30.39 | 16.71 | 16.6 | 14.78 | 22.03 | ||
ECLIPSE | Mean | 2010 | 1.48 | 0.84 | 5.03 | 4.25 | 6.87 | 2.64 | 3.75 | 2.15 | 3.81 |
RMSE | 6.39 | 3.7 | 5.82 | 7.16 | 6.71 | 5.56 | 9.75 | 8.62 | 6.78 | ||
MBIAS | −5.06 | −2.23 | −0.08 | −0.82 | −0.11 | −3.46 | −6.98 | −5.4 | −2.12 | ||
Mean | 2015 | 1.31 | 0.72 | 4.2 | 4.08 | 5.96 | 2.41 | 3.54 | 1.79 | 3.32 | |
RMSE | 3.84 | 2.98 | 4.95 | 6.65 | 6.3 | 5.74 | 7.48 | 7.7 | 6.08 | ||
MBIAS | −2.26 | −1.47 | 0.61 | −0.1 | 1.13 | −3.5 | −4.29 | −4.07 | −1.25 | ||
HTAP | Mean | 2010 | 7.11 | 4.75 | 4.45 | 3.31 | 5.17 | 7.61 | 7.79 | 4.19 | 4.84 |
RMSE | 11.66 | 10.31 | 10.35 | 7.33 | 7.98 | 11.33 | 13.06 | 11.56 | 10.03 | ||
MBIAS | 0.58 | 1.67 | −0.65 | −1.76 | −1.8 | 1.51 | −2.95 | −3.37 | −1.09 | ||
Mean | 2015 | 7.08 | 4.35 | 3.96 | 3.24 | 4.24 | 7.24 | 5.86 | 3.45 | 4.32 | |
RMSE | 13.4 | 11.22 | 9.5 | 7.19 | 7.01 | 11.24 | 12.56 | 10.16 | 9.71 | ||
MBIAS | 3.51 | 2.16 | 0.37 | −0.94 | −0.59 | 1.33 | −1.97 | −2.42 | −0.25 |
Inventories | Metrics | Year | Hokkaido | Tohoku | Kanto | Chubu | Kinki | Chugoku | Shikoku | Kyushu | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
Observed | Mean | 2010 | 466.31 | 423.76 | 537.54 | 513.11 | 533.65 | 521.31 | 462.96 | 633.36 | 527.70 |
Mean | 2015 | 385.55 | 343 | 415.38 | 399.81 | 457.66 | 412.54 | 477.95 | 494.62 | 422.85 | |
REAS | Mean | 2010 | 216.85 | 121.13 | 650.69 | 330.33 | 586.17 | 422.5 | 94 | 258.36 | 459.61 |
RMSE | 401.55 | 357.06 | 398.15 | 480.46 | 445.32 | 407.96 | 389.31 | 493.44 | 429.43 | ||
MBIAS | −249.47 | −302.63 | 113.16 | −182.79 | 52.52 | −98.81 | −368.96 | −375 | −68.09 | ||
Mean | 2015 | 189.2 | 95.37 | 482.22 | 251.58 | 402.37 | 382.93 | 70.02 | 216.95 | 347.96 | |
RMSE | 330.78 | 279.81 | 340.3 | 359.55 | 326.33 | 410.02 | 420.91 | 420.12 | 353.60 | ||
MBIAS | −196.35 | −247.63 | 66.84 | −148.23 | −55.29 | −29.61 | −407.93 | −277.67 | −74.89 | ||
CAMS-GLOB-ANT | Mean | 2010 | 273.11 | 261.54 | 742.82 | 296.58 | 386.58 | 210.69 | 187.64 | 1362.08 | 553.46 |
RMSE | 317.95 | 216.09 | 1843.62 | 309.12 | 335.25 | 377.08 | 300.92 | 4315.72 | 1728.13 | ||
MBIAS | −193.2 | −162.22 | 205.28 | −216.54 | −147.06 | −310.62 | −275.32 | 728.72 | 25.76 | ||
Mean | 2015 | 205.61 | 240.98 | 671.65 | 277.42 | 334.2 | 187.8 | 186.92 | 1376.83 | 508.85 | |
