UTHECA_USE: A Multi-Source Dataset on Human Thermal Perception and Urban Environmental Factors in Seville
Abstract
1. Introduction
1.1. Background and Motivation
1.2. Related Work
1.3. Study Objectives and Dataset Contribution
2. Study Area and Experimental Context
2.1. Case Study: Seville, Spain
2.2. Urban Environment and Climate Overview
2.3. Site Selection and Morphological Diversity
3. Materials and Methods
3.1. Data Collection Protocols
3.2. Fixed Outdoor Monitoring
3.3. Mobile Transects
3.4. Measured Parameters and Equipment
Fixed Stations and Manual Measurements
- Thermohygrometer: Employed to measure the air temperature, globe temperature, and relative humidity. The black globe measuring head has a diameter of approximately 5 cm, while international standards recommend 15 cm globes. The smaller size alters the balance between radiation and convection, increases the sensitivity to changes in solar radiation and wind, and reduces thermal inertia. Under direct sunlight, it may overestimate shortwave radiation, while, at higher wind speeds, it tends to underestimate the radiant effect. These limitations prevent direct comparison with measurements taken using standardized globes, especially in comfort or heat stress studies. The instrument offers accuracy of ±0.6 °C for air temperature measurements, ±0.6 °C for globe temperature measurements in the 20–50 °C range and ±1 °C outside this range, and ±5% for relative humidity. The air temperature can be measured from 0 to 50 °C, the globe temperature from 0 to 80 °C, and relative humidity from 0 to 99.9%, ensuring precision in capturing microclimatic conditions relevant to thermal comfort assessment.
- Anemometer: Utilized to capture wind speed data, with accuracy of ±0.2 m/s, allowing the detailed characterization of airflow variability in urban canyons and open spaces.
- Surface Thermometer: Used to measure the surface temperature in a range of −50 to 350 °C, with accuracy of ±(1 °C + 1% of the measured value). Its probe allows measurements to be taken on various surfaces.
4. Dataset Description
4.1. Dataset Organization and File Formats
4.2. Variable Definitions and Metadata
- Microclimatic: Objective measurements including Air.temperature, Globe.temperature, Relative.humidity, Wind.speed, Radiant.temperature, UTCI, and UTCI.classification.
- Personal survey: Demographic and physical characteristics (Height.cm, Weight.kg, BMI), clothing insulation (Clothing.cover.clo), and subjective thermal sensation and well-being metrics (Subjective.thermal.sensation, Subjective.well.being.sensation), as well as perception-related variables such as Vegetation.likeable.
- Morphological: Urban environmental descriptors such as Average.height, Street.width, Naturalization, and Noise.level, among others.
4.3. Data Cleaning, Quality Control, and Imputation
4.4. Supplementary Datasets and Derived Variables
4.4.1. Derived Thermal Comfort Metrics
4.4.2. Supplementary Surface Temperature Dataset
4.5. Data Documentation and Accessibility
5. Results
5.1. Exploratory Data Analysis
5.1.1. Selected Variables
5.1.2. Correlations
6. Discussion
6.1. Dataset Value and Key Insights
6.2. Comparison with Previous Studies
6.3. Limitations and Future Work
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Cleland, S.E.; Steinhardt, W.; Neas, L.M.; West, J.J.; Rappold, A.G. Urban heat island impacts on heat-related cardiovascular morbidity: A time series analysis of older adults in US metropolitan areas. Environ. Int. 2023, 178, 108005. [Google Scholar] [CrossRef]
- Haddad, S.; Zhang, W.; Paolini, R.; Gao, K.; Altheeb, M.; Mogirah, A.A.; Moammar, A.B.; Hong, T.; Khan, A.; Cartalis, C.; et al. Quantifying the energy impact of heat mitigation technologies at the urban scale. Nat. Cities 2024, 1, 62–72. [Google Scholar] [CrossRef]
