δ-MedBioclim: A New Dataset Bridging Current and Projected Bioclimatic Variables for the Euro-Mediterranean Region
Abstract
1. Summary
2. Background
3. Data Description
3.1. Regional Setting
3.2. Dataset Structure
- Timeframes: At the highest folder level, the dataset is organized by time periods, with a primary folder for the reference period (1981–2010) and three additional folders corresponding to the projected time periods (one for each: 2026–2050, 2051–2075, and 2076–2100).
- At this same level, there is also a folder (shp) containing a vector file delineating the boundaries of the study area (Euro-Mediterranean region).
- Emission scenarios: At the next folder level, there are three subfolders corresponding to the selected emission scenarios (SSP1-RCP2.6, SSP2-RCP4.5, and SSP5-RCP8.5).
- Variables: Each of these “emission scenarios folders” contains four subdirectories: (i) “bio”, which includes bioclimatic parameters and variables (bio1 to bio19 and biorm1 to biorm9); (ii) “climatologies”, which stores bioclimatic classifications according to the Köppen–Geiger Classification System (KGCS) and the Worldwide Bioclimatic Classification System (WBCS); (iii) “pr”, which contains total monthly precipitation values; and (iv) “tas”, which includes mean monthly temperature values.
- GCMs: These values have been computed for the 25 selected General Circulation Models (GCMs) as well as for the Multi-Model Ensemble generated using the Random Forest approach (RF-MME). Consequently, the four subdirectories mentioned above contain 26 folders (25 GCMs + 1 RF-MME).
- Delta change method: The lowest hierarchical level, represented by the folders “d_CHELSA”, “d_E5L”, and “raw_data”, corresponds to the reference dataset used in the delta change method: CHELSA and ERA5 Land for the first two, and none for the last.
- TIF files: These files are spatial rasters in TIF format with the variable values and in the ETRS89 (EPSG:4258) projection. The file naming structure has been designed to encapsulate all the aforementioned information, ensuring that files can be used independently of their original directory structure. For instance, the file “CH_tas_2051-2075-ssp2-rcp45_UKES-M1-1-LL_01.tif” indicates, separated by “_”, the delta change reference dataset (CH = CHELSA), the variable (tas), the timeframe (2051–2075), the emission scenario (ssp2-rcp45), the GCM (UKES-M1-1-LL) and the month of the year (01 = January).
4. Methods
4.1. General Circulation Models Data
4.2. Delta Change Method
- ERA5 Land [35]: With the same resolution as that achieved through the interpolation of the GCMs (0.1°).
- CHELSA [1]: With a finer resolution (0.01°).
- Although the delta change method has been positively assessed, particularly for Southern Europe [32], several limitations must be considered, especially with regard to precipitation estimates. Previous studies have shown that in particularly arid regions, such as those encompassed by the present dataset, precipitation values may be substantially overestimated [37]. Therefore, these values should be appropriately corrected before being applied in subsequent analyses. Similarly, by applying a uniform change factor to a given area, the delta change method may lead to a loss of extreme values [38]. Consequently, studies focusing on climate extremes are advised to employ bias correction techniques based on quantiles (e.g., above the 95th or 99th percentile) rather than relying solely on change factor methods.