RMSE | 290.48 | 150.94 | 1726.33 | 214.78 | 262.49 | 296.13 | 325.29 | 4337.51 | 1656.65 | ||
MBIAS | −179.94 | −102.02 | 256.27 | −122.39 | −123.46 | −224.74 | −291.03 | 882.21 | 86.00 | ||
ECLIPSE | Mean | 2010 | 45.44 | 53.26 | 309.81 | 176.34 | 535.02 | 78.99 | 120.42 | 70.29 | 256.83 |
RMSE | 449.43 | 410.9 | 327.25 | 442.69 | 483.31 | 473.05 | 394.21 | 604.12 | 432.30 | ||
MBIAS | −420.87 | −370.5 | −227.73 | −336.78 | 1.37 | −442.32 | −342.54 | −563.07 | −270.87 | ||
Mean | 2015 | 41.97 | 47.59 | 250.16 | 154.54 | 481.35 | 67.85 | 67.9 | 68.87 | 218.84 | |
RMSE | 372.79 | 325.04 | 252.5 | 341.56 | 437.64 | 385.27 | 436.73 | 491.61 | 356.32 | ||
MBIAS | −343.59 | −295.41 | −165.22 | −245.27 | 23.69 | −344.69 | −410.05 | −425.75 | −204.01 | ||
HTAP | Mean | 2010 | 580.39 | 310.26 | 638.8 | 477.71 | 658.77 | 462.8 | 519.98 | 641.54 | 572.95 |
RMSE | 478.09 | 186.26 | 396.03 | 314.82 | 537.9 | 298.12 | 329.35 | 442.25 | 401.38 | ||
MBIAS | 114.08 | −113.51 | 101.26 | −35.4 | 125.12 | −58.51 | 57.02 | 8.17 | 45.25 | ||
Mean | 2015 | 470.98 | 222.36 | 436.55 | 310.63 | 417.76 | 305.87 | 456.84 | 469.73 | 389.22 | |
RMSE | 391.7 | 172.58 | 286.16 | 212.11 | 378.82 | 269.41 | 317.2 | 395.74 | 300.87 | ||
MBIAS | 85.43 | −120.65 | 21.17 | −89.19 | −39.9 | −106.67 | −21.1 | −24.89 | −33.64 |
Inventories | Metrics | Year | Hokkaido | Tohoku | Kanto | Chubu | Kinki | Chugoku | Shikoku | Kyushu | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
Observed | Mean | 2010 | 26.7 | 20.2 | 38.64 | 28.5 | 32.65 | 27.48 | 23.64 | 23.1 | 29.56 |
Mean | 2015 | 22.54 | 15.66 | 28.78 | 21.63 | 24.7 | 21.04 | 16.71 | 17.87 | 22.33 | |
REAS | Mean | 2010 | 36.88 | 22.59 | 117.18 | 54.65 | 99.79 | 62.77 | 25.73 | 42.4 | 69.98 |
RMSE | 35.45 | 19.33 | 118.33 | 70.84 | 91.19 | 76.18 | 21.46 | 53.48 | 81.24 | ||
MBIAS | 10.18 | 2.4 | 78.53 | 26.14 | 67.15 | 35.29 | 2.09 | 19.31 | 40.42 | ||
Mean | 2015 | 32.47 | 17.94 | 98.54 | 43.23 | 75.35 | 58.4 | 18.2 | 35.59 | 56.73 | |
RMSE | 32.7 | 17.02 | 110.28 | 58.11 | 69.51 | 76.48 | 16.43 | 47.92 | 71.50 | ||
MBIAS | 9.93 | 2.28 | 69.77 | 21.6 | 50.65 | 37.36 | 1.48 | 17.72 | 34.40 | ||
CAMS-GLOB-ANT | Mean | 2010 | 25.27 | 21.49 | 60.72 | 23.31 | 49.36 | 24.95 | 41.2 | 27.55 | 37.22 |
RMSE | 53.95 | 39.42 | 238.59 | 34.3 | 99.82 | 53.21 | 57.6 | 47.47 | 127.40 | ||