- Bröde, P.; Fiala, D.; Błażejczyk, K.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Tinz, B.; Havenith, G.; Bröde, P.; Fiala, D.; et al. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2012, 56, 481–494. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Matzarakis, A. Modified physiologically equivalent temperature—basics and applications for western European climate. Theor. Appl. Climatol. 2018, 132, 1275–1289. [Google Scholar] [CrossRef]
- Schaudienst, F.; Vogdt, F.U. Fanger’s model of thermal comfort: A model suitable just for men? Energy Procedia 2017, 132, 129–134. [Google Scholar] [CrossRef]
- Chan, S.Y.; Chau, C.K. Development of artificial neural network models for predicting thermal comfort evaluation in urban parks in summer and winter. Build. Environ. 2019, 164, 106364. [Google Scholar] [CrossRef]
- Chen, Y.C.; Chen, W.N.; Chou, C.C.; Matzarakis, A. Concepts and New Implements for Modified Physiologically Equivalent Temperature. Atmosphere 2020, 11, 694. [Google Scholar] [CrossRef]
- Zhong, G. Convolutional Neural Network Model to Predict Outdoor Comfort UTCI Microclimate Map. Atmosphere 2022, 13, 1860. [Google Scholar] [CrossRef]
- Nikolopoulou, M. Outdoor thermal comfort. Front. Biosci.-Sch. 2011, 3, 1552–1568. [Google Scholar] [CrossRef]
- Rodríguez-Gallego, J.A.; Diz Mellado, E.; Chacón Rebollo, T.; Galán-Marín, C.; Rivera-Gómez, C. Pedestrians’ urban thermal comfort: A machine learning assessment through transect walks. In Proceedings of the 12th International Workshop on Simulation for Energy, Sustainable Development and Environment, SESDE 2024, Tenerife, Spain, 18–20 September 2024. [Google Scholar]
- Lala, B.; Hagishima, A. A review of thermal comfort in primary schools and future challenges in machine learning based prediction for children. Buildings 2022, 12, 2007. [Google Scholar] [CrossRef]
- da Silva, T.F.J.; Lopes, A.; Vasconcelos, J. Lisbon thermal comfort and meteorological data. Zenodo 2025, 55, 101933. [Google Scholar] [CrossRef]
- Silva, T.; Reis, C.; Braz, D.; Vasconcelos, J.; Lopes, A. Climate walking and linear mixed model statistics for the seasonal outdoor thermophysiological comfort assessment in Lisbon. Urban Clim. 2024, 55, 101933. [Google Scholar] [CrossRef]
- Irfeey, A.M.M.; Chau, H.W.; Sumaiya, M.M.F.; Wai, C.Y.; Muttil, N.; Jamei, E. Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas. Sustainability 2023, 15, 10767. [Google Scholar] [CrossRef]
- Yin, Z.; Liu, Z.; Liu, X.; Zheng, W.; Yin, L. Urban heat islands and their effects on thermal comfort in the US: New York and New Jersey. Ecol. Indic. 2023, 154, 110765. [Google Scholar] [CrossRef]
- Middel, A.; Huff, M.; Krayenhoff, E.S.; Udupa, A.; Schneider, F.A. PanoMRT: Panoramic infrared thermography to model human thermal exposure and comfort. Sci. Total Environ. 2023, 859, 160301. [Google Scholar] [CrossRef]
- Lamberti, G.; Vista, D.D.; Leccese, F.; Salvadori, G. A Novel Methodology for Evaluating Urban Surface Overheating and Its Impact on Pedestrians’ Radiative Heat Exposure using Infrared Thermography. Build. Environ. 2025, 278, 112981. [Google Scholar] [CrossRef]
- Piracha, A.; Chaudhary, M.T. Urban Air Pollution, Urban Heat Island and Human Health: A Review of the Literature. Sustainability 2022, 14, 9234. [Google Scholar] [CrossRef]
- Yadav, N.; Rajendra, K.; Awasthi, A.; Singh, C. Systematic exploration of heat wave impact on mortality and urban heat island: A review from 2000 to 2022. Urban Clim. 2023, 51, 101622. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Lykoudis, S. Thermal comfort in outdoor urban spaces: Analysis across different European countries. Build. Environ. 2006, 41, 1455–1470. [Google Scholar] [CrossRef]
- Lai, D.; Lian, Z.; Liu, W.; Guo, C.; Liu, W.; Liu, K.; Chen, Q. A comprehensive review of thermal comfort studies in urban open spaces. Sci. Total Environ. 2020, 742, 140092. [Google Scholar] [CrossRef]
