A Database of High-Resolution Meteorological Drought Comprehensive Index Across China for the 1951–2022 Period
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Research Area
2.2. Overview of Dataset Production and the Technical Verification Process
2.3. Precipitation and Potential Evapotranspiration Data
2.4. Verification Dataset
2.5. Soil Moisture Content Data
2.6. Calculation of the SPI
- The probability density function of the gamma distribution for cumulative precipitation (x) over a certain period is as follows:where > 0 and > 0 are the scale and shape parameters, respectively, which can be calculated via the maximum likelihood estimation method.
- 2.
- The probability of occurrence of an event for which the precipitation () is 0 can be represented as:where the number of samples with a precipitation value of 0 is denoted by and the total number of samples is denoted by .
- 3.
- The probability values calculated from Equations (2) and (3) are substituted into the standard normal distribution function, the formula for which is as follows:The approximate solution of Equation (4) yields:where and is the probability calculated from Equation (2) or Equation (3).
2.7. Calculation of the SPEI
- 1.
- The difference between the accumulated precipitation and potential evapotranspiration is calculated over a specific time scale.
- 2.
- The log-logistic probability density function is used to calculate the SPEI, and the formula for the log-logistic distribution probability density function for period () is as follows:where , and represent the scale, shape and origin, respectively, and can be fitted via linear moments.
- 3.
- The cumulative probability density is normalized as follows:When the cumulative probability is less than or equal to 0.5,where = 2.515517, = 0.802853, = 0.010328, = 1.432788, = 0.189269, and = 0.001308.
2.8. Calculation of the MCI
2.9. Technical Validation
3. Data Records
4. Results
4.1. Consistency Analysis of the SPI and SPEI with Existing Datasets
4.2. Monitoring Capability of Various Drought Indices for Soil Moisture at Different Depths
4.3. Monitoring Capacity for Shallow Soil Moisture in Different Regions from 1951 to 2022
4.4. Variance in Drought in China Since the 1950s Based on the MCI Dataset
4.5. Analysis of the 2022 Drought in Eastern Part of China
5. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leng, G.; Hall, J. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci. Total Environ. 2019, 654, 811–821. [Google Scholar] [CrossRef]
- Liu, X.; Pan, Y.; Zhu, X.; Yang, T.; Bai, J.; Sun, Z. Drought evolution and its impact on the crop yield in the North China Plain. J. Hydrol. 2018, 564, 984–996. [Google Scholar] [CrossRef]
- Zhang, Q.; Yao, Y.; Li, Y.; Huang, J.; Ma, Z.; Wang, Z.; Wang, S.; Wang, Y.; Zhang, Y. Progress and prospect on the study of causes and variation regularity of droughts in China. Acta Meteorol. Sin. 2020, 78, 500–521. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, H.; Sun, P.; Singh, V.P.; Shi, P. Multisource data based agricultural drought monitoring and agricultural loss in China. Glob. Planet. Change 2019, 172, 298–306. [Google Scholar] [CrossRef]
- Dong, C.; Li, K.; Yang, X.; Liu, Z.; Sun, S. Effects of drought on grain yield of spring maize in Northern China. In Proceedings of the The Third International Conference on Agro-Geoinformatics, Beijing, China, 11–14 August 2014; IEEE: New York, NY, USA, 2014; pp. 1–5. [Google Scholar]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef]
