Small Samples’ Permille Cramér–Von Mises Statistic Critical Values for Continuous Distributions as Functions of Sample Size
Abstract
1. Introduction
- Recognizing that innovations may follow heavy-tailed distributions, [6] supports using these for Lee–Carter residuals and mortality index differences. They compare six distributions using critical thresholds. However, probability-based comparisons better identify the best-fitting model.
2. Data Description
3. Methods
4. Brief Comparison with Existing Tabulated CM Values
- For , ref. [19] data are ascending with n, while our data indicate the opposite;
- For , ref. [19] data are ascending with n, the same as our data indicate;
- For , ref. [19] data are descending with n, while our data indicate the opposite.
5. User Notes
- n (sample size): from 2 to 30;
- l (permille): from 1 to 999;
- (CM critical value): from (at and ) to (at and ).
6. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CDF | cumulative distribution function, |
| probability of event A | |
| CM | Cramér–von Mises (statistic) |
| MC | Monte Carlo (simulation) |
| Sort | a function sorting an numeric array (ascending) |
| standard deviation (; ) |
References
- Ross, G.J.; Adams, N.M. Two nonparametric control charts for detecting arbitrary distribution changes. J. Qual. Technol. 2012, 44, 102–116. [Google Scholar] [CrossRef]
- Qiu, X.; Xiao, Y.; Gordon, A.; Yakovlev, A. Assessing stability of gene selection in microarray data analysis. BMC Bioinform. 2006, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Merkle, E.C.; Zeileis, A. Tests of measurement invariance without subgroups: A generalization of classical methods. Psychometrika 2013, 78, 59–82. [Google Scholar] [CrossRef]
- Ashkar, F.; Aucoin, F.; Choulakian, V.; Vautour, C. Cramér-von Mises and Anderson-Darling goodness-of-fit tests for the two-parameter kappa distribution. J. Hydrol. Eng. 2013, 18, 1749–1757. [Google Scholar] [CrossRef]
- Chotsiri, P.; Yodsawat, P.; Hoglund, R.M.; Simpson, J.A.; Tarning, J. Pharmacometric and statistical considerations for dose optimization. CPT Pharmacometrics Syst. Pharmacol. 2025, 2025, 279–291. [Google Scholar] [CrossRef]
- Wang, C.W.; Huang, H.C.; Liu, I.C. A quantitative comparison of the Lee-Carter model under different types of non-Gaussian innovations. Geneva Pap. Risk Insur.-Issues Pract. 2011, 36, 675–696. [Google Scholar] [CrossRef]
- Obulezi, O.J.; Semary, H.E.; Nadir, S.; Igbokwe, C.P.; Orji, G.O.; Al-Moisheer, A.; Elgarhy, M. Type-I Heavy-Tailed Burr XII Distribution with Applications to Quality Control, Skewed Reliability Engineering Systems and Lifetime Data. Comput. Model. Eng. Sci. 2025, 144, 2991. [Google Scholar] [CrossRef]
- Jäntschi, L. The Cramér–Von Mises Statistic for Continuous Distributions: A Monte Carlo Study for Calculating Its Associated Probability. Symmetry 2025, 17, 1542. [Google Scholar] [CrossRef]
- Scholze, M.; Boedeker, W.; Faust, M.; Backhaus, T.; Altenburger, R.; Grimme, L.H. A general best-fit method for concentration-response curves and the estimation of low-effect concentrations. Environ. Toxicol. Chem. 2001, 20, 448–457. [Google Scholar] [CrossRef]
- Jäntschi, L. Detecting extreme values with order statistics in samples from continuous distributions. Mathematics 2020, 8, 216. [Google Scholar] [CrossRef]
- Cramér, H. On the composition of elementary errors. Scand. Actuar. J. 1928, 1, 13–74. [Google Scholar] [CrossRef]
- Von Mises, R. Wahrscheinlichkeit, Statistik und Wahrheit; Springer: Berlin, Germany, 1928. [Google Scholar] [CrossRef]
- Traison, T.; Vaidyanathan, V. Goodness-of-Fit Tests for COM-Poisson Distribution Using Stein’s Characterization. Austrian J. Stat. 2025, 54, 85–100. [Google Scholar] [CrossRef]
