Visual Footprint of Separation Through Membrane Distillation on YouTube
Abstract
:1. Introduction
2. Data and Methods
3. Results and Discussions
4. Conclusions
5. Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGMD | Air gap membrane distillation. |
API | Application programming interface. |
CAGR | Compound annual growth rate. |
CGMD | Conductive gap membrane distillation. |
DCMD | Direct contact membrane distillation. |
ED | Electrodialysis. |
FO | Forward osmosis. |
GS | Gas separation. |
JSON | Java Script object notation. |
LGMD | Liquid gap membrane distillation. |
MAS | Membrane air stripping. |
MBR | Membrane bioreactor. |
MCr | Membrane crystallization. |
MD | Membrane distillation. |
MF | Microfiltration. |
MGMD | Material gap membrane distillation. |
ML | Machine learning. |
NC | Number of comments. |
NF | Nanofiltration. |
NI | Narrative intensity. |
NL | Number of likes. |
NLP | Natural language processing. |
NV | Number of views. |
PGMD | Permeate gap membrane distillation. |
PV | Pervaporation. |
RED | Reverse electrodialysis. |
RO | Reverse osmosis. |
SARSA | State–action–reward–state–action. |
SGMD | Sweeping gas membrane distillation. |
TO | Thermos-osmosis. |
TSGMD | Thermostatic sweeping gas membrane distillation. |
UF | Ultrafiltration. |
VAGMD | Vacuumed air gap membrane distillation. |
VEMD | Vacuum-enhanced membrane distillation |
VMD | Vacuum membrane distillation. |
V-MEMD | Vacuum multi-effect membrane distillation. |
WGMD | Water gap membrane distillation. |
References
- Arora, S.; Mehta, M. Love it or hate it, but can you ignore social media?—A bibliometric analysis of social media addiction. Comput. Hum. Behav. 2023, 147, 107831. [Google Scholar] [CrossRef]
- Reimer, T. Environmental factors to maximize social media engagement: A comprehensive framework. J. Retail. Consum. Serv. 2023, 75, 103458. [Google Scholar] [CrossRef]
- Hylkilä, K.; Männikkö, N.; Castrén, S.; Mustonen, T.; Peltonen, A.; Konttila, J.; Männistö, M.; Kääriäinen, M. Association between psychosocial well-being and problematic social media use among Finnish young adults: A cross-sectional study. Telemat. Inform. 2023, 81, 101996. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, J.; Fan, Z.-P.; Land, L.P.W. Exploring users’ content creation and information dissemination behavior in social media: The moderating effect of social presence. Acta Psychol. 2023, 233, 103846. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.; Cai, S. The nature of social media use and ethnic minorities’ acculturation. Int. J. Intercult. Relat. 2023, 96, 101852. [Google Scholar] [CrossRef]
- Yue, H.; Yue, X.; Zhang, X.; Liu, B.; Bao, H. Exploring the relationship between social exclusion and social media addiction: The mediating roles of anger and impulsivity. Acta Psychol. 2023, 238, 103980. [Google Scholar] [CrossRef]
- Roy, S.K. YouTube’s influential factors for academic achievement: A two-stage approach. Telemat. Inform. Rep. 2023, 10, 100060. [Google Scholar] [CrossRef]
- Luo, H.; Meng, X.; Zhao, Y.; Cai, M. Exploring the impact of sentiment on multi-dimensional information dissemination using COVID-19 data in China. Comput. Hum. Behav. 2023, 144, 107733. [Google Scholar] [CrossRef]
- Liu, C.; Chong, H.T. Social media engagement and impacts on post-COVID-19 travel intention for adventure tourism in New Zealand. J. Outdoor Rec. Tour. 2023, 44, 100612. [Google Scholar] [CrossRef]
- Schwemmer, C.; Ziewiecki, S. Social Media Sellout: The Increasing Role of Product Promotion on YouTube. Soc. Med. Soc. 2018, 4, 2056305118786720. [Google Scholar] [CrossRef]
- Similarweb. Top Websites Ranking. Available online: https://www.similarweb.com/top-websites/ (accessed on 15 January 2025).
- Golobal_Media_Insight. YouTube Users Statistics 2023. Available online: https://www.globalmediainsight.com/blog/youtube-users-statistics/ (accessed on 4 July 2024).