MBIAS | −1.43 | 1.3 | 22.08 | −5.19 | 16.71 | −2.53 | 17.56 | 4.45 | 7.66 | ||
Mean | 2015 | 24.2 | 19.94 | 52.49 | 28.32 | 44.66 | 24.92 | 33.41 | 25.08 | 34.75 | |
RMSE | 50.63 | 30.71 | 186.25 | 69.65 | 94.93 | 50.11 | 48.9 | 45.97 | 105.65 | ||
MBIAS | 1.66 | 4.28 | 23.71 | 6.68 | 19.97 | 3.88 | 16.7 | 7.21 | 12.43 | ||
ECLIPSE | Mean | 2010 | 8.99 | 5.83 | 37.36 | 17.53 | 31.91 | 11.03 | 12.71 | 11.44 | 21.17 |
RMSE | 28.62 | 21.1 | 32.96 | 26.12 | 25.56 | 22.64 | 18.16 | 20.42 | 26.30 | ||
MBIAS | −17.71 | −14.37 | −1.28 | −10.97 | −0.74 | −16.45 | −10.93 | −11.66 | −8.39 | ||
Mean | 2015 | 7.81 | 4.77 | 30.43 | 15.31 | 26.86 | 9.73 | 11.14 | 10.03 | 17.70 | |
RMSE | 25.12 | 16.1 | 28.13 | 20.54 | 21.08 | 15.49 | 12.48 | 15.03 | 21.13 | ||
MBIAS | −14.74 | −10.89 | 1.65 | −6.32 | 2.16 | −11.31 | −5.57 | −7.84 | −4.63 | ||
HTAP | Mean | 2010 | 66.99 | 43.31 | 73.35 | 53 | 72.5 | 58.36 | 74.55 | 49.66 | 60.93 |
RMSE | 79.37 | 62.06 | 89.96 | 56.09 | 88.6 | 76.59 | 106.61 | 65.08 | 76.65 | ||
MBIAS | 40.29 | 23.12 | 34.71 | 24.49 | 39.85 | 30.88 | 50.91 | 26.56 | 31.37 | ||
Mean | 2015 | 57.93 | 34.13 | 57.49 | 41.22 | 54.55 | 50.27 | 51.48 | 37.78 | 47.56 | |
RMSE | 73.36 | 56.16 | 80.96 | 48.81 | 73.7 | 70.52 | 89.09 | 55.04 | 67.46 | ||
MBIAS | 35.39 | 18.47 | 28.71 | 19.59 | 29.86 | 29.23 | 34.77 | 19.91 | 25.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tatsumi, K.; Diep, N.T.H. Validation of Anthropogenic Emission Inventories in Japan: A WRF-Chem Comparison of PM2.5, SO2, NOx and CO Against Observations. Data 2025, 10, 151. https://doi.org/10.3390/data10090151
Tatsumi K, Diep NTH. Validation of Anthropogenic Emission Inventories in Japan: A WRF-Chem Comparison of PM2.5, SO2, NOx and CO Against Observations. Data. 2025; 10(9):151. https://doi.org/10.3390/data10090151
Chicago/Turabian StyleTatsumi, Kenichi, and Nguyen Thi Hong Diep. 2025. "Validation of Anthropogenic Emission Inventories in Japan: A WRF-Chem Comparison of PM2.5, SO2, NOx and CO Against Observations" Data 10, no. 9: 151. https://doi.org/10.3390/data10090151
APA StyleTatsumi, K., & Diep, N. T. H. (2025). Validation of Anthropogenic Emission Inventories in Japan: A WRF-Chem Comparison of PM2.5, SO2, NOx and CO Against Observations. Data, 10(9), 151. https://doi.org/10.3390/data10090151