Tracking U.S. Land Cover Changes: A Dataset of Sentinel-2 Imagery and Dynamic World Labels (2016–2024)
Abstract
1. Introduction
2. Related Works
2.1. Comparison of Major LULC Datasets
2.2. Advances in LULC Mapping and Semantic Segmentation Techniques
Segmentation-Based LULC Change Detection
3. Methods
3.1. Public Data Sources
3.1.1. Dynamic World
3.1.2. ESA Sentinel-2
3.2. Data Acquisition
3.2.1. Phase One: Sentinel-2 Collection Filtering
3.2.2. Phase Two: Dynamic World Mask Selection
3.2.3. Phase Three: Composite Image Generation
3.2.4. Phase Four: Data Export and Storage
4. Results
4.1. Semantic Segmentation Application
4.1.1. Data Preprocessing
4.1.2. Model Training and Evaluation
5. Discussion
- A nationwide, multispectral Sentinel-2 archive that is harmonized to a 10 m resolution;
- Yearly Dynamic World annotations that give nine-class pixel-level labels from 2016 to 2024. The trends extracted from this resource are meaningful only when interpreted in light of those design choices.
5.1. Dataset Construction and Its Analytical Pay-Off
5.2. Methodological Innovation
5.3. Practical Prospects
- Urban growth modeling. The steady 0.11 pp·yr−1 increase in built-up areas can feed spatial interaction models and inform infrastructure stress tests.
- Carbon-budget accounting. Year-to-year tree-cover recovery (+0.25 Mha over the study period) can be cross-checked against county-level emissions inventories.
- Emergency management. Near-continuous water masks make it possible to validate flood-extent predictions within days rather than months.
5.4. Limitations
- Generalizability. Climatic zones beyond the U.S. (e.g., equatorial forests and arid deserts) may exhibit spectral signatures not captured in our median composites.
- Scalability. The one-degree tiling scheme produces 797 GeoTIFFs per epoch. Although convenient for batch training on HPC clusters, it can hinder interactive exploration on modest hardware. Native cloud-optimized GeoTIFFs or STAC catalogs are an obvious next step.
5.5. Future Work
6. Conclusions
- Built-up areas expanded from 2.25% to 3.12%, evidencing rapid urbanization;
- Segmentation models that excel on dominant classes still struggle with minority ones, signaling the need for class imbalance-aware learning strategies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mas, J.F. Monitoring land-cover changes: A comparison of change detection techniques. Int. J. Remote Sens. 1999, 20, 139–152. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Ygorra, B.; Frappart, F.; Wigneron, J.P.; Catry, T.; Pillot, B.; Pfefer, A.; Courtalon, J.; Riazanoff, S. A near-real-time tropical deforestation monitoring algorithm based on the CuSum change detection method. Front. Remote Sens. 2024, 5, 1416550. [Google Scholar] [CrossRef]
- Kaselimi, M.; Voulodimos, A.; Daskalopoulos, I.; Doulamis, N.; Doulamis, A. A vision transformer model for convolution-free multilabel classification of satellite imagery in deforestation monitoring. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 3299–3307. [Google Scholar] [CrossRef] [PubMed]
- Montes, A.B.; Salas, J.; Garcia, E.A.V.; Suarez, R.R.; Wood, D. Assessing human settlement sprawl in mexico via remote sensing and deep learning. IEEE Lat. Am. Trans. 2024, 22, 174–185. [Google Scholar] [CrossRef]
- Srivastava, S.; Ahmed, T. An Approach to Monitor Urban Growth through Deep Learning based Change Detection Technique using Sentinel-2 Satellite Images. In Proceedings of the 2023 10th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 15–17 March 2023; pp. 832–838. [Google Scholar]
- Setiawan, Y.; Kustiyo, K.; Hudjimartsu, S.A.; Purwanto, J.; Rovani, R.; Tosiani, A.; Usman, A.B.; Kartika, T.; Indriasari, N.; Prasetyo, L.B.; et al. Evaluating Visible–Infrared Imaging Radiometer Suite Imagery for Developing Near-Real-Time Nationwide Vegetation Cover Monitoring in Indonesia. Remote Sens. 2024, 16, 1958. [Google Scholar] [CrossRef]