- Kwon, J.H.; You, S.Y. Early Dementia: Content Analysis of the Information Provided by YouTube Videos in Korea. J. Nurse Pract. 2023, 19, 104589. [Google Scholar] [CrossRef]
- Abed, V.; Sullivan, B.M.; Skinner, M.; Hawk, G.S.; Khalily, C.; Conley, C.; Stone, A.V. YouTube Is a Poor-Quality Source for Patient Information Regarding Patellar Dislocations. Arthrosc. Sports Med. Rehabil. 2023, 5, e459–e464. [Google Scholar] [CrossRef] [PubMed]
- Evans, M. Information dissemination in new media: YouTube and the Israeli–Palestinian conflict. Media War Confl. 2016, 9, 325–343. [Google Scholar] [CrossRef]
- Lu, J. Data science in the business environment: Insight management for an Executive MBA. Int. J. Manag. Edu. 2022, 20, 100588. [Google Scholar] [CrossRef]
- Senave, E.; Jans, M.J.; Srivastava, R.P. The application of text mining in accounting. Int. J. Account. Inf. Syst. 2023, 50, 100624. [Google Scholar] [CrossRef]
- Khayet, M.; Aytaç, E.; Matsuura, T. Bibliometric and sentiment analysis with machine learning on the scientific contribution of Professor Srinivasa Sourirajan. Desalination 2022, 543, 116095. [Google Scholar] [CrossRef]
- Aytaç, E.; Khayet, M. A deep dive into membrane distillation literature with data analysis, bibliometric methods, and machine learning. Desalination 2023, 553, 116482. [Google Scholar] [CrossRef]
- Aytaç, E. Exploring Electrocoagulation Through Data Analysis and Text Mining Perspectives. Environ. Eng. Manag. J. 2022, 21, 671–685. [Google Scholar] [CrossRef]
- Bobba, P.S.; Sailer, A.; Pruneski, J.A.; Beck, S.; Mozayan, A.; Mozayan, S.; Arango, J.; Cohan, A.; Chheang, S. Natural language processing in radiology: Clinical applications and future directions. Clin. Imaging 2023, 97, 55–61. [Google Scholar] [CrossRef]
- Khayet, M.; Aytaç, E. A Glimpse into Dr. Nidal Hilal’s Scientific Achievements. J. Membr. Sci. Res. 2024, 10, 1999042. [Google Scholar] [CrossRef]
- Aytaç, E. Object Detection and Regression Based Visible Spectrophotometric Analysis: A Demonstration Using Methylene Blue Solution. ADCAIJ Adv. Distrib. Comp. Artif. Intell. J. 2023, 12, e29120. [Google Scholar] [CrossRef]
- Aytaç, E. Modeling Future Impacts on Land Cover of Rapid Expansion of Hazelnut Orchards: A Case Study on Samsun, Turkey. Eur. J. Sust. Dev. Res. 2022, 6, em0193. [Google Scholar] [CrossRef]
- Simeone, O. A Very Brief Introduction to Machine Learning With Applications to Communication Systems. IEEE Trans. Cogn. Commun. Netw. 2018, 4, 648–664. [Google Scholar] [CrossRef]
- Aytaç, E.; Contreras-Martínez, J.; Khayet, M. Mathematical and computational modeling of membrane distillation technology: A data-driven review. Int. J. Thermofluids 2024, 21, 100567. [Google Scholar] [CrossRef]
- Aytaç, E. Havzaların Benzerliklerini Tanımlamada Alternatif Bir Yaklaşım: Hiyerarşik Kümeleme Yöntemi Uygulaması. Afyon Koc. Univ. Fen Muhendis. Bilim. Derg. 2021, 21, 958–970. [Google Scholar] [CrossRef]
- Aytaç, E. Forecasting Turkey’s Hazelnut Export Quantities with Facebook’s Prophet Algorithm and Box-Cox Transformation. ADCAIJ Adv. Dist. Comp. Arti. Int. J. 2021, 10, 33–47. [Google Scholar] [CrossRef]
- Castilho, V.M.; Balthazar, W.F.; da Silva, L.; Penna, T.J.P.; Huguenin, J.A.O. Machine learning classification of speckle patterns for roughness measurements. Phys. Lett. A 2023, 468, 128736. [Google Scholar] [CrossRef]
- Soofi, A.A.; Awan, A. Classification Techniques in Machine Learning: Applications and Issues. J. Basic Appl. Sci. 2017, 13, 459–465. [Google Scholar] [CrossRef]