4.3. Bioclimatic Variables
4.4. Climatologies
5. User Notes
GCMs Ranking
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CHELSA | Climatologies at High resolution for the Earth’s Land Surface Areas |
CMIP6 | Coupled Model Intercomparison Project phase 6 |
E5L | ERA5 Land |
EMR | European Mediterranean Region |
EBK | Empirical Bayesian Kriging |
GCMs | General Circulation Models |
hist | Historical experiment (of CMIP6) |
KGCS | Köppen–Geiger Climate Classification System |
MME | Multi-model Ensemble |
pr | monthly total precipitation |
RCP | Representative Concentration Pathway |
RF-MME | Random Forest Multi-Model Ensemble |
SSP | Shared Socioeconomic Pathway |
tas | Monthly mean temperature |
WBCS | Worldwide Bioclimatic Classification System |
WCRP | World Climate Research Programme |
References
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at High Resolution for the Earth’s Land Surface Areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef] [PubMed]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-Km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Noce, S.; Caporaso, L.; Santini, M. A New Global Dataset of Bioclimatic Indicators. Sci. Data 2020, 7, 398. [Google Scholar] [CrossRef] [PubMed]
- Vega, G.C.; Pertierra, L.R.; Olalla-Tárraga, M.Á. MERRAclim, a High-Resolution Global Dataset of Remotely Sensed Bioclimatic Variables for Ecological Modelling. Sci. Data 2017, 4, 170078. [Google Scholar] [CrossRef]
- Kriticos, D.J.; Webber, B.L.; Leriche, A.; Ota, N.; Macadam, I.; Bathols, J.; Scott, J.K. CliMond: Global High-Resolution Historical and Future Scenario Climate Surfaces for Bioclimatic Modelling. Methods Ecol. Evol. 2012, 3, 53–64. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Rivas-Sáenz, S.; Penas, Á. Worldwide Bioclimatic Classification System. Glob. Geobot. 2011, 1, 1–634. [Google Scholar]
- del Río, S. El Cambio Climático y Su Influencia En La Vegetación de Castilla y León (España). Itinera Geobot. 2005, 16, 5–533. [Google Scholar]
- Bedia, J.; Herrera, S.; Gutiérrez, J.M. Dangers of Using Global Bioclimatic Datasets for Ecological Niche Modeling. Limitations for Future Climate Projections. Glob. Planet. Change 2013, 107, 1–12. [Google Scholar] [CrossRef]
- Loehle, C. The Epistemological Status of General Circulation Models. Clim. Dyn. 2018, 50, 1719–1731. [Google Scholar] [CrossRef]
- Xiaojun, K.; Qin, L.; Shirong, L. High-Resolution Bioclimatic Dataset Derived from Future Climate Projections for Plant Species Distribution Modeling. Ecol. Inform. 2011, 6, 196–204. [Google Scholar] [CrossRef]
- Berio Fortini, L.; Kaiser, L.R.; Xue, L.; Wang, Y. Bioclimatic Variables Dataset for Baseline and Future Climate Scenarios for Climate Change Studies in Hawai’i. Data Brief 2022, 45, 108572. [Google Scholar] [CrossRef] [PubMed]
- Bazzato, E.; Rosati, L.; Canu, S.; Fiori, M.; Farris, E.; Marignani, M. High Spatial Resolution Bioclimatic Variables to Support Ecological Modelling in a Mediterranean Biodiversity Hotspot. Ecol. Model. 2021, 441, 109354. [Google Scholar] [CrossRef]
- Portes, C.; Ienco, D.; Verdin, E.; Gabriel, E. Environmental and Bioclimatic Data for Epidemiological Analysis over French Mediterranean Areas. Environ. Data Sci. 2024, 3, e31. [Google Scholar] [CrossRef]
- Overpeck, J.T.; Meehl, G.A.; Bony, S.; Easterling, D.R. Climate Data Challenges in the 21st Century. Science 2011, 331, 700–702. [Google Scholar] [CrossRef]