- Li, J.; Niu, J.; Mak, C.M.; Huang, T.; Xie, Y. Exploration of applicability of UTCI and thermally comfortable sun and wind conditions outdoors in a subtropical city of Hong Kong. Sustain. Cities Soc. 2020, 52, 101793. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, F.; Gou, Z.; Liu, J. Assessment of macroclimate and microclimate effects on outdoor thermal comfort via artificial neural network models. Urban Clim. 2022, 42, 101134. [Google Scholar] [CrossRef]
- Hu, C.; Zeng, H. Decoding spatial patterns of urban thermal comfort: Explainable machine learning reveals drivers of thermal perception. Environ. Impact Assess. Rev. 2025, 114, 107895. [Google Scholar] [CrossRef]
- Guo, R.; Yang, B.; Guo, Y.; Li, H.; Li, Z.; Zhou, B.; Hong, B.; Wang, F. Machine learning-based prediction of outdoor thermal comfort: Combining Bayesian optimization and the SHAP model. Build. Environ. 2024, 254, 111301. [Google Scholar] [CrossRef]
- Avci, A.B. Machine learning-based prediction of thermal comfort: Exploring building types, climate, ventilation strategies, and seasonal variations. Build. Res. Inf. 2025, 1–18. [Google Scholar] [CrossRef]
- Fard, Z.Q.; Zomorodian, Z.S.; Korsavi, S.S. Application of machine learning in thermal comfort studies: A review of methods, performance and challenges. Energy Build. 2022, 256, 111771. [Google Scholar] [CrossRef]
- Mamani, T.; Herrera, R.F.; Rivera, F.M.L.; Atencio, E. Variables That Affect Thermal Comfort and Its Measuring Instruments: A Systematic Review. Sustainability 2022, 14, 1773. [Google Scholar] [CrossRef]
- Amores, T.P.; Delgado, M.C.G.; Ramos, J.S.; Medina, D.C.; Montero-Gutiérrez, P.; Álvarez Domínguez, S. Enhancing citizen climate resilience identification: A customization methodology to tailor comfort metrics to individual preferences. Urban Clim. 2025, 62, 102484. [Google Scholar] [CrossRef]
- Köppen, W.; Volken, E.; Brönnimann, S. The thermal zones of the Earth according to the duration of hot, moderate and cold periods and to the impact of heat on the organic world. Meteorol. Z. 2011, 20, 351. [Google Scholar] [CrossRef]
- Diz-Mellado, E.; Nikolopoulou, M.; López-Cabeza, V.P.; Rivera-Gómez, C.; Galán-Marín, C. Cross-evaluation of thermal comfort in semi-outdoor spaces according to geometry in Southern Spain. Urban Clim. 2023, 49, 101491. [Google Scholar] [CrossRef]
- Binarti, F.; Koerniawan, M.D.; Triyadi, S.; Utami, S.S.; Matzarakis, A. A review of outdoor thermal comfort indices and neutral ranges for hot-humid regions. Urban Clim. 2020, 31, 100531. [Google Scholar] [CrossRef]
- ANSI/ASHRAE Standard 55-2020; Thermal Environmental Conditions for Human Occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2020.
- UNE-EN ISO 7726:2002; Ergonomía de Los Ambientes Térmicos. Instrumentos de Medida de las Magnitudes Físicas. Asociación Española de Normalización (UNE): Madrid, Spain, 2002.
- Mucherino, A.; Papajorgji, P.J.; Pardalos, P.M. K-nearest neighbor classification. In Data Mining in Agriculture; Springer: New York, NY, USA, 2009; pp. 83–106. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings of the International Joint Conference on Neural Networks, Hong Kong, China, 1–8 June 2008; pp. 1322–1328. [Google Scholar] [CrossRef]
- Kuhn, M.; Wickham, H. Tidymodels: A Collection of Packages for Modeling and Machine Learning Using Tidyverse Principles. 2020. Available online: https://www.tidymodels.org (accessed on 10 September 2025).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; D’Agostino McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Hvitfeldt, E. Themis: Extra Recipes Steps for Dealing with Unbalanced Data. 2025. Available online: https://themis.tidymodels.org/ (accessed on 10 September 2025).