- Gera, A.; Halfon, A.; Shnarch, E.; Perlitz, Y.; Ein-Dor, L.; Slonim, N. Zero-Shot Text Classification with Self-Training. arXiv 2022. [Google Scholar] [CrossRef]
- Yang, G.; Ye, Z.; Zhang, R.; Huang, K. A comprehensive survey of zero-shot image classification: Methods, implementation, and fair evaluation. Appl. Comp. Intell. 2022, 2, 1–31. [Google Scholar] [CrossRef]
- Moreno-Garcia, C.F.; Jayne, C.; Elyan, E.; Aceves-Martins, M. A novel application of machine learning and zero-shot classification methods for automated abstract screening in systematic reviews. Decis. Anal. J. 2023, 6, 100162. [Google Scholar] [CrossRef]
- Çelik, E.; Dalyan, T. Unified benchmark for zero-shot Turkish text classification. Inform. Process. Manag. 2023, 60, 103298. [Google Scholar] [CrossRef]
- Yin, W.; Hay, J.; Roth, D. Benchmarking Zero-shot Text Classification: Datasets, Evaluation and Entailment Approach. arXiv 2019. [Google Scholar] [CrossRef]
- Balakrishnan, R.; Rajaram, S.K.; Sivaprakasam, S. Chapter 13—Biovalorization potential of agro-forestry/industry biomass for optically pure lactic acid fermentation: Opportunities and challenges. In Biovalorisation of Wastes to Renewable Chemicals and Biofuels; Krishnaraj Rathinam, N., Sani, R.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 261–276. [Google Scholar]
- Chen, Z.; Li, Z.; Chen, J.; Kallem, P.; Banat, F.; Qiu, H. Recent advances in selective separation technologies of rare earth elements: A review. J. Environ. Chem. Eng. 2022, 10, 107104. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Aytaç, E.; Khanzada, N.K.; Khayet, M.; Hilal, N. The role of feed spacers in membrane technology: 45 years of research. Sep. Purif. Technol. 2025, 357, 130109. [Google Scholar] [CrossRef]
- Laqbaqbi, M.; Sanmartino, J.A.; Khayet, M.; García-Payo, C.; Chaouch, M. Fouling in Membrane Distillation, Osmotic Distillation and Osmotic Membrane Distillation. Appl. Sci. 2017, 7, 334. [Google Scholar] [CrossRef]
- Khayet, M.; Matsuura, T.; Mengual, J.I. Porous hydrophobic/hydrophilic composite membranes: Estimation of the hydrophobic-layer thickness. J. Membr. Sci. 2005, 266, 68–79. [Google Scholar] [CrossRef]
- Nasef, M.M.; Zubir, N.A.; Ismail, A.F.; Dahlan, K.Z.M.; Saidi, H.; Khayet, M. Preparation of radiochemically pore-filled polymer electrolyte membranes for direct methanol fuel cells. J. Power Sources 2006, 156, 200–210. [Google Scholar] [CrossRef]
- Sabzekar, M.; Pourafshari Chenar, M.; Khayet, M.; García-Payo, C.; Maghsoud, Z.; Pagliero, M. Cyclic olefin polymer membrane as an emerging material for CO2 capture in gas-liquid membrane contactor. J. Environ. Chem. Eng. 2022, 10, 107669. [Google Scholar] [CrossRef]
- Tavajohi, N.; Khayet, M. Introduction. In Polymeric Membrane Formation by Phase Inversion; Tavajohi, N., Khayet, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. xiii–xiv. [Google Scholar]
- Khayet, M. Membranes and theoretical modeling of membrane distillation: A review. Adv. Colloid Interface Sci. 2011, 164, 56–88. [Google Scholar] [CrossRef] [PubMed]
- Arribas, P.; Khayet, M.; García-Payo, M.C.; Gil, L. Self-sustained electro-spun polysulfone nano-fibrous membranes and their surface modification by interfacial polymerization for micro- and ultra-filtration. Sep. Purif. Technol. 2014, 138, 118–129. [Google Scholar] [CrossRef]
- Khayet, M.; Villaluenga, J.P.G.; Godino, M.P.; Mengual, J.I.; Seoane, B.; Khulbe, K.C.; Matsuura, T. Preparation and application of dense poly(phenylene oxide) membranes in pervaporation. J. Colloid Interface Sci. 2004, 278, 410–422. [Google Scholar] [CrossRef]