- Sosa-Guillén, P.; González, A.; Pérez, J.C.; Expósito, F.J.; Díaz, J.P. Bioclimatic Indicators Dataset for the Orographically Complex Canary Islands Archipelago. Sci. Data 2024, 11, 1323. [Google Scholar] [CrossRef]
- Philippopoulos, K.; Pantavou, K.; Cartalis, C.; Agathangelidis, I.; Mavrakou, T.; Polydoros, A.; Nikolopoulos, G. A Novel Artificial Neural Network Methodology to Produce High-Resolution Bioclimatic Maps Using Earth Observation Data: A Case Study for Cyprus. Sci. Total Environ. 2023, 893, 164734. [Google Scholar] [CrossRef]
- Reichmuth, A.; Rakovec, O.; Boeing, F.; Müller, S.; Samaniego, L.; Marx, A.; Komischke, H.; Schmidt, A.; Doktor, D. BioVars—A Bioclimatic Dataset for Europe Based on a Large Regional Climate Ensemble for Periods in 1971–2098. Sci. Data 2025, 12, 217. [Google Scholar] [CrossRef]
- Gong, H.; Zhang, M.; Xiang, X.; Liu, H. 1 Km Monthly Precipitation and Temperatures Dataset for China from 1952 to 2019 Based on New Baseline Climatology Surfaces. Sci. Total Environ. 2024, 906, 167613. [Google Scholar] [CrossRef]
- Poggio, L.; Simonetti, E.; Gimona, A. Enhancing the WorldClim Data Set for National and Regional Applications. Sci. Total Environ. 2018, 625, 1628–1643. [Google Scholar] [CrossRef]
- Palmer, T.E.; Mcsweeney, C.F.; Booth, B.B.B.; Priestley, M.D.K.; Davini, P.; Brunner, L.; Borchert, L.; Menary, M.B. Performance-Based Sub-Selection of CMIP6 Models for Impact Assessments in Europe. Earth Syst. Dyn. 2023, 14, 457–483. [Google Scholar] [CrossRef]
- Wang, B.; Zheng, L.; Liu, D.L.; Ji, F.; Clark, A.; Yu, Q. Using Multi-Model Ensembles of CMIP5 Global Climate Models to Reproduce Observed Monthly Rainfall and Temperature with Machine Learning Methods in Australia. Int. J. Climatol. 2018, 38, 4891–4902. [Google Scholar] [CrossRef]
- Mediterranean Experts on Climate and Environmental Change (MedECC). Climate and Environmental Change in the Mediterranean Basin—Current Situation and Risks for the Future: First Mediterranean Assessment Report; Cramer, W., Guiot, J., Marini, K., Eds.; MedECC: Marseille, France, 2020. [Google Scholar]
- Arranz, I.; Batllori, E.; Linares, C.; Ripple, W.J.; Bonada, N. Integrative Research of Mediterranean Climate Regions: A Global Call to Action. Environ. Conserv. 2024, 51, 71–78. [Google Scholar] [CrossRef]
- Lehner, B.; Grill, G. Global River Hydrography and Network Routing: Baseline Data and New Approaches to Study the World’s Large River Systems. Hydrol. Process 2013, 27, 2171–2186. [Google Scholar] [CrossRef]
- ESRI ArcGIS Pro 3.2. Available online: https://www.esri.com/en-us/arcgis/products/arcgis-pro (accessed on 11 July 2024).
- Bilbao-Barrenetxea, N.; Martínez-España, R.; Jimeno-Sáez, P.; Faria, S.H.; Senent-Aparicio, J. Multi-Model Ensemble Machine Learning Approaches to Project Climatic Scenarios in a River Basin in the Pyrenees. Earth Syst. Environ. 2024, 8, 1159–1177. [Google Scholar] [CrossRef]
- Tebaldi, C.; Knutti, R. The Use of the Multi-Model Ensemble in Probabilistic Climate Projections. Philos. Trans. R. Soc. A Math. Phys. Eng. 2007, 365, 20532075. [Google Scholar] [CrossRef]
- Ahmed, K.; Sachindra, D.A.; Shahid, S.; Iqbal, Z.; Nawaz, N.; Khan, N. Multi-Model Ensemble Predictions of Precipitation and Temperature Using Machine Learning Algorithms. Atmos. Res. 2020, 236, 104806. [Google Scholar] [CrossRef]