- Nazarova, T.; Martin, P.; Giuliani, G. Monitoring vegetation change in the presence of high cloud cover with Sentinel-2 in a lowland tropical forest region in Brazil. Remote Sens. 2020, 12, 1829. [Google Scholar] [CrossRef]
- Schroeder, T.A.; Moisen, G.G.; Healey, S.P.; Cohen, W.B. Adding value to the FIA inventory: Combining FIA data and satellite observations to estimate forest disturbance. In Moving From Status to Trends; U.S. Department of Agriculture: Newtown Square, PA, USA, 2012. [Google Scholar]
- Toromade, A.S.; Chiekezie, N.R. GIS-driven agriculture: Pioneering precision farming and promoting sustainable agricultural practices. World J. Adv. Sci. Technol. 2024, 6, 57–72. [Google Scholar] [CrossRef]
- Mikhailova, E.A.; Lin, L.; Hao, Z.; Zurqani, H.A.; Post, C.J.; Schlautman, M.A.; Post, G.C. Massachusetts Roadmap to Net Zero: Accounting for Ownership of Soil Carbon Regulating Ecosystem Services and Land Conversions. Laws 2022, 11, 27. [Google Scholar] [CrossRef]
- David Raj, A.; Kumar, S.; Sooryamol, K.R.; Mariappan, S.; Kalambukattu, J.G. 137Cs radiotracer in investigating influence of hillslope positions and land use on soil erosion and soil organic carbon stock—A case study in the Himalayan region. Soil Use Manag. 2024, 40, e13099. [Google Scholar] [CrossRef]
- Amuti, T.; Xinguo, L. Land cover change detection in oasis of Hotan River Basin in Northwestern China. In Proceedings of the Future Control and Automation: Proceedings of the 2nd International Conference on Future Control and Automation (ICFCA 2012)-Volume 1, Changsha, China, 1–2 July 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 45–51. [Google Scholar]
- Li, Y.; Zhang, L.; Qiu, J.; Yan, J.; Wan, L.; Wang, P.; Hu, N.; Cheng, W.; Fu, B. Spatially explicit quantification of the interactions among ecosystem services. Landsc. Ecol. 2017, 32, 1181–1199. [Google Scholar] [CrossRef]
- European Space Agency. Sentinel-2. 2024. Available online: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2 (accessed on 20 October 2024).
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World, Near real-time global 10 m land use land cover mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- Dynamic World—10 m Global Land Cover Dataset in Google Earth Engine. 2023. Available online: https://dynamicworld.app/ (accessed on 9 July 2024).
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- European Space Agency. ESA Climate Change Initiative: Land Cover Project. 2025. Available online: https://climate.esa.int/en/projects/land-cover/ (accessed on 6 April 2024).
- Copernicus Land Monitoring Service. Global Dynamic Land Cover Product. 2025. Available online: https://land.copernicus.eu/en/products/global-dynamic-land-cover (accessed on 6 April 2024).
- Alemohammad, H.; Booth, K. LandCoverNet: A Global Benchmark Land Cover Classification Training Dataset. arXiv 2020, arXiv:2012.03111. [Google Scholar]
- Sumbul, G.; Charfuelan, M.; Demir, B.; Markl, V. Bigearthnet: A large-scale benchmark archive for remote sensing image understanding. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 5901–5904. [Google Scholar]
- Schmitt, M.; Hughes, L.H.; Qiu, C.; Zhu, X.X. SEN12MS—A Curated Dataset of Georeferenced Multi-Spectral Sentinel-1/2 Imagery for Deep Learning and Data Fusion. arXiv 2019, arXiv:1906.07789. [Google Scholar] [CrossRef]
- Helber, P.; Bischke, B.; Dengel, A.; Borth, D. Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2217–2226. [Google Scholar] [CrossRef]
- United States Department of Agriculture, National Agricultural Statistics Service. Cropland Data Layer. 2025. Available online: https://nassgeodata.gmu.edu/CropScape/ (accessed on 6 April 2024).
- Conservancy, C. CBP Land Use/Land Cover Data Project. 2025. Available online: https://www.chesapeakeconservancy.org/projects/cbp-land-use-land-cover-data-project (accessed on 6 April 2024).