- García-Fernández, L.; García-Payo, M.C.; Khayet, M. Effects of mixed solvents on the structural morphology and membrane distillation performance of PVDF-HFP hollow fiber membranes. J. Membr. Sci. 2014, 468, 324–338. [Google Scholar] [CrossRef]
- Khayet, M. The effects of air gap length on the internal and external morphology of hollow fiber membranes. Chem. Eng. Sci. 2003, 58, 3091–3104. [Google Scholar] [CrossRef]
- Essalhi, M.; Khayet, M.; Ismail, N.; Sundman, O.; Tavajohi, N. Improvement of nanostructured electrospun membranes for desalination by membrane distillation technology. Desalination 2021, 510, 115086. [Google Scholar] [CrossRef]
- Shen, Y.-x.; Saboe, P.O.; Sines, I.T.; Erbakan, M.; Kumar, M. Biomimetic membranes: A review. J. Membr. Sci. 2014, 454, 359–381. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Shi, D.; Dong, L.; Chen, M.; Dong, W. Thermo-responsive membranes fabricated by immobilization of microgels with enhanced gating coefficinent and reversible behavior. Compos. Commun. 2021, 27, 100840. [Google Scholar] [CrossRef]
- Liu, H.; Yang, S.; Liu, Y.; Miao, M.; Zhao, Y.; Sotto, A.; Gao, C.; Shen, J. Fabricating a pH-responsive membrane through interfacial in-situ assembly of microgels for water gating and self-cleaning. J. Membr. Sci. 2019, 579, 230–239. [Google Scholar] [CrossRef]
- Omar, N.M.A.; Othman, M.H.D.; Tai, Z.S.; Kurniawan, T.A.; Puteh, M.H.; Jaafar, J.; Rahman, M.A.; Bakar, S.A.; Abdullah, H. A review of superhydrophobic and omniphobic membranes as innovative solutions for enhancing water desalination performance through membrane distillation. Surf. Interfaces 2024, 46, 104035. [Google Scholar] [CrossRef]
- Arribas, P.; García-Payo, M.C.; Khayet, M.; Gil, L. Improved antifouling performance of polyester thin film nanofiber composite membranes prepared by interfacial polymerization. J. Membr. Sci. 2020, 598, 117774. [Google Scholar] [CrossRef]
- Abu Seman, M.N.; Khayet, M.; Bin Ali, Z.I.; Hilal, N. Reduction of nanofiltration membrane fouling by UV-initiated graft polymerization technique. J. Membr. Sci. 2010, 355, 133–141. [Google Scholar] [CrossRef]
- Essalhi, M.; Afsar, N.U.; Bouyer, D.; Sundman, O.; Holmboe, M.; Khayet, M.; Jonsson, M.; Tavajohi, N. Gamma-irradiated janus electrospun nanofiber membranes for desalination and nuclear wastewater treatment. J. Membr. Sci. 2024, 700, 122726. [Google Scholar] [CrossRef]
- Alessandro, F.; Bouyer, D.; Comite, A.; Costa, C.; Cui, Z.; Dadashi Firouzjaei, M.; Dehqan, A.; Drioli, E.; Elliott, M.; Essalhi, M.; et al. Contributors. In Polymeric Membrane Formation by Phase Inversion; Tavajohi, N., Khayet, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. ix–x. [Google Scholar]
- Khosroshahi, M.M.; Jafarzadeh, Y.; Nasiri, M.; Khayet, M. Novel polyvinyl chloride ultrafiltration membranes blended with amphiphilic polyethylene glycol-block-poly(1, 2-dichloroethylene) copolymer for oily wastewater treatment. J. Water Process Eng. 2023, 56, 104433. [Google Scholar] [CrossRef]
- Arribas, P.; Khayet, M.; García-Payo, M.C.; Gil, L. 9—Novel and emerging membranes for water treatment by electric potential and concentration gradient membrane processes. In Advances in Membrane Technologies for Water Treatment; Basile, A., Cassano, A., Rastogi, N.K., Eds.; Woodhead Publishing: Oxford, UK, 2015; pp. 287–325. [Google Scholar]