- Ahmed, K.; Sachindra, D.A.; Shahid, S.; Demirel, M.C.; Chung, E.S. Selection of Multi-Model Ensemble of General Circulation Models for the Simulation of Precipitation and Maximum and Minimum Temperature Based on Spatial Assessment Metrics. Hydrol. Earth Syst. Sci. 2019, 23, 4803–4824. [Google Scholar] [CrossRef]
- Nouri, M.; Veysi, S. CMIP6 Multi-Model Ensemble Projection of Reference Evapotranspiration Using Machine Learning Algorithms. Agric. Water Manag. 2024, 306, 109190. [Google Scholar] [CrossRef]
- Pirtle, Z.; Meyer, R.; Hamilton, A. What Does It Mean When Climate Models Agree? A Case for Assessing Independence among General Circulation Models. Environ. Sci. Policy 2010, 13, 351–361. [Google Scholar] [CrossRef]
- Räty, O.; Räisänen, J.; Ylhäisi, J.S. Evaluation of Delta Change and Bias Correction Methods for Future Daily Precipitation: Intermodel Cross-Validation Using ENSEMBLES Simulations. Clim. Dyn. 2014, 42, 2287–2303. [Google Scholar] [CrossRef]
- Blanke, J.H.; Lindeskog, M.; Lindström, J.; Lehsten, V. Effect of Climate Data on Simulated Carbon and Nitrogen Balances for Europe. J. Geophys. Res. Biogeosci. 2016, 121, 1352–1371. [Google Scholar] [CrossRef]
- Wilby, R.L.; Troni, J.; Biot, Y.; Tedd, L.; Hewitson, B.C.; Smith, D.M.; Sutton, R.T. A Review of Climate Risk Information for Adaptation and Development Planning. Int. J. Climatol. 2009, 29, 1193–1215. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Wang, T.; Hamann, A.; Spittlehouse, D.; Carroll, C. Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America. PLoS ONE 2016, 11, e0156720. [Google Scholar] [CrossRef]
- Navarro-Racines, C.; Tarapues, J.; Thornton, P.; Jarvis, A.; Ramirez-Villegas, J. High-Resolution and Bias-Corrected CMIP5 Projections for Climate Change Impact Assessments. Sci. Data 2020, 7, 7. [Google Scholar] [CrossRef]
- Ruiter, A. Delta-Change Approach for CMIP5 GCMs; Koninklijk Nederlands Meteorologisch Instituut: De Bilt, The Netherlands, 2012. [Google Scholar]
- Onofre Villalva, M.F.; Franch-Pardo, I.; Urquijo Torres, P.S.; Pérez-Valladares, C. Landscape and Bioclimatic Regionalization of the Coast of Oaxaca (México). J. Maps 2023, 19, 2245405. [Google Scholar] [CrossRef]
- Pham, T.M.; Nguyen, H.C.; Nguyen, V.K.; Pham, H.H.; Nguyen, N.T.; Dang, G.T.H.; Dinh, H.T.; Pham, T.A. Application of the Worldwide Bioclimatic Classification System to Determine Bioclimatic Features and Potential Natural Vegetation Distribution in Van Chan District, Vietnam. Trop. Ecol. 2023, 64, 765–780. [Google Scholar] [CrossRef]
- Pesaresi, S.; Biondi, E.; Casavecchia, S. Bioclimates of Italy. J. Maps 2017, 13, 955–960. [Google Scholar] [CrossRef]
- Perrin, G.; Rapinel, S.; Hubert-Moy, L.; Bioret, F. Bioclimatic Dataset of Metropolitan France under Current Conditions Derived from the WorldClim Model. Data Brief 2020, 31, 105815. [Google Scholar] [CrossRef]
- del Río, S.; Álvarez-Esteban, R.; Alonso-Redondo, R.; Hidalgo, C.; Penas, Á. A New Integrated Methodology for Characterizing and Assessing Suitable Areas for Viticulture: A Case Study in Northwest Spain. Eur. J. Agron. 2021, 131, 126391. [Google Scholar] [CrossRef]
- del Río, S.; Canas, R.; Cano, E.; Cano-Ortiz, A.; Musarella, C.; Pinto-Gomes, C.; Penas, A. Modelling the Impacts of Climate Change on Habitat Suitability and Vulnerability in Deciduous Forests in Spain. Ecol. Indic. 2021, 131, 108202. [Google Scholar] [CrossRef]