- Muhammad, M.; Abba, B. A Bayesian inference with Hamiltonian Monte Carlo (HMC) framework for a three-parameter model with reliability applications. Kuwait J. Sci. 2025, 52, 100365. [Google Scholar] [CrossRef]
- Singh Nayal, A.; Ramos, P.L.; Tyagi, A.; Singh, B. Improving inference in exponential logarithmic distribution. Commun.-Stat.-Simul. Comput. 2024, 1–25. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, T.; Wang, X.; Zhang, Y. A robust and powerful metric for distributional homogeneity. Stat. Neerl. 2025, 79, e12370. [Google Scholar] [CrossRef]
- Fisher, R.A. On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. London. Ser. A Contain. Pap. A Math. Phys. Character 1922, 222, 309–368. [Google Scholar] [CrossRef]
- Fisher, R.A. Theory of statistical estimation. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1925; Volume 22, pp. 700–725. [Google Scholar] [CrossRef]
- Elmore, K.L. Alternatives to the chi-square test for evaluating rank histograms from ensemble forecasts. Weather Forecast. 2005, 20, 789–795. [Google Scholar] [CrossRef]
- Stephens, M.A. EDF statistics for goodness of fit and some comparisons. J. Am. Stat. Assoc. 1974, 69, 730–737. [Google Scholar] [CrossRef]

| Sample Size (n) | Upper Tail () | Ref. [19] | Our Data (from 21 Replicates) |
|---|---|---|---|
| 3 | 0.198 | [0.213384, 0.213408] | |
| 5 | 0.207 | [0.211632, 0.211669] | |
| 8 | 0.209 | [0.210698, 0.210726] | |
| 10 | 0.209 | [0.210424, 0.210441] | |
| 20 | 0.209 | [0.209903, 0.209921] | |
| 3 | 0.282 | [0.279629, 0.279662] | |
| 5 | 0.284 | [0.283004, 0.283059] | |
| 8 | 0.284 | [0.283486, 0.283528] | |
| 10 | 0.284 | [0.283622, 0.283657] | |
| 20 | 0.284 | [0.283848, 0.283880] | |
| 3 | 0.351 | [0.337834, 0.337877] | |
| 5 | 0.350 | [0.342342, 0.342372] | |
| 8 | 0.348 | [0.344413, 0.344463] | |
| 10 | 0.348 | [0.345004, 0.345046] | |
| 20 | 0.347 | [0.346142, 0.346205] | |
| 3 | 0.472 | [0.439365, 0.439406] | |
| 5 | 0.467 | [0.446893, 0.446962] | |
| 8 | 0.464 | [0.452274, 0.452317] | |
| 10 | 0.463 | [0.454137, 0.454180] | |
| 20 | 0.462 | [0.457727, 0.457835] | |
| 3 | 0.603 | [0.533164, 0.533223] | |
| 5 | 0.590 | [0.550486, 0.550601] | |
| 8 | 0.584 | [0.562079, 0.562164] | |
| 10 | 0.583 | [0.565833, 0.565986] | |
| 20 | 0.581 | [0.573278, 0.573385] | |
| 3 | 0.783 | [0.639724, 0.639880] | |
| 5 | 0.750 | [0.683402, 0.683510] | |
| 8 | 0.749 | [0.706920, 0.707071] | |
| 10 | 0.748 | [0.714325, 0.714639] | |
| 20 | 0.581 | [0.729055, 0.729229] | |
| 3 | 0.922 | [0.706601, 0.706741] | |
| 5 | 0.888 | [0.780500, 0.780656] | |
| 8 | 0.877 | [0.814893, 0.815198] | |
| 10 | 0.874 | [0.826036, 0.826387] | |
| 20 | 0.871 | [0.848019, 0.848251] | |
| 3 | 1.215 | [0.821365, 0.821671] | |
| 5 | 1.204 | [0.985550, 0.985945] | |
| 8 | 1.179 | [1.056848, 1.057377] | |
| 10 | 1.175 | [1.079760, 1.080267] | |
| 20 | 1.170 | [1.124318, 1.124957] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jäntschi, L. Small Samples’ Permille Cramér–Von Mises Statistic Critical Values for Continuous Distributions as Functions of Sample Size. Data 2025, 10, 181. https://doi.org/10.3390/data10110181
Jäntschi L. Small Samples’ Permille Cramér–Von Mises Statistic Critical Values for Continuous Distributions as Functions of Sample Size. Data. 2025; 10(11):181. https://doi.org/10.3390/data10110181
Chicago/Turabian StyleJäntschi, Lorentz. 2025. "Small Samples’ Permille Cramér–Von Mises Statistic Critical Values for Continuous Distributions as Functions of Sample Size" Data 10, no. 11: 181. https://doi.org/10.3390/data10110181
APA StyleJäntschi, L. (2025). Small Samples’ Permille Cramér–Von Mises Statistic Critical Values for Continuous Distributions as Functions of Sample Size. Data, 10(11), 181. https://doi.org/10.3390/data10110181