- Lunardon, N.; Menardi, G.; Torelli, N. ROSE: A package for binary imbalanced learning. R J. 2017, 6, 79–89. [Google Scholar] [CrossRef]
- Migliari, M.; Babut, R.; Gaulmyn, C.D.; Chesne, L.; Baverel, O. The Metamatrix of Thermal Comfort: A compendious graphical methodology for appropriate selection of outdoor thermal comfort indices and thermo-physiological models for human-biometeorology research and urban planning. Sustain. Cities Soc. 2022, 81, 103852. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; Volume 1, pp. 278–282. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice Hall PTR: Hoboken, NJ, USA, 1994. [Google Scholar]
- Kim, J.; Schiavon, S.; Brager, G. Personal comfort models—A new paradigm in thermal comfort for occupant-centric environmental control. Build. Environ. 2018, 132, 114–124. [Google Scholar] [CrossRef]
- Lopez-Cabeza, V.P.; Alzate-Gaviria, S.; Diz-Mellado, E.; Rivera-Gomez, C.; Galan-Marin, C. Albedo influence on the microclimate and thermal comfort of courtyards under Mediterranean hot summer climate conditions. Sustain. Cities Soc. 2022, 81, 103872. [Google Scholar] [CrossRef]
- Cureau, R.J.; Pigliautile, I.; Kousis, I.; Huang, X.; Bou-Zeid, E.; Pisello, A.L. On the performance of human thermal stress models in the outdoors against observations. Energy Build. 2025, 341, 115837. [Google Scholar] [CrossRef]
Longitude | Latitude | Height | Width | HW_Ratio | Pavement | Façades | Nature | Shadow | Water |
---|---|---|---|---|---|---|---|---|---|
−6.000 | 37.399 | 10.000 | 50.000 | 0.200 | Asphalt–black pavement | White paint | 20–29 | 20–29 | Abundant |
−5.998 | 37.401 | 10.000 | 50.000 | 0.200 | Ochre pavement | Ochre brick | 20–29 | 70 or more | Abundant |
−5.998 | 37.401 | 14.000 | 20.000 | 0.700 | Ochre pavement | Ochre brick | 20–29 | 40–49 | Abundant |
−5.997 | 37.402 | 10.000 | 50.000 | 0.200 | Ochre pavement | Ochre brick | 20–29 | 70 or more | Abundant |
−5.995 | 37.404 | 15.000 | 14.000 | 1.071 | Ochre pavement | White paint | 10–19 | Less than 10 | Abundant |
−5.993 | 37.404 | 9.750 | 31.125 | 0.313 | Ochre pavement | White paint | 40–49 | 50–59 | None |
−5.992 | 37.403 | 8.000 | 15.000 | 0.533 | Ochre pavement | White paint | Less than 10 | 50–59 | None |
−5.990 | 37.403 | 16.000 | 37.500 | 0.427 | Ochre pavement | Ochre brick | Less than 10 | 40–49 | None |
−5.989 | 37.403 | 16.000 | 38.333 | 0.417 | Ochre pavement | Ochre brick | Less than 10 | 40–49 | None |
−5.989 | 37.403 | 16.000 | 40.000 | 0.400 | Ochre pavement | Ochre brick | 20–29 | 40–49 | None |
−5.988 | 37.403 | 16.000 | 40.000 | 0.400 | Ochre pavement | White paint | Less than 10 | 20–29 | None |
−5.987 | 37.401 | 12.000 | 7.000 | 1.714 | Ochre pavement | Ochre brick | Less than 10 | 70 or more | None |
−5.988 | 37.401 | 12.000 | 27.000 | 0.444 | Ochre pavement | Ochre brick | 10–19 | 20–29 | None |
−5.999 | 37.385 | 12.000 | 24.000 | 0.500 | Ochre pavement | Concrete–red brick | Less than 10 | Less than 10 | Abundant |
−5.996 | 37.383 | 11.000 | 10.000 | 1.100 | Concrete–red pavement | Concrete–red brick | Less than 10 | 30–39 | Abundant |
−5.996 | 37.385 | 3.000 | 12.000 | 0.250 | Asphalt–black pavement | White paint | Less than 10 | 10–19 | Occasional |
−5.997 | 37.386 | 10.000 | 50.000 | 0.200 | Concrete–red pavement | White paint | 70 or more | 70 or more | None |
−5.999 | 37.388 | 20.000 | 68.000 | 0.294 | Asphalt–black pavement | White paint | Less than 10 | 50–59 | None |
−5.997 | 37.388 | 12.000 | 30.000 | 0.400 | Asphalt–black pavement | Concrete–red brick | Less than 10 | 40–49 | None |
−5.995 | 37.387 | 9.000 | 5.250 | 1.714 | Concrete–red pavement | White paint | 30–39 | 40–49 | None |
−5.994 | 37.385 | 8.000 | 15.000 | 0.533 | Concrete–red pavement | White paint | 10–19 | 10–19 | None |