- González-Pérez, A.; Álvarez-Esteban, R.; Penas, Á.; del Río, S. Bioclimatic Characterisation of Specific Native Californian Pinales and Their Future Suitability under Climate Change. Plants 2023, 12, 1966. [Google Scholar] [CrossRef] [PubMed]
- del Río, S.; Álvarez-Esteban, R.; Cano, E.; Pinto-Gomes, C.; Penas, Á. Potential Impacts of Climate Change on Habitat Suitability of Fagus Sylvatica L. Forests in Spain. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2018, 152, 1205–1213. [Google Scholar] [CrossRef]
- Köppen, W. Das Geographische System Der Klimate; Gebrüder Borntraeger: Berlin, Germany, 1936. [Google Scholar]
- Ferreiro-Lera, G.B.; Penas, Á.; del Río, S. Unveiling Deviations from IPCC Temperature Projections through Bayesian Downscaling and Assessment of CMIP6 General Circulation Models in a Climate-Vulnerable Region. Remote Sens. 2024, 16, 1831. [Google Scholar] [CrossRef]
- Ferreiro-Lera, G.-B.; Penas, Á.; del Río, S. Obtaining Refined Euro-Mediterranean Rainfall Projections through Regional Assessment of CMIP6 General Circulation Models. Glob. Planet. Change 2025, 246, 104725. [Google Scholar] [CrossRef]
GCM Number | GCM Acronym | Modelling Center |
---|---|---|
1 | ACCESS-CM2 | Commonwealth Scientific and Industrial Research Organization |
2 | ACCESS-ESM1-5 | |
3 | CanESM5 | Canadian Centre for Climate Modelling and Analysis |
4 | CanESM5-CanOE | |
5 | BCC-CSM2-MR | Beijing Climate Center |
6 | CAS-ESM2-0 | Institute of Atmospheric Physics, Chinese Academy of Sciences |
7 | FGOALS-f3-L | |
8 | FIO-ESM2-0 | The First Institution of Oceanography |
9 | CNRM-CM6-1 | Centre National de Recherches Météorologiques |
10 | CNRM-ESM2-1 | |
11 | IPSL-CM6A-LR | Institut Pierre-Simon Laplace/Centre National de Recherche Scientifique |
12 | MPI-ESM1-2-LR | Max-Planck-Institut fuer Meteorologie, Deutsches Klimarechenzentrum |
13 | MPI-ESM1-2-HR | |
14 | CMCC-ESM2 | Centro Euro-Mediterraneo sui Cambiamenti Climatici |
15 | MIROC6 | National Institute for Environmental Studies, Japan Agency for Marine-Earth Science and Technology |
16 | MIROC-ES2L | |
17 | MRI-ESM2-0 | Meteorological Research Institute |
18 | INM-CM5-0 | Russian Academy of Sciences, Institute of Numerical Mathematics |
19 | KACE-1-0-G | National Institute of Meteorological Sciences-Korea Met. Administration |
20 | HadGEM-GC31-LL | Met Office Hadley Centre |
21 | UKES-M1-1-LL | |
22 | GFDL-ESM4 | Geophysical Fluid Dynamics Laboratory/NOAA |
23 | GISS-E2-1-G | NASA Goddard Institute for Space Studies |
24 | GISS-E2-2-G | |
25 | MCM-UA-1-0 | University of Arizona—Department of Geosciences |
Acronym | Definition | Calculation |
---|---|---|
bio1 | Mean annual temperature | |
bio4 | Temperature seasonality (i.e., standard deviation of average monthly temperature) | |
bio8 | Mean temperature of the wettest quarter of the year | |
bio9 | Mean temperature of the driest quarter of the year | |
bio10 | Mean temperature of the warmest quarter of the year | |
bio11 | Mean temperature of the coldest quarter of the year | |
bio12 | Total annual precipitation | |
bio13 | Total precipitation of the wettest month of the year | |
bio14 | Total precipitation of the driest month of the year | |
bio15 | Precipitation seasonality (i.e., standard deviation of monthly total precipitation) | |
bio16 | Total precipitation of the wettest quarter of the year | |