- Pute, W.; Xining, Z. Impact of climate change on agricultural water use and grain production in China. Trans. Chin. Soc. Agric. Eng. 2010, 2010, 1–6. [Google Scholar] [CrossRef]
- Mo, X.; Hu, S.; Lu, H.; Lin, Z.; Liu, S. Drought trends over the terrestrial China in the 21st century in climate change scenarios with ensemble GCM projections. J. Nat. Resour. 2018, 33, 1244–1256. [Google Scholar]
- Zeng, P.; Sun, F.; Liu, Y.; Wang, Y.; Li, G.; Che, Y. Mapping future droughts under global warming across China: A combined multi-timescale meteorological drought index and SOM-Kmeans approach. Weather Clim. Extrem. 2021, 31, 100304. [Google Scholar] [CrossRef]
- Dobrovolski, S.G. World droughts and their time evolution: Agricultural, meteorological, and hydrological aspects. Water Resour. 2015, 42, 147–158. [Google Scholar] [CrossRef]
- White, D.H.; Walcott, J.J. The role of seasonal indices in monitoring and assessing agricultural and other droughts: A review. Crop Pasture Sci. 2009, 60, 599–616. [Google Scholar] [CrossRef]
- Leng, G.; Tang, Q.; Rayburg, S. Climate change impacts on meteorological, agricultural and hydrological droughts in China. Glob. Planet. Change 2015, 126, 23–34. [Google Scholar] [CrossRef]
- Mo, X.; Tu, X.; Wang, T.; Xie, Y.; Zhao, G. Study on the transfer threshold from meteorological to hydrological drought in Dongjiang River Basin. Pearl River 2021, 42, 9–16. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, L.; Cui, X.; Zeng, J. Progresses and challenges in drought assessment and monitoring. Adv. Earth Sci. 2011, 26, 763–778. [Google Scholar]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Han, J.; Singh, V.P. A review of widely used drought indices and the challenges of drought assessment under climate change. Environ. Monit. Assess. 2023, 195, 1438. [Google Scholar] [CrossRef]
- He, Q.; Wang, M.; Liu, K.; Wang, B. High-resolution standardized precipitation evapotranspiration index (SPEI) reveals trends in drought and vegetation water availability in China. Geogr. Sustain. 2025, 6, 100228. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Sun, P.; Ge, C.; Yao, R.; Bian, Y.; Yang, H.; Zhang, Q.; Xu, C.Y.; Singh, V.P. Development of a nonstationary Standardized Precipitation Evapotranspiration Index (NSPEI) and its application across China. Atmos. Res. 2024, 300, 107256. [Google Scholar] [CrossRef]
- Svoboda, M.; Fuchs, B. Integrated Drought Management Programme (IDMP). In Handbook of Drought Indicators and Indices; NOAA: Geneva, Switzerland, 2016. [Google Scholar]
- Wu, Z.; Cheng, D.; He, H.; Li, Y.; Zhou, J. Research progress of composite drought index. Water Resour. Prot. 2021, 37, 36–45. [Google Scholar]
- Mckee, T.B.; Doesken, N.J.; Kleist, J.R. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993; pp. 179–184. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, X.; Leng, X.; Zhang, Y.; Dong, J.; Fan, C. Spatio-temporal drought patterns in Guangxi Province based on principal component analysis. Acta Ecol. Sin. 2020, 40, 5591–5601. [Google Scholar]
- GB/T20481-2006; Classification of Meteorological Drought Category. Standardization Administration of the People’s Republic of China: Beijing, China, 2006.
- GB/T 20481-2017; Grades of Meteorological Drought. Standardization Administration of the People’s Republic of China: Beijing, China, 2017.