−5.992 | 37.386 | 16.000 | 40.000 | 0.400 | Concrete–red pavement | White paint | 10–19 | 10–19 | Abundant |
−5.993 | 37.387 | 9.000 | 6.000 | 1.500 | Ochre pavement | White paint | 30–39 | 50–59 | None |
−5.985 | 37.380 | 12.000 | 30.000 | 0.400 | Asphalt–black pavement | Vegetation | 30–39 | Less than 10 | None |
−5.985 | 37.382 | 15.000 | 35.000 | 0.429 | Concrete–red pavement | Concrete–red brick | Less than 10 | 20–29 | None |
−5.984 | 37.383 | 17.000 | 3.000 | 5.667 | Asphalt–black pavement | Concrete–red brick | 30–39 | 10–19 | Occasional |
−5.986 | 37.383 | 20.000 | 26.000 | 0.769 | Asphalt–black pavement | White paint | 10–19 | 20–29 | None |
−5.987 | 37.383 | 14.000 | 15.000 | 0.933 | Asphalt–black pavement | White paint | 10–19 | 10–19 | Occasional |
Name | Type | Description |
---|---|---|
id | Integer | Identification number (1–989) |
Hour | Numeric | Time of interview/measurement |
Date | Date | Data collection date (yyyy-mm-dd) |
Longitudinal.coord | Numeric | Site longitude |
Latitudinal.coord | Numeric | Site latitude |
Location | Categorical | Qualitative location name (e.g., Avenida De La Constitución, Calle Torneo, etc.) |
Name | Type | Description |
---|---|---|
Air.temperature | Numeric | Air temperature (°C), Trotec TC100 (±0.6 °C) |
Globe.temperature | Numeric | Globe temperature (°C), Trotec TC100 (±0.6 °C) |
Relative.humidity | Numeric | Relative humidity (%), Trotec TC100 (±5%) |
Wind.speed | Numeric | Wind speed (m/s), Trotec TA300 (±0.2 m/s) |
Radiant.temperature | Numeric | Mean radiant temperature (°C), UNE-EN ISO 7726:2002 [34] |
UTCI | Numeric | Universal Thermal Climate Index value |
UTCI.classification | Categorical | UTCI thermal stress class (e.g., no thermal stress, moderate heat stress, etc.) |
Name | Type | Description |
---|---|---|
Height.cm | Numeric | Height in centimeters |
Weight.kg | Numeric | Weight in kilograms |
BMI | Numeric | Body mass index: weight/(height/100)2 |
Clothing.cover.clo | Numeric | Clothing insulation (clo units, 0.2–1.2) |
Activity.met | Numeric | Metabolic activity (met units, 0.8–8) |
Visit.frequency | Numeric | Visit frequency (1 = rarely to 5 = always) |
Mood | Numeric | Mood (1–5) |
Gender | Categorical | Female, male, prefer not to say |
Age.range | Categorical | Age (e.g., 20–29, 30–39, etc.) |
Nationality | Categorical | Respondent’s nationality |
Living.in.Seville | Categorical | Duration living in Seville |
Accompanied.by | Categorical | Accompanied during interview (Yes/No) |
You.answered | Categorical | Posture (sitting, standing, walking) |
Shaded.during.survey | Categorical | Sun/shade exposure during survey |
Time.here | Categorical | Time at location before survey |
Previously.in | Categorical | Previous environment (e.g., air-conditioned interior) |
Reason.visit | Categorical | Reason for presence (family, tourism, work, etc.) |
Would.change.Temperature | Logical | Wants to change temperature |
Would.change.Humidity | Logical | Wants to change humidity |
Would.change.Wind | Logical | Wants to change wind |
Would.change.Radiation | Logical | Wants to change radiation |
Would.change.Nothing | Logical | Would not change anything |
Vegetation.likeable | Numeric | Vegetation: unpleasant (−1), neutral (0), pleasant (1) |
Materiality.likeable | Numeric | Materiality: unpleasant (−1), neutral (0), pleasant (1) |
Spatiality.likeable | Numeric | Spatiality: unpleasant (−1), neutral (0), pleasant (1) |
Noise.likeable | Numeric | Noise: unpleasant (−1), neutral (0), pleasant (1) |
Number.of.people.likeable | Numeric | Number of people: unpleasant (−1), neutral (0), pleasant (1) |
Shade.likeable | Numeric | Shade: unpleasant (−1), neutral (0), pleasant (1) |