- Al-Obaidi, M.; Alsarayreh, A.A.; Rashid, F.L.; Sowgath, M.T.; Alsadaie, S.; Ruiz-García, A.; Khayet, M.; Ghaffour, N.; Mujtaba, I.M. Hybrid membrane and thermal seawater desalination processes powered by fossil fuels: A comprehensive review, future challenges and prospects. Desalination 2024, 583, 117694. [Google Scholar] [CrossRef]
- Kiai, H.; García-Payo, M.C.; Hafidi, A.; Khayet, M. Application of membrane distillation technology in the treatment of table olive wastewaters for phenolic compounds concentration and high quality water production. Chem. Eng. Process. Process Intensif. 2014, 86, 153–161. [Google Scholar] [CrossRef]
- Guiga, W.; Lameloise, M.-L. 9—Membrane separation in food processing. In Green Food Processing Techniques; Chemat, F., Vorobiev, E., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 245–287. [Google Scholar]
- Conidi, C.; Donato, L.; Cassano, A. Chapter 16—Membrane processes in food and pharmaceutical industries. In Green Membrane Technologies towards Environmental Sustainability; Dumée, L.F., Sadrzadeh, M., Shirazi, M.M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 469–513. [Google Scholar]
- Hou, R.; Fong, C.; Freeman, B.D.; Hill, M.R.; Xie, Z. Current status and advances in membrane technology for carbon capture. Sep. Purif. Technol. 2022, 300, 121863. [Google Scholar] [CrossRef]
- Enjavi, Y.; Sedghamiz, M.A.; Rahimpour, E.; Rahimpour, M.R. Chapter 18—Membranes for biomedical applications. In Current Trends and Future Developments on (Bio-) Membranes; Basile, A., Lipnizki, F., Rahimpour, M.R., Piemonte, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 473–489. [Google Scholar]
- Zhao, Y.; Qiu, Y.; Mamrol, N.; Ren, L.; Li, X.; Shao, J.; Yang, X.; van der Bruggen, B. Membrane bioreactors for hospital wastewater treatment: Recent advancements in membranes and processes. Front. Chem. Sci. Eng. 2022, 16, 634–660. [Google Scholar] [CrossRef]
- Seo, H.; Koh, D.-Y. Refining petroleum with membranes. Science 2022, 376, 1053–1054. [Google Scholar] [CrossRef]
- Xin, Y.; Qi, B.; Wu, X.; Yang, C.; Li, B. Different types of membrane materials for oil-water separation: Status and challenges. Colloid Interface Sci. Commun. 2024, 59, 100772. [Google Scholar] [CrossRef]
- Naeem, A.; Saeed, B.; AlMohamadi, H.; Lee, M.; Gilani, M.A.; Nawaz, R.; Khan, A.L.; Yasin, M. Sustainable and green membranes for chemical separations: A review. Sep. Purif. Technol. 2024, 336, 126271. [Google Scholar] [CrossRef]
- Karki, S.; Hazarika, G.; Yadav, D.; Ingole, P.G. Polymeric membranes for industrial applications: Recent progress, challenges and perspectives. Desalination 2024, 573, 117200. [Google Scholar] [CrossRef]
- Aytaç, E.; Khanzada, N.K.; Ibrahim, Y.; Khayet, M.; Hilal, N. Reverse Osmosis Membrane Engineering: Multidirectional Analysis Using Bibliometric, Machine Learning, Data, and Text Mining Approaches. Membranes 2024, 14, 259. [Google Scholar] [CrossRef]
- Shokrollahi, M.; Asadollahi, M.; Mousavi, S.A.; Rajabi-ghahnavieh, A.; Behzadi-Sarok, M.; Khayet, M. Photothermally heated and mesh-gridded solar-driven direct contact membrane distillation for high saline water desalination. Int. J. Heat Mass Tran. 2022, 199, 123442. [Google Scholar] [CrossRef]
- Khayet, M.; Godino, M.P.; Mengual, J.I. Study of Asymmetric Polarization in Direct Contact Membrane Distillation. Sep. Sci. Technol. 2005, 39, 125–147. [Google Scholar] [CrossRef]