bio17 | Total precipitation of the driest quarter of the year | |
bio18 | Total precipitation of the warmest quarter of the year | |
bio19 | Total precipitation of the coldest quarter of the year | |
biorm1 (=Ic) | Continentality index (i.e., difference between the maximum and the minimum monthly average temperature) | |
biorm2 (=It/Itc) | Compensated thermicity index (or cold index) (1,2) | |
biorm3 (=Tp) | Positive annual temperature (i.e., sum of all temperatures above 0 °C) | |
biorm4 (=Pp) | Positive annual precipitation (i.e., sum of precipitation for each month where temperature is above 0 °C) | |
biorm5 (=Io) | Annual ombrothermic index (i.e., ratio between positive precipitation and positive temperature) | |
biorm6 (=Ios1) | Ombrothermic index of the warmest month | |
biorm7 (=Ios2) | Ombrothermic index of the two consecutive warmest summer months (3) | |
biorm8 (=Ios3) | Ombrothermic index of the summer quarter | |
biorm9 (=Ios4) | Ombrothermic index of the summer quarter and the preceding month |
Class/Climate | Type | Subtype |
---|---|---|
Arid (B) | Desert (Bw) | Hot (h) |
Steppe (Bh) |
Cold (k) | |
Temperate (C) | Dry summer (Cs) |
Hot summer (a) |
Dry winter (Cw) | Warm summer (b) | |
Without dry season (Cf) | Cold summer (c) | |
Polar (E) | Tundra (Et) Frost (Ef) |
Macrobioclimate | Bioclimate |
---|---|
Mediterranean (M.) (1) If ((23° to 52° N-S), ) If ((23° to 36° N-S), & ( & ) or ( & ) or ( & )) | M. desertic oceanic (medo) .0 |
M. desertic continental (medc) .0 | |
M. xeric oceanic (mexo) .0 | |
M. xeric continental (mexc) | |
M. pluviseasonal oceanic (mepo) | |
M. pluviseasonal continental (mepc) | |
Temperate (T.) If ((23° to 66° N- 54° S), ) If ((23° to 36° N-S), & & & ) | T. hyperoceanic (teho) |
T. oceanic (teoc) | |
T. continental (teco) | |
T. xeric (texe) |
Country | River Basin Name—Code | Temperature (Numerical ID) | Precipitation (Numerical ID) | Overall |
---|---|---|---|---|
Austria/Hungary | North Danube—2040539930 | 16, 19, 20, 11, 7 | 18, 23, 8, 9, 10 | 16, 8, 19, 5, 9 |
Austria/Slovenia | Drava—2040540100 | 13, 2, 10, 18, 24 | 22, 25, 14, 18, 6 | 22, 25, 18, 24, 13 |
Bosnia/Croatia | Sava—2040555780 | 24, 22, 8, 10, 9 | 24, 18, 22, 4, 6 | 24, 22, 8, 9, 10 |
France | Garonne—2040020320 | 12, 14, 1, 15, 17 | 4, 22, 10, 6, 2 | 12, 17, 22, 4, 23 |
France | Loire—2040021030 | 24, 17, 8, 10, 9 | 18, 16, 4, 11, 6 | 8, 10, 11, 16, 6 |
France | Brittany—2040021040 | 12, 22, 1, 10, 5 | 14, 4, 9, 22, 8 | 22, 1, 12, 15, 4 |
France | Seine—2040022150 | 25, 17, 3, 15, 4 | 18, 11, 6, 16, 4 | 16, 18, 4, 25, 6 |
France | Artois–Le Meuse—2040022160 | 15, 12, 1, 20, 3 | 5, 16, 4, 22, 25 | 15, 16, 22, 5, 12 |
France/Switzerland | Rhin—2040023010 | 19, 8, 24, 13, 3 | 5, 16, 18, 10, 3 | 8, 10, 16, 19, 3 |
Greece/Albania | Ionian–Adriatic—2040009230 | 22, 9, 24, 8, 11 | 22, 4, 18, 12, 6 | 22, 24, 6, 18, 9 |
Greece/Turkey | Greek islands—2040045150 | 7, 18, 25, 16, 9 | 10, 20, 7, 12, 17 | 7, 20, 10, 25, 16 |
Italy | Po–East Apennines—2040012730 | 12, 22, 24, 8, 14 | 17, 4, 20, 22, 12 | 12, 22, 17, 24, 9 |
Italy | Tyrrhenian—2040014550 | 5, 9, 4, 8, 24 | 14, 13, 5, 19, 10 | 5, 13, 4, 17, 9 |
Italy | Sicily—2040046500 | 12, 3, 22, 17, 24 | 20, 18, 1, 19, 6 | 12, 24, 18, 1, 17 |
Italy/France | Corsica–Sardinia—2040047500 | 8, 24, 9, 12, 3 | 13, 19, 14, 7, 22 | 22, 24, 13, 23, 3 |