- Liao, Y.; Zhang, C. Spatio-temporal distribution characteristics and disaster change of drought in China based on meteorological drought composite index. Meteorol. Mon. 2017, 43, 1402–1409. [Google Scholar]
- Feng, A.; Liu, L.; Wang, G.; Tang, J.; Zhang, X.; Chen, Y.; He, X.; Liu, P. Drought monitoring from Fengyun satellite series: A comparative analysis with meteorological-drought composite index (MCI). Remote Sens. 2023, 15, 5410. [Google Scholar] [CrossRef]
- Han, L.; Zhang, Q.; Zhang, Z.; Jia, J.; Wang, Y.; Huang, T.; Cheng, Y. Drought area, intensity and frequency changes in China under climate warming, 1961–2014. J. Arid Environ. 2021, 193, 104596. [Google Scholar] [CrossRef]
- Mei, P.; Liu, J.; Liu, C.; Liu, J. A deep learning model and its application to predict the monthly MCI drought index in the Yunnan province of China. Atmosphere 2022, 13, 1951. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Angulo-Martínez, M. A multiscalar global drought dataset: The SPEIbase: A new gridded product for the analysis of drought variability and impacts. Bull. Am. Meteorol. Soc. 2010, 91, 1351–1356. [Google Scholar] [CrossRef]
- Liu, X.; Yu, S.; Yang, Z.; Dong, J.; Peng, J. The first global multi-timescale daily SPEI dataset from 1982 to 2021. Sci. Data 2024, 11, 223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Bento, V.A.; Qi, J.; Xu, F.; Wu, J.; Qiu, J.; Li, J.; Shui, W.; Wang, Q. The first high spatial resolution multi-scale daily SPI and SPEI raster dataset for drought monitoring and evaluating over China from 1979 to 2018. Big Earth Data 2023, 7, 860–885. [Google Scholar] [CrossRef]
- Ziese, M.; Schneider, U.; Meyer-Christoffer, A.; Schamm, K.; Vido, J.; Finger, P.; Bissolli, P.; Pietzsch, S.; Becker, A. The GPCC Drought Index—A new, combined and gridded global drought index. Earth Syst. Sci. Data 2014, 7, 243–270. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, D.; Feng, A.; Wang, G.; Hu, L.; Xu, C.Y.; Singh, V.P. Improved non-stationary SPEI and its application in drought monitoring in China. J. Hydrol. 2025, 652, 132706. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.Y.; Zhang, Z.; Chen, Y.D.; Liu, C.L. Spatial and temporal variability of precipitation over China, 1951–2005. Theor. Appl. Climatol. 2009, 95, 53–68. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y.; He, B.; Bao, Q.; Duan, A.; Jin, F.F. Thermal controls on the Asian summer monsoon. Sci. Rep. 2012, 2, 404. [Google Scholar] [CrossRef] [PubMed]
- Yihui, D.; Chan, J.C.L. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 2005, 89, 117–142. [Google Scholar] [CrossRef]
- Zou, X.; Zhai, P.; Zhang, Q. Variations in droughts over China: 1951–2003. Geophys. Res. Lett. 2005, 32, L04707. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Huang, X.; Wu, W.; Xu, J.; Li, S.; Jiang, Y.; Du, B.; Wang, L. The applicability performance of the ERA5-land precipitation datasets in Southwest China. Plateau Meteorol. 2023, 42, 1562–1575. [Google Scholar]
- Jiao, D.; Xu, N.; Yang, F.; Xu, K. Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China. Sci. Rep. 2021, 11, 17956. [Google Scholar] [CrossRef]
- Liao, C.; Gao, W.; Tang, L.; Li, C. Long-term characteristics of hydrometeors in stratiform and convective precipitation over central eastern China and adjacent ocean. Atmos. Res. 2024, 297, 107089. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, W.; Wang, X. Extreme meteorological drought events over China (1951–2022): Migration patterns, diversity of temperature extremes, and decadal variations. Adv. Atmos. Sci. 2024, 41, 2313–2336. [Google Scholar] [CrossRef]
- Ren, F.; Cui, D.; Gong, Z.; Wang, Y.; Zou, X.; Li, Y.; Wang, S.; Wang, X. An objective identification technique for regional extreme events. J. Clim. 2012, 25, 7015–7027. [Google Scholar] [CrossRef]
- Zhang, C. Research on Drought Monitoring, Early Warning and Disaster Risk Assessment Technology; Meteorological Press: Beijing, China, 2020. [Google Scholar]
- Zou, X.; Gao, R.; Chen, X.; Wang, L.; Li, W.; Gong, W.; Zhang, Q. Monitoring and assessment of summer drought in the Yangtze River basin in 2022. China Flood Drought Manag. 2022, 32, 12–16. [Google Scholar] [CrossRef]
- Zhao, K.; Zhong, S. Evaluation and error analysis of multi-source precipitation datasets during summer over the Tibetan Plateau. Atmosphere 2024, 15, 165. [Google Scholar] [CrossRef]
- Berg, A.; Findell, K.; Lintner, B.; Giannini, A.; Seneviratne, S.I.; Van den Hurk, B.; Lorenz, R.; Pitman, A.; Hagemann, S.; Meier, A.; et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 2016, 6, 869–874. [Google Scholar] [CrossRef]
- Mei, M.; Gao, G.; Li, Y.; Wang, G.; Dai, T.; Chen, Y. Change characteristics in compound high temperature and drought extreme events over Yangtze River Basin from 1961 to 2022. Yangtze River 2023, 54, 12–20. [Google Scholar] [CrossRef]
- Niu, Z.; Wang, L.; Fang, L.; Li, J.; Yao, R. Analysis of spatiotemporal variability in temperature extremes in the Yellow and Yangtze River basins during 1961–2014 based on high-density gauge observations. Int. J. Climatol. 2020, 40, 1–21. [Google Scholar] [CrossRef]
- Xu, K.; Yang, D.; Yang, H.; Li, Z.; Qin, Y.; Shen, Y. Spatio-temporal variation of drought in China during 1961–2012: A climatic perspective. J. Hydrol. 2015, 526, 253–264. [Google Scholar] [CrossRef]
- Yuan, Z.; Yin, J.; Wei, M.; Yuan, Y. Spatio-temporal variations in the temperature and precipitation extremes in Yangtze River Basin, China during 1961–2020. Atmosphere 2021, 12, 1423. [Google Scholar] [CrossRef]
- Ji, S.; Ren, S.; Li, Y.; Dong, J.; Wang, L.; Quan, Q.; Liu, J. Diverse responses of spring phenology to preseason drought and warming under different biomes in the North China Plain. Sci. Total Environ. 2021, 766, 144437. [Google Scholar] [CrossRef]
- Qian, J.; Wang, Z. Trend of spring drought in Shanxi Province and its influence on agriculture. J. Nat. Disasters 2008, 17, 105–110. [Google Scholar] [CrossRef]
- Lu, E.; Liu, S.; Luo, Y.; Zhao, W.; Li, H.; Chen, H.; Zeng, Y.; Liu, P.; Wang, X.; Higgins, R.W.; et al. The atmospheric anomalies associated with the drought over the Yangtze River basin during spring 2011. J. Geophys. Res. Atmos. 2014, 119, 5881–5894. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, B.; Zhong, H.; Liu, Y. Climate characteristics of the 2011 spring drought in the mid-lower Yangtze Basin. Resour. Environ. Yangtze Basin 2014, 23, 139–145. [Google Scholar]
- Feng, A.Q.; Chao, Q.C.; Liu, L.L.; Gao, G.; Wang, G.F.; Zhang, X.J.; Wang, Q.G. Will the 2022 compound heatwave–drought extreme over the Yangtze River Basin become Grey Rhino in the future? Adv. Clim. Change Res. 2024, 15, 547–556. [Google Scholar] [CrossRef]
- Yang, L.; Wei, J. How severe was the 2022 flash drought in the Yangtze River Basin? Remote Sens. 2024, 16, 4122. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, Y.; Zhou, S.; Li, H.; Li, C. Multiscale causes of the 2022 Yangtze mega-flash drought under climate change. Sci. China Earth Sci. 2024, 67, 2649–2660. [Google Scholar] [CrossRef]
- Liu, X.; Fu, B. Drought impacts on crop yield: Progress, challenges and prospect. Acta Geogr. Sin. 2021, 76, 2632–2646. [Google Scholar] [CrossRef]
- Wang, S.; Mo, X.; Hu, S.; Liu, S.; Liu, Z. Assessment of droughts and wheat yield loss on the North China Plain with an aggregate drought index (ADI) approach. Ecol. Indic. 2018, 87, 107–116. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, Q.; Sun, P.; Song, C. Impact of droughts on winter wheat yield in different growth stages during 2001–2016 in Eastern China. Int. J. Disaster Risk Sci. 2018, 9, 376–391. [Google Scholar] [CrossRef]
- Zhao, H.; Cai, D.; Wang, H.; Yang, Y.; Wang, R.; Zhang, K.; Qi, Y.; Zhao, F.; Chen, F.; Yue, P.; et al. Progress and prospect on impact of drought disaster on food security and its countermeasures. J. Arid Meteorol. 2023, 41, 187–206. [Google Scholar] [CrossRef]
- Xia, J.; Chen, J.; She, D. Impacts and countermeasures of extreme drought in the Yangtze River Basin in 2022. J. Hydraul. Eng. 2022, 53, 1143–1153. [Google Scholar] [CrossRef]
- Wu, L.; Mao, Y.; Miao, C.; Yao, Y.; Su, G. A study on spatial distribution of agro-meteorological disaster risk of late rice production in Zhejiang Province. Chin. J. Agrometeorol. 2007, 28, 217–220+230. [Google Scholar] [CrossRef]
- He, J.; Yang, X.; Li, Z.; Zhang, X.; Tang, Q. Spatiotemporal variations of meteorological droughts in China during 1961–2014: An investigation based on multi-threshold identification. Int. J. Disaster Risk Sci. 2016, 7, 63–76. [Google Scholar] [CrossRef]
- Lu, C.; Ma, L.; Liu, T.X.; Huang, X. Temporal and spatial variations of annual precipitation and meteorological drought in China during 1951–2018. Ying Yong Sheng Tai Xue Bao 2022, 33, 1572–1580. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Han, L.; Zhang, X.; Liu, W. Regional characteristics of drought in China under the background of climate warming. J. Desert Res. 2019, 39, 209–215. [Google Scholar]
- Qi, H.; Zhi, X.; Bai, Y. Interdecadal variation and trend analysis of the drought occurrence frequency in China. Trans. Atmos. Sci. 2011, 34, 447–455. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, W.; Yuan, Y. 3D DBSCAN detection and parameter sensitivity of the 2022 Yangtze river summertime heatwave and drought. Atmos. Ocean. Sci. Lett. 2023, 16, 100324. [Google Scholar] [CrossRef]
- Lyu, Z.Z.; Gao, H.; Gao, R.; Ding, T. Extreme characteristics and causes of the drought event in the whole Yangtze River Basin in the midsummer of 2022. Adv. Clim. Change Res. 2023, 14, 642–650. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Yu, Y.; Yu, R. An innovative method integrating run theory and DBSCAN for complete three-dimensional drought structures. Sci. Total Environ. 2024, 926, 171901. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophys. 2015, 53, 452–480. [Google Scholar] [CrossRef]
- Belal, A.A.; El-Ramady, H.R.; Mohamed, E.S.; Saleh, A.M. Drought risk assessment using remote sensing and GIS techniques. Arab. J. Geosci. 2012, 7, 35–53. [Google Scholar] [CrossRef]