- Sallakh Niknejad, A.; Ranjbari, E.; Rasouli, M.; Barani, M.; Kargari, A.; Khayet, M. To Fine-Tune Pore Size and Hydrophobicity of Self-Sustained PVDF Membranes: A Study on Non-Solvent Reuse and Air Exposure Time. J. Membr. Sci. Res. 2024, 10, 2019367. [Google Scholar] [CrossRef]
- Liao, X.; Lim, Y.J.; Khayet, M.; Liao, Y.; Yao, L.; Zhao, Y.; Razaqpur, A.G. Applications of electrically conductive membranes in water treatment via membrane distillation: Joule heating, membrane fouling/scaling/wetting mitigation and monitoring. Water Res. 2023, 244, 120511. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; García-Payo, M.C.; Khayet, M.; Wang, M.; Wang, X. Superhydrophobic polysulfone/polydimethylsiloxane electrospun nanofibrous membranes for water desalination by direct contact membrane distillation. J. Membr. Sci. 2017, 542, 308–319. [Google Scholar] [CrossRef]
- Khayet, M. Solar desalination by membrane distillation: Dispersion in energy consumption analysis and water production costs (a review). Desalination 2013, 308, 89–101. [Google Scholar] [CrossRef]
- El-Bourawi, M.S.; Ding, Z.; Ma, R.; Khayet, M. A framework for better understanding membrane distillation separation process. J. Membr. Sci. 2006, 285, 4–29. [Google Scholar] [CrossRef]
- Qtaishat, M.; Khayet, M.; Matsuura, T. Guidelines for preparation of higher flux hydrophobic/hydrophilic composite membranes for membrane distillation. J. Membr. Sci. 2009, 329, 193–200. [Google Scholar] [CrossRef]
- Lin, Y.-X.; Liou, Y.-K.; Lee, S.L.; Chen, S.-Y.; Tao, F.-T.; Cheng, T.-W.; Tung, K.-L. Preparation of PVDF/PMMA composite membrane with green solvent for seawater desalination by gap membrane distillation. J. Membr. Sci. 2023, 679, 121676. [Google Scholar] [CrossRef]
- Contreras-Martínez, J.; Sanmartino, J.A.; Khayet, M.; García-Payo, M.C. Chapter 11—Reuse and recycling of end-of-life reverse osmosis membranes. In Advancement in Polymer-Based Membranes for Water Remediation; Nayak, S.K., Dutta, K., Gohil, J.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 381–417. [Google Scholar]
- Sanmartino, J.A.; Khayet, M.; García-Payo, M.C. Reuse of discarded membrane distillation membranes in microfiltration technology. J. Membr. Sci. 2017, 539, 273–283. [Google Scholar] [CrossRef]
- Aytaç, E.; Khayet, M. A Topic Modeling Approach to Discover the Global and Local Subjects in Membrane Distillation Separation Process. Separations 2023, 10, 482. [Google Scholar] [CrossRef]
- OpenAI. Whisper. Available online: https://openai.com/research/whisper (accessed on 6 July 2024).
- Radford, A.; Kim, J.W.; Xu, T.; Brockman, G.; McLeavey, C.; Sutskever, I. Robust Speech Recognition via Large-Scale Weak Supervision. arXiv 2022. [Google Scholar] [CrossRef]
- Glasp.co. YouTube & Article Summary Powered by ChatGPT. Available online: https://chrome.google.com/webstore/detail/youtube-article-summary-p/nmmicjeknamkfloonkhhcjmomieiodli (accessed on 5 July 2024).
- Aytaç, E. Unsupervised learning approach in defining the similarity of catchments: Hydrological response unit based k-means clustering, a demonstration on Western Black Sea Region of Turkey. Int. Soil Water Conserv. Res. 2020, 8, 321–331. [Google Scholar] [CrossRef]
- Aytaç, E.; Fombona-Pascual, A.; Lado, J.J.; Quismondo, E.G.; Palma, J.; Khayet, M. Faradaic deionization technology: Insights from bibliometric, data mining and machine learning approaches. Desalination 2023, 563, 116715. [Google Scholar] [CrossRef]
- Bouman, E. Youtube-Comment-Downloader. Available online: https://github.com/egbertbouman/youtube-comment-downloader (accessed on 1 July 2024).