Portugal | Mondego—2040018470 | 10, 20, 13, 24, 16 | 3, 16, 4, 11, 2 | 16, 10, 3, 19, 23 |
Portugal | Sado—2040018850 | 16, 20, 22, 15, 18 | 4, 16, 18, 22, 15 | 16, 22, 18, 15, 4 |
Romania | Prut—2040008490 | 20, 16, 3, 19, 24 | 25, 15, 7, 18, 16 | 16, 18, 25, 3, 19 |
Romania | Siret—2040543090 | 12, 14, 24, 22, 17 | 22, 12, 24, 1, 13 | 12, 22, 24, 1, 17 |
Romania/Bulgaria | Black Sea—2040008500 | 12, 15, 18, 25, 24 | 18, 12, 25, 20, 3 | 12, 18, 25, 15, 20 |
Romania/Hungary | Somes–Mures—2040548500 | 24, 8, 2, 18, 7 | 18, 7, 11, 8, 14 | 18, 8, 7, 24, 10 |
Romania/Serbia | West Danube—2040543160 | 22, 10, 8, 19, 9 | 4, 22, 10, 19, 25 | 22, 10, 19, 11, 24 |
Spain | Guadalete–Barbate—2040018240 | 3, 12, 18, 13, 1 | 22, 12, 18, 4, 15 | 12, 22, 18, 2, 3 |
Spain | Guadalquivir—2040018360 | 12, 8, 9, 24, 22 | 24, 17, 14, 22, 20 | 24, 22, 17, 12, 14 |
Spain | Tinto–Odiel—2040018370 | 23, 22, 2, 12, 24 | 18, 2, 14, 17, 4 | 2, 23, 22, 18, 12 |
Spain | Balearic islands—2040048590 | 3, 13, 12, 23, 24 | 5, 23, 19, 3, 10 | 23, 3, 5, 13, 24 |
Spain/France | Ebro–Rhone—2040016230 | 12, 6, 24, 17, 8 | 4, 24, 12, 20, 17 | 12, 24, 17, 6, 10 |
Spain/Portugal | Guadiana—2040018460 | 20, 10, 5, 6, 24 | 6, 11, 3, 4, 2 | 6, 11, 4, 2, 20 |
Spain/Portugal | Tagus—2040018840 | 10, 6, 24, 7, 22 | 2, 19, 4, 14, 18 | 6, 10, 24, 2, 18 |
Spain/Portugal | Douro—2040019150 | 17, 24, 23, 1, 15 | 25, 2, 3, 15, 11 | 25, 15, 3, 23, 11 |
Spain/Portugal | Minho—2040019160 | 13, 14, 15, 8, 22 | 15, 2, 25, 6, 20 | 15, 14, 25, 1, 3 |
Turkey | Bosphorus—2040003440 | 22, 25, 17, 23, 24 | 22, 7, 16, 6, 13 | 22, 17, 23, 24, 6 |
Turkey | Sakarya—2040003550 | 22, 7, 10, 11, 6 | 25, 15, 4, 19, 6 | 6, 10, 22, 11, 4 |
Turkey | Karadeniz—2040003560 | 12, 15, 17, 24, 14 | 6, 2, 12, 3, 20 | 12, 15, 1, 24, 2 |
Turkey | Kizilirmak—2040004130 | 22, 7, 13, 11, 10 | 18, 25, 15, 4, 6 | 22, 10, 13, 6, 11 |
Turkey | Yesilirmak—2040004280 | 12, 15, 13, 7, 17 | 18, 19, 25, 15, 3 | 18, 15, 25, 22, 12 |
Turkey | Çoruh—2040005120 | 12, 17, 22, 10, 1 | 25, 6, 15, 11, 3 | 15, 25, 12, 1, 14 |
Turkey | Dicle—2040816320 | 23, 9, 20, 6, 8 | 6, 10, 14, 15, 21 | 6, 23, 20, 13, 10 |
Turkey | Firat—2040785900 | 7, 11, 23, 20, 24 | 6, 11, 16, 25, 10 | 11, 6, 23, 20, 25 |
Turkey | Van Goku—2040085990 | 15, 13, 9, 8, 25 | 6, 15, 11, 25, 22 | 15, 6, 25, 4, 22 |
Turkey/Cyprus | Aegean—2040000010 | 6, 18, 5, 23, 13 | 10, 19, 5, 25, 11 | 6, 5, 25, 13, 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreiro-Lera, G.-B.; Penas, Á.; del Río, S. δ-MedBioclim: A New Dataset Bridging Current and Projected Bioclimatic Variables for the Euro-Mediterranean Region. Data 2025, 10, 78. https://doi.org/10.3390/data10050078
Ferreiro-Lera G-B, Penas Á, del Río S. δ-MedBioclim: A New Dataset Bridging Current and Projected Bioclimatic Variables for the Euro-Mediterranean Region. Data. 2025; 10(5):78. https://doi.org/10.3390/data10050078
Chicago/Turabian StyleFerreiro-Lera, Giovanni-Breogán, Ángel Penas, and Sara del Río. 2025. "δ-MedBioclim: A New Dataset Bridging Current and Projected Bioclimatic Variables for the Euro-Mediterranean Region" Data 10, no. 5: 78. https://doi.org/10.3390/data10050078
APA StyleFerreiro-Lera, G.-B., Penas, Á., & del Río, S. (2025). δ-MedBioclim: A New Dataset Bridging Current and Projected Bioclimatic Variables for the Euro-Mediterranean Region. Data, 10(5), 78. https://doi.org/10.3390/data10050078