Subjective.thermal.sensation | Categorical | Perceived thermal sensation (e.g., cold, neutral, hot) |
Subjective.well.being.sensation | Categorical | Perceived comfort (very uncomfortable–very comfortable) |
Name | Type | Description |
---|---|---|
Average.height | Numeric | Average building height (m) |
Street.width | Numeric | Street width (m) |
Naturalization | Categorical | Naturalization degree (e.g., less than 10, 10–19, etc.) |
Shadow | Categorical | Shade percentage at location |
Water | Categorical | Water feature presence (none, occasional, abundant) |
Pedestrians | Categorical | Pedestrian traffic level |
Traffic | Categorical | Vehicular traffic level |
Noise.level | Categorical | Ambient noise (almost none–very intense) |
Orientation | Categorical | Street orientation (N-S, E-W, etc.) |
Pavement | Categorical | Pavement type (e.g., asphalt, grass) |
Façades | Categorical | Façade type (e.g., red brick, white paint) |
Urban.furniture | Categorical | Urban furniture (none, occasional, abundant) |
Name | Type | Description |
---|---|---|
id | Integer | Identification number ranging from 1 to 989 |
Surface.temperature | Numeric | Surface temperature (°C) measured using a Testo 905-T2 surface thermometer (Testo Austria, Vienna, Austria) (accuracy: ±1 °C + 1% of the measured value) |
Surface.temperature.material | Categorical | Material where the surface temperature was measured. Categories: land, metal, pavement—black asphalt, pavement—cobblestone, pavement—grass, pavement—grey concrete, pavement—light stone, pavement—ochre, pavement—red concrete, pavement—white, playground, façade—ochre brick, façade—red brick–concrete, façade—vegetation, façade—white paint, pavement—dark stone, pavement—green concrete |
Variable | p-Value | Type |
---|---|---|
Location | 0.00000 | Categorical |
UTCI.classification | 0.00000 | Categorical |
Nationality | 0.00000 | Categorical |
Shaded.during.survey | 0.00000 | Categorical |
Previously.in | 0.00000 | Categorical |
Subjective.well.being.sensation | 0.00000 | Categorical |
Shadow | 0.00000 | Categorical |
Water | 0.00000 | Categorical |
Noise.level | 0.00000 | Categorical |
Pavement | 0.00000 | Categorical |
Façades | 0.00000 | Categorical |
Time | 0.00000 | Categorical |
Traffic | 0.00001 | Categorical |
Urban.furniture | 0.00004 | Categorical |
Age.range | 0.00006 | Categorical |
Reason.visit | 0.00027 | Categorical |
Naturalization | 0.00109 | Categorical |
Pedestrians | 0.00251 | Categorical |
Gender | 0.00429 | Categorical |
Living.in.Seville | 0.06102 | Categorical |
Time.here | 0.08524 | Categorical |
You.answered | 0.08978 | Categorical |
Orientation | 0.13214 | Categorical |
Accompanied.by | 0.15197 | Categorical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Barba, N.; Rodríguez-Gallego, J.-A.; Rivera-Gómez, C.; Galán-Marín, C. UTHECA_USE: A Multi-Source Dataset on Human Thermal Perception and Urban Environmental Factors in Seville. Data 2025, 10, 146. https://doi.org/10.3390/data10090146
Hernández-Barba N, Rodríguez-Gallego J-A, Rivera-Gómez C, Galán-Marín C. UTHECA_USE: A Multi-Source Dataset on Human Thermal Perception and Urban Environmental Factors in Seville. Data. 2025; 10(9):146. https://doi.org/10.3390/data10090146
Chicago/Turabian StyleHernández-Barba, Noelia, José-Antonio Rodríguez-Gallego, Carlos Rivera-Gómez, and Carmen Galán-Marín. 2025. "UTHECA_USE: A Multi-Source Dataset on Human Thermal Perception and Urban Environmental Factors in Seville" Data 10, no. 9: 146. https://doi.org/10.3390/data10090146
APA StyleHernández-Barba, N., Rodríguez-Gallego, J.-A., Rivera-Gómez, C., & Galán-Marín, C. (2025). UTHECA_USE: A Multi-Source Dataset on Human Thermal Perception and Urban Environmental Factors in Seville. Data, 10(9), 146. https://doi.org/10.3390/data10090146