- Facebook. Bart-Large-Mnli. Available online: https://huggingface.co/facebook/bart-large-mnli (accessed on 28 March 2024).
- Findley, M.E. Vaporization through Porous Membranes. Ind. Eng. Chem. Process. Des. Dev. 1967, 6, 226–230. [Google Scholar] [CrossRef]
- Circular_Economy_for_Climate_and_Environment_(CECE). Brine Resource Recovery Workshop—Part 1/2. Available online: https://www.youtube.com/watch?v=4PuJ_81MjNE (accessed on 5 January 2024).
- Visual_Encyclopedia_of_Chemical_Engineering_Equipment-University_of_Michigan. Membranes—Membrane Distillation. Available online: https://www.youtube.com/shorts/hwjxTrtuWD0 (accessed on 5 January 2024).
- Rice_University. Freshwater from Salt Water Using only Solar Energy. Available online: https://www.youtube.com/watch?v=z36jMKk-AdQ&t=12s (accessed on 5 January 2024).
Feature | Data Type | Objective |
---|---|---|
Title | Textual | To understand the topic and content of the video quickly. |
Content Creator | Textual | To evaluate the source and provider of video content. |
Location | Textual | To identify where more videos are being produced. |
Broadcast Year | Numerical | To track the trend and evolution over time. |
Video Duration | Numerical | To understand how much time viewers need to spend watching a video. |
Number of Views | Numerical | To measure how popular and influential the videos are. |
Number of Comments | Numerical | To analyze viewers’ feedback, questions and thoughts. |
Number of Subscribers | Numerical | To evaluate how effective and trustworthy the video creator is. |
Number of Likes | Numerical | To understand how satisfied viewers are. |
Video Type | Categorical | To determine the format of the video. |
Video (Transcript) Language | Categorical | To identify the language of the video. |
Video Transcript | Textual | To analyze the speeches in the video content in text format. |
Category | Value | Upload Year | Title | Content Creator | URL |
---|---|---|---|---|---|
Views | 14,800 | 2018 | Freshwater from salt water using only solar energy | Rice University | https://www.youtube.com/watch?v=z36jMKk-AdQ (accessed on 4 January 2024) |
Normalized Views | 24,667 | 2018 | Freshwater from salt water using only solar energy | Rice University | https://www.youtube.com/watch?v=z36jMKk-AdQ (accessed on 4 January 2024) |
Comments | 54 | 2018 | Freshwater from salt water using only solar energy | Rice University | https://www.youtube.com/watch?v=z36jMKk-AdQ (accessed on 4 January 2024) |
Normalized Comments | 16 | 2023 | MEMBRAN DESTILASI | Anasthasya Isaura | https://www.youtube.com/watch?v=mdv7Qh-9rXc (accessed on 4 January 2024) |
Subscribers | 685,000 | 2018 | Principle and Theory of Conc membrane process freeze concentration | Vidya-mitra | https://www.youtube.com/watch?v=ygZ4OB93ALQ (accessed on 4 January 2024) |
Likes | 1400 | 2018 | Freshwater from salt water using only solar energy | Rice University | https://www.youtube.com/watch?v=z36jMKk-AdQ (accessed on 4 January 2024) |
Normalized Likes | 233.33 | 2018 | Freshwater from salt water using only solar energy | Rice University | https://www.youtube.com/watch?v=z36jMKk-AdQ (accessed on 4 January 2024) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aytaç, E.; Khayet, M. Visual Footprint of Separation Through Membrane Distillation on YouTube. Data 2025, 10, 24. https://doi.org/10.3390/data10020024
Aytaç E, Khayet M. Visual Footprint of Separation Through Membrane Distillation on YouTube. Data. 2025; 10(2):24. https://doi.org/10.3390/data10020024
Chicago/Turabian StyleAytaç, Ersin, and Mohamed Khayet. 2025. "Visual Footprint of Separation Through Membrane Distillation on YouTube" Data 10, no. 2: 24. https://doi.org/10.3390/data10020024
APA StyleAytaç, E., & Khayet, M. (2025). Visual Footprint of Separation Through Membrane Distillation on YouTube. Data, 10(2), 24. https://doi.org/10.3390/data10020024