- Nasiri, V.; Deljouei, A.; Moradi, F.; Sadeghi, S.M.M.; Borz, S.A. Land use and land cover mapping using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A comparison of two composition methods. Remote Sens. 2022, 14, 1977. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; proceedings, part III 18. Springer International: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel 2 and deep learning. In Proceedings of the 2021 IEEE international geoscience and remote sensing symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 4704–4707. [Google Scholar]
- Garnot, V.S.F.; Landrieu, L.; Giordano, S.; Chehata, N. Satellite image time series classification with pixel-set encoders and temporal self-attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 12325–12334. [Google Scholar]
- Cheng, X.; Sun, Y.; Zhang, W.; Wang, Y.; Cao, X.; Wang, Y. Application of deep learning in multitemporal remote sensing image classification. Remote Sens. 2023, 15, 3859. [Google Scholar] [CrossRef]
- Temenos, A.; Temenos, N.; Kaselimi, M.; Doulamis, A.; Doulamis, N. Interpretable deep learning framework for land use and land cover classification in remote sensing using SHAP. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Zafar, Z.; Zubair, M.; Zha, Y.; Fahd, S.; Nadeem, A.A. Performance assessment of machine learning algorithms for mapping of land use/land cover using remote sensing data. Egypt. J. Remote Sens. Space Sci. 2024, 27, 216–226. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Daudt, R.C.; Le Saux, B.; Boulch, A. Fully convolutional siamese networks for change detection. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 4063–4067. [Google Scholar]
- Zanaga, D.; Van De Kerchove, R.; De Keersmaecker, W.; Souverijns, N.; Brockmann, C.; Quast, R.; Wevers, J.; Grosu, A.; Paccini, A.; Vergnaud, S.; et al. ESA WorldCover 10m 2020 v100; European Space Agency. 2021. Available online: https://doi.org/10.5281/zenodo.5571936 (accessed on 6 April 2024).
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. ESA WorldCover 10m 2021 v200; European Space Agency. 2022. Available online: https://zenodo.org/records/7254221 (accessed on 6 April 2024). [CrossRef]
- World Resources Institute. 2024. Available online: https://www.wri.org (accessed on 18 November 2024).
- Introduction to AI Platform|Google Cloud. 2023. Available online: https://cloud.google.com/ai-platform/docs (accessed on 9 July 2023).
- World Resources Institute and Google. Dynamic World V1: 10 m Near-Real-Time Global Land Use/Land Cover Dataset. 2022. Available online: https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_DYNAMICWORLD_V1 (accessed on 9 July 2024).
- GitHub—Google/Dynamicworld. 2023. Available online: https://github.com/google/dynamicworld (accessed on 9 July 2023).
- Tait, A.; Brumby, S.; Hyde, S.; Mazzariello, J.; Corcoran, M. Dynamic World training dataset for global land use and land cover categorization of satellite imagery. PANGAEA 2021, 933475. [Google Scholar]
- Sentinel Hub. Sentinel-2 L2A. 2024. Available online: https://docs.sentinel-hub.com/api/latest/data/sentinel-2-l2a/ (accessed on 20 October 2024).
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 39, 640–651. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Searching for MobileNetV3. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 1314–1324. [Google Scholar] [CrossRef]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. arXiv 2018, arXiv:1807.10165. [Google Scholar]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. arXiv 2017, arXiv:1611.05431. [Google Scholar]
- Chen, L.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. arXiv 2018, arXiv:1802.02611. [Google Scholar]
- Iakubovskii, P. Segmentation Models Pytorch. 2019. Available online: https://github.com/qubvel/segmentation_models.pytorch (accessed on 1 February 2025).
- maintainers, T.; contributors. TorchVision: PyTorch’s Computer Vision Library. 2016. Available online: https://github.com/pytorch/vision (accessed on 1 February 2025).
- Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2014. [Google Scholar]
Class ID | LULC Type | Examples |
---|---|---|
0 | Water | Rivers, ponds, lakes, oceans, flooded saltpans |
1 | Trees | Wooded vegetation, dense green shrubs, plantations |
2 | Grass | Natural meadows, fields, parks, pastures |
3 | Flooded vegetation | Flooded mangroves, emergent vegetation |
4 | Crops | Corn, wheat, hay plots |
5 | Shrub and scrub | Sparse shrubs, savannas, exposed soil |
6 | Built-up areas | Clusters of houses, roads, highways, urban areas |
7 | Bare ground | Exposed rock, deserts, sand dunes |
8 | Snow and ice | Glaciers, snowfields, permanent snowpack |
Identification | Band | Spatial Resolution (m) |
---|---|---|
B2 | Blue (Sentinel-2A) | 10 |
B3 | Green (Sentinel-2A) | 10 |
B4 | Red (Sentinel-2A) | 10 |
B8 | NIR (Sentinel-2A) | 10 |
B11 | SWIR 1 (Sentinel-2A) | 10 |
B12 | SWIR 2 (Sentinel-2A) | 10 |
08 | Label (Dynamic World) | 10 |
Class | Original | Augmented |
---|---|---|
0 | 7.6% | 7.3% |
1 | 35.4% | 34.3% |
2 | 8.7% | 8.3% |
3 | 0.1% | 0.1% |
4 | 18.9% | 18.0% |
5 | 15.7% | 14.9% |
6 | 4.1% | 7.7% |
7 | 9.3% | 8.9% |
8 | 0.1% | 0.3% |
Metric | FCN | U-Net++ | DeepLabV3+ | LRASPP |
---|---|---|---|---|
IoU | 0.68 | 0.64 | 0.69 | 0.71 |
Accuracy | 0.88 | 0.86 | 0.88 | 0.89 |
F1 score | 0.79 | 0.76 | 0.80 | 0.82 |
Class ID | LULC Type | DeepLabV3+ | FCN | LRASPP | UNet++ |
---|---|---|---|---|---|
0 | Water | 0.940 | 0.931 | 0.945 | 0.921 |
1 | Trees | 0.940 | 0.936 | 0.941 | 0.936 |
2 | Grass | 0.767 | 0.779 | 0.786 | 0.694 |
3 | Flooded Veg. | 0.447 | 0.344 | 0.414 | 0.245 |
4 | Crops | 0.869 | 0.861 | 0.881 | 0.841 |
5 | Shrub and Scrub | 0.818 | 0.823 | 0.845 | 0.808 |
6 | Built-Up Areas | 0.897 | 0.895 | 0.894 | 0.894 |
7 | Bare Ground | 0.814 | 0.835 | 0.857 | 0.794 |
8 | Snow and Ice | 0.738 | 0.706 | 0.786 | 0.667 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rangel, A.; Terven, J.; Córdova-Esparza, D.-M.; Romero-González, J.-A.; Ramírez-Pedraza, A.; Chávez-Urbiola, E.A.; Willars-Rodríguez, F.J.; Alfonso-Francia, G. Tracking U.S. Land Cover Changes: A Dataset of Sentinel-2 Imagery and Dynamic World Labels (2016–2024). Data 2025, 10, 67. https://doi.org/10.3390/data10050067
Rangel A, Terven J, Córdova-Esparza D-M, Romero-González J-A, Ramírez-Pedraza A, Chávez-Urbiola EA, Willars-Rodríguez FJ, Alfonso-Francia G. Tracking U.S. Land Cover Changes: A Dataset of Sentinel-2 Imagery and Dynamic World Labels (2016–2024). Data. 2025; 10(5):67. https://doi.org/10.3390/data10050067
Chicago/Turabian StyleRangel, Antonio, Juan Terven, Diana-Margarita Córdova-Esparza, Julio-Alejandro Romero-González, Alfonso Ramírez-Pedraza, Edgar A. Chávez-Urbiola, Francisco. J. Willars-Rodríguez, and Gendry Alfonso-Francia. 2025. "Tracking U.S. Land Cover Changes: A Dataset of Sentinel-2 Imagery and Dynamic World Labels (2016–2024)" Data 10, no. 5: 67. https://doi.org/10.3390/data10050067
APA StyleRangel, A., Terven, J., Córdova-Esparza, D.-M., Romero-González, J.-A., Ramírez-Pedraza, A., Chávez-Urbiola, E. A., Willars-Rodríguez, F. J., & Alfonso-Francia, G. (2025). Tracking U.S. Land Cover Changes: A Dataset of Sentinel-2 Imagery and Dynamic World Labels (2016–2024). Data, 10(5), 67. https://doi.org/10.3390/data10050067