- Sun, H.; Gao, J.; Yan, T.; Hu, K.; Xu, Z.; Wang, Y.; Meng, J.; Zhao, Z. Remote sensing of vegetation drought: Research progress. Natl. Remote Sens. Bull. 2024, 28, 1395–1411. [Google Scholar] [CrossRef]
- Han, D.; Wang, P.; Zhang, Y.; Tian, H.; Zhou, X. Progress of agricultural drought monitoring and forecasting using satellite remote sensing. Smart Agric. 2021, 3, 1–14. [Google Scholar]
- Liu, H.; Liu, R.; Liu, S. Review of drought monitoring by remote sensing. J. Geo Inf. Sci. 2012, 14, 232–239. [Google Scholar] [CrossRef]











| Meteorological and Geographical Region of China | a | b | c | d | 
|---|---|---|---|---|
| Northeast China | 0.3 | 0.5 | 0.3 | 0.2 | 
| Inner Mongolia | 0.3 | 0.5 | 0.3 | 0.2 | 
| North China | 0.3 | 0.5 | 0.3 | 0.2 | 
| East China | 0.5 | 0.6 | 0.2 | 0.1 | 
| Central China | 0.5 | 0.6 | 0.2 | 0.1 | 
| South China | 0.5 | 0.6 | 0.2 | 0.1 | 
| Northwest China | 0.3 | 0.5 | 0.3 | 0.2 | 
| Southwest China | 0.3 | 0.5 | 0.3 | 0.2 | 
| Xinjiang | 0.3 | 0.5 | 0.3 | 0.2 | 
| Tibet | 0.3 | 0.5 | 0.3 | 0.2 | 
| Agro-Climatic Zone | Province (Autonomous Region, Municipality) | Month | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||
| Wheat and maize zone | Beijing, Tianjin, Hebei, Shanxi, Shandong, Shaanxi, Gansu | 0.4 | 0.8 | 1.0 | 1.2 | 1.2 | 1.2 | 1.2 | 1.0 | 1.0 | 0.8 | 0.6 | 0.4 | 
| Henan | 0.6 | 0.8 | 1.0 | 1.2 | 1.2 | 1.2 | 1.2 | 1.1 | 1.0 | 0.8 | 0.6 | 0.4 | |
| Ningxia | 0.4 | 0.8 | 1.0 | 1.0 | 1.0 | 1.2 | 1.2 | 1.0 | 0.9 | 0.8 | 0.6 | 0.4 | |
| Maize zone | Inner Mongolia, Jilin, Heilongjiang | 0 | 0 | 0 | 0.6 | 1.0 | 1.2 | 1.2 | 1.0 | 0.9 | 0.4 | 0 | 0 | 
| Liaoning | 0 | 0 | 0 | 0.8 | 1.0 | 1.2 | 1.2 | 1.0 | 0.9 | 0.4 | 0 | 0 | |
| Maize and grassland zone | Qinghai, Xinjiang, Tibet | 0 | 0 | 0 | 0.6 | 1.0 | 1.2 | 1.2 | 1.0 | 0.9 | 0.4 | 0 | 0 | 
| Wheat, maize, rice zone | Sichuan, Chongqing, Guizhou, Yunnan | 1.0 | 1.0 | 1.1 | 1.2 | 1.0 | 1.2 | 1.2 | 1.2 | 1.0 | 1.0 | 1.0 | 1.0 | 
| Winter wheat and rice zone | Hubei, Anhui, Jiangsu | 1.0 | 1.0 | 1.1 | 1.2 | 1.0 | 1.2 | 1.2 | 1.2 | 1.0 | 1.0 | 1.0 | 1.0 | 
| Rice zone | Zhejiang, Hunan, Jiangxi, Fujian, Guangdong, Guangxi, Hainan | 0.9 | 0.9 | 1.0 | 1.0 | 1.2 | 1.2 | 1.2 | 1.2 | 1.0 | 1.0 | 0.9 | 0.9 | 
| Level | Type | MCI | 
|---|---|---|
| 1 | No drought | −0.5 < MCI | 
| 2 | Light drought | −1.0 < MCI ≤ −0.5 | 
| 3 | Moderate drought | −1.5 < MCI ≤ −1.0 | 
| 4 | Severe drought | −2.0 < MCI ≤ −1.5 | 
| 5 | Extreme drought | MCI ≤ −2.0 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Zhang, M.; Li, G.; Wang, Y.; Guo, Z. A Database of High-Resolution Meteorological Drought Comprehensive Index Across China for the 1951–2022 Period. Data 2025, 10, 171. https://doi.org/10.3390/data10110171
Zhou X, Zhang M, Li G, Wang Y, Guo Z. A Database of High-Resolution Meteorological Drought Comprehensive Index Across China for the 1951–2022 Period. Data. 2025; 10(11):171. https://doi.org/10.3390/data10110171
Chicago/Turabian StyleZhou, Xijia, Mingwei Zhang, Guicai Li, Yuanyuan Wang, and Zhaodi Guo. 2025. "A Database of High-Resolution Meteorological Drought Comprehensive Index Across China for the 1951–2022 Period" Data 10, no. 11: 171. https://doi.org/10.3390/data10110171
APA StyleZhou, X., Zhang, M., Li, G., Wang, Y., & Guo, Z. (2025). A Database of High-Resolution Meteorological Drought Comprehensive Index Across China for the 1951–2022 Period. Data, 10(11), 171. https://doi.org/10.3390/data10110171
 
        


 
       