The LAB-Net Soil Moisture Network: Application to Thermal Remote Sensing and Surface Energy Balance
Abstract
:1. Introduction
2. LAB-Net Description
2.1. Ground Instrumentation
2.2. Copiapó
2.3. Chimbarongo
2.4. Oromo
3. Calibration and Post-Processing
3.1. Time Domain Reflectometers Calibration
3.2. In Situ Land Surface Temperature
3.3. Status Check and Data Availability
4. Applications of the LAB-Net Data Base
4.1. Surface Energy Balance in Copiapó
4.2. LST and Remote Sensing Products
4.3. Soil Moisture from LAB-Net and SMOS L2 Product
5. Conclusions and Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cheruy, F.; Campoy, A.; Dupont, J.-C.; Ducharne, A.; Hourdin, F.; Haeffelin, M.; Chiriaco, M.; Idelkadi, A. Combined influence of atmospheric physics and soil hydrology on the simulated meteorology at the SIRTA atmospheric observatory. Clim. Dyn. 2013, 40, 2251–2269. [Google Scholar] [CrossRef]
- Njoku, E.G. AMSR-E/Aqua L2B Surface Soil Moisture, Ancillary Parms, & QC EASE-Grids; Version 2; NASA DAAC at the National Snow and Ice Data Center: Boulder, CO, USA, 2004.
- Kerr, Y.; Waldteufel, P.; Wigneron, J.P.; Martinuzzi, J.M.; Font, J.; Berger, M. Soil moisture retrieval from space. The soil Moisutre and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [Google Scholar] [CrossRef]
- Kerr, Y.; Waldteufel, P.; Richaume, P.; Wigneron, J.P.; Ferrazzoli, P.; Mahmoodi, A.; al Bitar, A.; Cabot, F.; Gruhier, C.; Juglea, S.E.; et al. The SMOS Soil Moisture Retrieval Algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1384–1403. [Google Scholar] [CrossRef]
- Wagner, W.; Hahn, S.; Kidd, R.; Melzer, T.; Bartalis, Z.; Hasenauer, S. The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications. Meteorol. Z. 2013, 22, 5–33. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Brocca, L.; Hasenauer, S.; Lacava, T.; Melone, F.; Moramarco, T.; Wagner, W.; Dorigo, W.; Matgen, P.; Martínez-Fernández, J.; Llorens, P.; et al. Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sens. Environ. 2011, 115, 3390–3408. [Google Scholar] [CrossRef]
- Leroux, D.; Kerr, Y.; Richaume, P.; Fieuzal, R. Spatial distribution and possible sources of SMOS errors at the global scale. Remote Sens. Environ. 2013, 133, 240–250. [Google Scholar] [CrossRef][Green Version]
- Al-Yaari, A.; Wigneron, J.-P.; Ducharne, A.; Kerr, Y.; de Rosnay, P.; de Jeu, R.; Govind, A.; al Bitar, A.; Albergel, C.; Muñoz-Sabater, J.; et al. Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to Land Data Assimilation System estimates. Remote Sens. Environ. 2014, 149, 181–195. [Google Scholar] [CrossRef][Green Version]
- Rötzer, K.; Motzka, C.; Bogena, H.; Wagner, W.; Kerr, Y.; Kidd, R.; Vereecken, H. Catchment scale validation of SMOS and ASCAT soil moisture products using hydrological modeling and temporal stability analysis. J. Hydrol. 2014, 519, 934–946. [Google Scholar] [CrossRef]
- Louvet, S.; Pellarin, T.; Al-Bitar, A.; Cappelaere, B.; Galle, S.; Grippa, M.; Gruhier, C.; Kerr, Y.; Lebel, T.; Mialon, A.; et al. SMOS soil moisture product evaluation over West-Africa from local to regional scale. Remote Sens. Environ. 2015, 156, 383–394. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Parinussa, R.M.; Dorigo, W.A.; de Jeu, R.A.M.; Wagner, W.; van Dijk, A.I.J.M.; McCabe, M.F.; Evans, J.P. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 425–436. [Google Scholar] [CrossRef][Green Version]
- Yin, J.; Zhan, X.; Zheng, Y.; Liu, J.; Fang, L.; Hain, C.R. Enhancing Model Skill by Assimilating SMOPS Blended Soil Moisture Product into Noah Land Surface Model. J. Hydrometerorol. 2015, 16, 917–931. [Google Scholar] [CrossRef]
- Yin, J.; Zhan, X.; Zheng, Y.; Liu, J.; Hain, C.R.; Fang, L. Impact of qualitycontrol of satellite soil moisture data on their assimilation into land surface model. Geophys. Res. Lett. 2014, 41, 7159–7166. [Google Scholar] [CrossRef]
- Walker, J.P.; Willgoose, G.R.; Kalma, J.D. In situ measurement of soil moisture: A comparison of techniques. J. Hydrol. 2004, 293, 85–99. [Google Scholar] [CrossRef]
- Liu, Q.; Reichle, R.H.; Bindlish, R.; Cosh, M.H.; Crow, W.T.; de Jeu, R.; de Lannoy, G.J.M.; Huffman, G.J.; Jackson, T.J. The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates in a land data assimilation system. J. Hydrometerorol. 2011, 12, 750–765. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Drusch, M. The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 2011, 5, 1675–1698. [Google Scholar] [CrossRef]
- Vivoni, E.R.; Gebremichaela, M.; Watts, C.J.; Bindlish, R.; Jackson, T.J. Comparison of ground-based and remotely-sensed surface soil moisture estimates over complex terrain during SMEX04. Remote Sens. Environ. 2008, 112, 314–325. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Xaver, A.; Vreugdenhil, M.; Gruber, A.; Hegyiová, A.; Sanchis-Dufau, A.D.; Zamojski, D.; Cordes, C.; Wagner, W.; Drusch, M. Global automated quality control of in situ soil moisture data from the International Soil Moisture Network. Vadose Zone J. 2013, 12. [Google Scholar] [CrossRef]
- Smith, A.; Walker, J.P.; Western, A.W.; Young, R.I.; Ellet, K.M.; Pipunic, R.C. The Murrumbidgee soil moisture monitoring network data set. Water Resour. Res. 2012, 48, W07701. [Google Scholar] [CrossRef]
- Panciera, R.; Walker, J.P.; Kalma, J.; Kim, E.; Hacker, J.; Merlin, O.; Berger, M.; Skou, N. The NAFE’05/CoSMOS Data Set: Toward SMOS Soil Moisture Retrieval, Downscaling, and Assimilation. IEEE Trans. Geosci. Remote Sens. 2008, 46, 736–745. [Google Scholar] [CrossRef][Green Version]
- Merlin, O.; Walker, J.P.; Panciera, R.; Escorihuela, M.J.; Jackson, T. Assessing the SMOS soil moisture retrieval parameters with high-resolution NAFE’06 data. IEEE Geosci. Remote Sens. Lett. 2009, 6, 635–639. [Google Scholar] [CrossRef]
- Peischl, S.; Walker, J.P.; Rüdiger, C.; Ye, N.; Kerr, Y.H.; Kim, E.; Bandara, R.; Allahmoradi, M. The AACES field experiments: SMOS calibration and validation across the Murrumbidgee River catchment. Hydrol. Earth Syst. Sci. 2011, 16, 1697–1708. [Google Scholar] [CrossRef]
- Zreda, M.; Shuttleworth, W.; Xeng, X.; Zweck, C.; Desilets, D.; Franz, T.E.; Rosolem, R. COSMOS: The COsmic-ray Soil Moisture Observing System. Hydrol. Earth Syst. Sci. 2012, 16, 4079–4099. [Google Scholar] [CrossRef]
- Valdés-Pineda, R.; Pizarro, R.; García-Chevesich, P.; Valdés, J.; Olivares, C.; Vera, M.; Balocchi, F.; Pérez, F.; Vallejos, C.; Fuentes, R.; et al. Water governance in Chile: Availability, management and climate change. J. Hydrol. 2014, 519, 2538–2567. [Google Scholar] [CrossRef]
- Mattar, C.; Franch, B.; Sobrino, J.A.; Corbari, C.; Jiménez-Muñoz, J.C.; Olivera-Guerra, L.; Skokovic, D.; Sòria, G.; Oltra-Carrió, R.; Julien, Y.; et al. Impacts of the broad-band albedo on actual evapotranspiration estimated by S-SEBI model over an agricultural. Remote Sens. Environ. 2014, 147, 23–42. [Google Scholar] [CrossRef]
- Olivera-Guerra, L.; Mattar, C.; Galleguillos, M. Estimation of the Real Evapotranspiration and its variation in Mediterranean landscapes of central-southern Chile. Int. J. Appl. Earth Obs. Geoinform. 2014, 28, 160–169. [Google Scholar] [CrossRef]
- Olivera-Guerra, L.; Merlin, O.; Mattar, C.; Durán-Alarcón, C.; Santamaría-Artigas, A.; Stefan, V. Combining meteorological and lysimeter data to evaluate energy and water fluxes over a row crop for remote sensing applications. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015.
- Latorre, C.; Camacho, F.; Mattar, C.; Santamaría-Artigas, A.; Leiva-Büchi, N.; Lacaze, R. Obtención de mapas de alta resolución de LAI, FAPAR y fracción de cobertura vegetal derivados de imágenes del satélite chileno FASat-C y adquisiciones in situ en la zona agrícola de Chimbarongo, Chile. In Proceedings of the XVI Congreso de la Asociación Española de Teledetección (AET), Sevilla, España, 21–23 de Octubre 2015.
- CIREN; Estudio Agrológico X Región. Descripciones de suelos: Materiales y símbolos; CIREN: Santiago, Chile, 2002; 360p. N° 122. [Google Scholar]
- Quinones, H.; Ruelle, P.; Nemeth, I. Comparison of three calibration procedures for TDR soil moisture sensors. Irrig. Drain. 2003, 52, 203–217. [Google Scholar] [CrossRef]
- Mittelbach, H.; Casini, F.; Lehner, I.; Teuling, A.; Seneviratne, S. Soil moisture monitoring for climate research: Evaluation of a low-cost sensor in the framework of the Swiss Soil Moisture Experiment (SwissSMEX) campaign. J. Geophys. Res. 2011, 116, D05111. [Google Scholar] [CrossRef]
- Baldridge, A.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Durán-Alarcón, C.; Santamaría-Artigas, A.; Valenzuela, N.; Mattar, C. RSR Calculator, una herramienta para el proceso de Calibración/Validación. Revista Española de Teledetección 2014, 42, 111–117. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Mattar, C.; Gastellu-Etchegorry, J.P.; Jiménez-Muñoz, J.C.; Grau, E. Evaluation of DART 3D model in the thermal domain using satellite/airborne imagery and ground-based measurements. Int. J. Remote Sens. 2011, 32, 7453–7477. [Google Scholar] [CrossRef][Green Version]
- Sobrino, J.A.; Mattar, C.; Pardo, P.; Jiménez-Muñoz, J.C.; Hook, S.J.; Baldridge, A.; Ibáñez, R. Soil emissivity and reflectance spectra measurements. Appl. Opt. 2009, 48, 3664–3670. [Google Scholar] [CrossRef] [PubMed]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Zarco-Tejada, P.J.; Sepulcre-Cantó, G.; de Miguel, E.; Sória, G.; Romaguera, M.; Julien, Y.; Cuenca, J.; Hidalgo, V.; et al. Thermal remote sensing from airborne hyperspectral scanner data in the framework of the sparc and sen2flex projects: An overview. Hydrol. Earth Syst. Sci. 2009, 13, 2031–2037. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jimenez-Muñoz, J.C.; Soria, G.; Gomez, M.; Barella Ortiz, A.; Romaguera, M.; Zaragoza, M.; Julien, Y.; Cuenca, J.; Atitar, M. Thermal remote sensing in the framework of the sen2flex project: Field measurements, airborne data and application. