Observational Monitoring Records Downstream Impacts of Beaver Dams on Water Quality and Quantity in Temperate Mixed-Land-Use Watersheds
Abstract
:1. Introduction
2. Methods
2.1. Site Descriptions
2.2. Field Methods
2.3. Lab Methods
2.4. Analysis Approaches
3. Results
3.1. Vertical Hydraulic Gradients (Piezometers)
3.2. Water Quality Parameters
3.3. ADDA-Elisa Test (Growth Chamber Samples)
3.4. Cyanobacteria Growth (Growth Chamber Samples)
4. Discussion
4.1. Data Availability and Use
4.2. Biogeochemical Cycling in the Hyporheic Zone
4.3. Implications of Cyanobacterial Findings on the Threat of HABs Downstream
4.4. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bashinskiy, I.V. Beavers in Lakes: A Review of Their Ecosystem Impact. Aquat. Ecol. 2020, 54, 1097–1120. [Google Scholar] [CrossRef]
- Paerl, H.W. Mitigating Harmful Cyanobacterial Blooms in a Human- and Climatically-Impacted World. Life 2014, 4, 988–1012. [Google Scholar] [CrossRef] [PubMed]
- Bláha, L.; Babica, P.; Maršálek, B. Toxins Produced in Cyanobacterial Water Blooms—Toxicity and Risks. Interdiscip. Toxicol. 2009, 2, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Boyer, G.L. Cyanobacterial Toxins in New York and the Lower Great Lakes Ecosystems. In Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs; Hudnell, H.K., Ed.; Springer: New York, NY, USA, 2008; pp. 153–165. ISBN 978-0-387-75865-7. [Google Scholar]
- Merel, S.; Walker, D.; Chicana, R.; Snyder, S.; Baurès, E.; Thomas, O. State of Knowledge and Concerns on Cyanobacterial Blooms and Cyanotoxins. Environ. Int. 2013, 59, 303–327. [Google Scholar] [CrossRef]
- van der Merwe, D. Chapter 31—Cyanobacterial (Blue-Green Algae) Toxins. In Handbook of Toxicology of Chemical Warfare Agents, 2nd ed.; Gupta, R.C., Ed.; Academic Press: Boston, MA, USA, 2015; pp. 421–429. ISBN 978-0-12-800159-2. [Google Scholar]
- Lürling, M.; Mello, M.M.E.; van Oosterhout, F.; de Senerpont Domis, L.; Marinho, M.M. Response of Natural Cyanobacteria and Algae Assemblages to a Nutrient Pulse and Elevated Temperature. Front. Microbiol. 2018, 9, 1851. [Google Scholar] [CrossRef]
- Chapra, S.C.; Boehlert, B.; Fant, C.; Bierman, V.J., Jr.; Henderson, J.; Mills, D.; Mas, D.M.L.; Rennels, L.; Jantarasami, L.; Martinich, J.; et al. Climate Change Impacts on Harmful Algal Blooms in U.S. Freshwaters: A Screening-Level Assessment. Environ. Sci. Technol. 2017, 51, 8933–8943. [Google Scholar] [CrossRef]
- Kaplan-Levy, R.N.; Hadas, O.; Summers, M.L.; Rücker, J.; Sukenik, A. Akinetes: Dormant Cells of Cyanobacteria. In Dormancy and Resistance in Harsh Environments; Lubzens, E., Cerda, J., Clark, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 5–27. ISBN 978-3-642-12422-8. [Google Scholar]
- Legrand, B.; Miras, Y.; Beauger, A.; Dussauze, M.; Latour, D. Akinetes and Ancient DNA Reveal Toxic Cyanobacterial Recurrences and Their Potential for Resurrection in a 6700-Year-Old Core from a Eutrophic Lake. Sci. Total Environ. 2019, 687, 1369–1380. [Google Scholar] [CrossRef]
- Beauger, A.; Serieyssol, K.; Legrand, B.; Latour, D.; Berthon, V.; Lavrieux, M.; Miras, Y. 6700 Years of Diatom Changes Related to Land Use and Climatic Fluctuations in the Lake Aydat Catchment (Auvergne, France): Coupling with Cyanobacteria Akinetes, Pollen and Non-Pollen Palynomorphs Data. Quat. Int. 2022, 636, 167–179. [Google Scholar] [CrossRef]
- Elfgren, I.K. Studies on the Life Cycles of Akinete Forming Cyanobacteria. Ph.D. Thesis, Acta Universitatis Upsaliensis, Uppsala, Sweden, 2003. [Google Scholar]
- Juijuljerm, R.; Vanijajiva, O.; Chittapun, S. The Potential of Using Akinetes as Seed Starters for Cladophora Glomerata Cultivation: Germination and Growth of Akinetes under Different Light Intensities and Humic Concentrations. Algal Res. 2021, 60, 102478. [Google Scholar] [CrossRef]
- Legrand, B.; Lamarque, A.; Sabart, M.; Latour, D. Characterization of Akinetes from Cyanobacterial Strains and Lake Sediment: A Study of Their Resistance and Toxic Potential. Harmful Algae 2016, 59, 42–50. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Impacts of Climate Change on the Occurrence of Harmful Algal Blooms; United States Environmental Protection Agency: Washington, DC, USA, 2013.
- Hoghooghi, N.; Pippin, J.S.; Meyer, B.K.; Hodges, J.B.; Bledsoe, B.P. Frontiers in Assessing Septic Systems Vulnerability in Coastal Georgia, USA: Modeling Approach and Management Implications. PLoS ONE 2021, 16, e0256606. [Google Scholar] [CrossRef] [PubMed]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial Blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Rivin, G. Public Health a Low Priority for Water and Sewer Extensions, Study Finds. Available online: http://www.northcarolinahealthnews.org/2015/09/08/public-health-a-low-priority-for-water-and-sewer-extensions-study-finds/ (accessed on 5 February 2025).
- Zhang, Y.; Luo, P.; Zhao, S.; Kang, S.; Wang, P.; Zhou, M.; Lyu, J. Control and Remediation Methods for Eutrophic Lakes in the Past 30 Years. Water Sci. Technol. 2020, 81, 1099–1113. [Google Scholar] [CrossRef] [PubMed]
- Hester, E.T.; Doyle, M.W. In-Stream Geomorphic Structures as Drivers of Hyporheic Exchange. Water Resour. Res. 2008, 44, 1–17. [Google Scholar] [CrossRef]
- Sheibley, R.W.; Jackman, A.P.; Duff, J.H.; Triska, F.J. Numerical Modeling of Coupled Nitrification-Denitrification in Sediment Perfusion Cores from the Hyporheic Zone of the Shingobee River, MN. Adv. Water Resour. 2003, 26, 977–987. [Google Scholar] [CrossRef]
- Crispell, J.K.; Endreny, T.A. Hyporheic Exchange Flow around Constructed In-Channel Structures and Implications for Restoration Design. Hydrol. Process. 2009, 23, 1158–1168. [Google Scholar] [CrossRef]
- Harvey, J.W.; Böhlke, J.K.; Voytek, M.A.; Scott, D.; Tobias, C.R. Hyporheic Zone Denitrification: Controls on Effective Reaction Depth and Contribution to Whole-Stream Mass Balance. Water Resour. Res. 2013, 49, 6298–6316. [Google Scholar] [CrossRef]
- Wang, X.; Shaw, E.L.; Westbrook, C.J.; Bedard-Haughn, A. Beaver Dams Induce Hyporheic and Biogeochemical Changes in Riparian Areas in a Mountain Peatland. Wetlands 2018, 38, 1017–1032. [Google Scholar] [CrossRef]
- Meghdadi, A.; Javar, N. Evaluation of Nitrate Sources and the Percent Contribution of Bacterial Denitrification in Hyporheic Zone Using Isotope Fractionation Technique and Multi-Linear Regression Analysis. J. Environ. Manag. 2018, 222, 54–65. [Google Scholar] [CrossRef]
- Larsen, A.; Larsen, J.R.; Lane, S.N. Dam Builders and Their Works: Beaver Influences on the Structure and Function of River Corridor Hydrology, Geomorphology, Biogeochemistry and Ecosystems. Earth-Sci. Rev. 2021, 218, 103623. [Google Scholar] [CrossRef]
- Jin, G.; Chen, H.; Zhang, Z.; Jiang, Q.; Liu, Z.; Tang, H. Transport of Phosphorus in the Hyporheic Zone. Water Resour. Res. 2022, 58, e2021WR031292. [Google Scholar] [CrossRef]
- Liu, S.; Chui, T.F.M. Optimal In-Stream Structure Design through Considering Nitrogen Removal in Hyporheic Zone. Water 2020, 12, 1399. [Google Scholar] [CrossRef]
- Cardenas, M.B. Hyporheic Zone Hydrologic Science: A Historical Account of Its Emergence and a Prospectus. Water Resour. Res. 2015, 51, 3601–3616. [Google Scholar] [CrossRef]
- Grudzinski, B.P.; Fritz, K.; Golden, H.E.; Newcomer-Johnson, T.A.; Rech, J.A.; Levy, J.; Fain, J.; McCarty, J.L.; Johnson, B.; Vang, T.K.; et al. A Global Review of Beaver Dam Impacts: Stream Conservation Implications across Biomes. Glob. Ecol. Conserv. 2022, 37, e02163. [Google Scholar] [CrossRef]
- Wright, J.P.; Jones, C.G.; Flecker, A.S. An Ecosystem Engineer, the Beaver, Increases Species Richness at the Landscape Scale. Oecologia 2002, 132, 96–101. [Google Scholar] [CrossRef]
- Murray, D.; Neilson, B.T.; Brahney, J. Beaver Pond Geomorphology Influences Pond Nitrogen Retention and Denitrification. J. Geophys. Res. Biogeosciences 2023, 128, e2022JG007199. [Google Scholar] [CrossRef]
- Butler, D.R.; Malanson, G.P. Sedimentation Rates and Patterns in Beaver Ponds in a Mountain Environment. Geomorphology 1995, 13, 255–269. [Google Scholar] [CrossRef]
- Butler, D.R.; Malanson, G.P. The Geomorphic Influences of Beaver Dams and Failures of Beaver Dams. Geomorphology 2005, 71, 48–60. [Google Scholar] [CrossRef]
- Rurek, M. Characteristics of Beaver Ponds and Landforms Induced by Beaver Activity, S Part of the Tuchola Pinewoods, Poland. Water 2021, 13, 3641. [Google Scholar] [CrossRef]
- Čiuldienė, D.; Vigricas, E.; Belova, O.; Aleinikovas, M.; Armolaitis, K. The Effect of Beaver Dams on Organic Carbon, Nutrients and Methyl Mercury Distribution in Impounded Waterbodies. Wildl. Biol. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Tucker, A. Breached Beaver Dam Gushes Water from 40-Acre Pond. Available online: https://www.news10.com/news/breached-beaver-dam-gushes-water-from-40-acre-pond/ (accessed on 5 February 2025).
- Davidson, E.A.; David, M.B.; Galloway, J.N.; Goodale, C.L.; Haeuber, R.; Harrison, J.A.; Howarth, R.W.; Jaynes, D.B.; Lowrance, R.R.; Thomas, N.B.; et al. Excess Nitrogen in the U.S. Environment: Trends, Risks, and Solutions. Issues Ecol. 2011, 15, 1–17. [Google Scholar]
- Lazar, J.G.; Addy, K.; Gold, A.J.; Groffman, P.M.; McKinney, R.A.; Kellogg, D.Q. Beaver Ponds: Resurgent Nitrogen Sinks for Rural Watersheds in the Northeastern United States. J. Environ. Qual. 2015, 44, 1684–1693. [Google Scholar] [CrossRef] [PubMed]
- Crimmins, A.R. Fifth National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2023.
- Eekhout, J.P.C.; Hunink, J.E.; Terink, W.; de Vente, J. Why Increased Extreme Precipitation under Climate Change Negatively Affects Water Security. Hydrol. Earth Syst. Sci. 2018, 22, 5935–5946. [Google Scholar] [CrossRef]
- Davidson, K.; Gowen, R.J.; Tett, P.; Bresnan, E.; Harrison, P.J.; McKinney, A.; Milligan, S.; Mills, D.K.; Silke, J.; Crooks, A.-M. Harmful Algal Blooms: How Strong Is the Evidence That Nutrient Ratios and Forms Influence Their Occurrence? Estuar. Coast. Shelf Sci. 2012, 115, 399–413. [Google Scholar] [CrossRef]
- Lee, D.R. A Device for Measuring Seepage Flux in Lakes and Estuaries. Limnol. Oceanogr. 1977, 22, 140–147. [Google Scholar] [CrossRef]
- Kirsch, B.A. Impact of Agricultural Land Use on Stream Nitrate, Phosphorus, and Sediment Concentrations at the Watershed and Field Scale. Bachelor’s Thesis, University of Nebraska—Lincoln Department of Agronomy and Horticulture, Lincoln, NE, USA, 2020. [Google Scholar]
- Water Quality Standards and Classifications—NYSDEC. Available online: https://dec.ny.gov/environmental-protection/water/water-quality/standards-classifications (accessed on 26 March 2025).
- Dittmann, E.; Fewer, D.P.; Neilan, B.A. Cyanobacterial Toxins: Biosynthetic Routes and Evolutionary Roots. FEMS Microbiol. Rev. 2013, 37, 23–43. [Google Scholar] [CrossRef]
- Stauffer, B.A.; Bowers, H.A.; Buckley, E.; Davis, T.W.; Johengen, T.H.; Kudela, R.; McManus, M.A.; Purcell, H.; Smith, G.J.; Vander Woude, A.; et al. Considerations in Harmful Algal Bloom Research and Monitoring: Perspectives From a Consensus-Building Workshop and Technology Testing. Front. Mar. Sci. 2019, 6, 399. [Google Scholar] [CrossRef]
- Nuisance Beaver—NYSDEC. Available online: https://dec.ny.gov/nature/animals-fish-plants/nuisance-wildlife-species/beaver (accessed on 5 February 2025).
Parameter | Measurement Tool |
---|---|
pH | YSI Professional Plus Multiprobe |
Specific Conductivity (Converted to TDS) | YSI Professional Plus Multiprobe |
Temperature | Solinst WLT Meter Model 201 |
Dissolved Oxygen | YSI Professional Plus Multiprobe |
Nitrate | Hach DR-300 Colorimeter Cadmium Reduction Method |
Orthophosphate | Hach DR-300 Colorimeter Ascorbic Acid Method |
Green Algae | BBE Moldaenke FluoroProbe |
Bluegreen Algae | BBE Moldaenke FluoroProbe |
Diatoms | BBE Moldaenke FluoroProbe |
Turbidity | LaMotte 2020we Turbidity Meter |
Site | Beaver Pond | Upstream |
---|---|---|
Old Bullshead | 0.214 | 0.225 |
The Preserve at Vassar College | 0.251 | 0.214 |
Stissing Mountain | 0.176 | 0.159 |
Wetland Trust | < 0.150 | 0.234 |
Cary Institute of Ecosystem Studies | 0.178 | < 0.150 |
Site | Beaver Pond | Upstream |
---|---|---|
Old Bullshead | Y = 0.0243e0.072x R2 = 0.987 | Y = 0.218e0.043x R2 = 0.963 |
The Preserve at Vassar College | Y = 0.0142e0.0672x R2 = 0.984 | Y = 0.0592e0.0551x R2 = 0.996 |
Stissing Mountain | Y = 0.127e0.036x R2 = 0.988 | Y = 1.03e0.0211x R2 = 0.854 |
Wetland Trust | Y = 0.0582e0.0569x R2 = 0.990 | Y = 0.658e0.0193x R2 = 0.635 |
Cary Institute of Ecosystem Studies | Y = 0.0674e0.0797x R2 = 0.999 | Y = 0.205e0.0531x R2 = 0.907 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novobilsky, E.E.; Navin, J.R.; Knights, D.H.; Klos, P.Z. Observational Monitoring Records Downstream Impacts of Beaver Dams on Water Quality and Quantity in Temperate Mixed-Land-Use Watersheds. Data 2025, 10, 51. https://doi.org/10.3390/data10040051
Novobilsky EE, Navin JR, Knights DH, Klos PZ. Observational Monitoring Records Downstream Impacts of Beaver Dams on Water Quality and Quantity in Temperate Mixed-Land-Use Watersheds. Data. 2025; 10(4):51. https://doi.org/10.3390/data10040051
Chicago/Turabian StyleNovobilsky, Erin E., Jack R. Navin, Deon H. Knights, and P. Zion Klos. 2025. "Observational Monitoring Records Downstream Impacts of Beaver Dams on Water Quality and Quantity in Temperate Mixed-Land-Use Watersheds" Data 10, no. 4: 51. https://doi.org/10.3390/data10040051
APA StyleNovobilsky, E. E., Navin, J. R., Knights, D. H., & Klos, P. Z. (2025). Observational Monitoring Records Downstream Impacts of Beaver Dams on Water Quality and Quantity in Temperate Mixed-Land-Use Watersheds. Data, 10(4), 51. https://doi.org/10.3390/data10040051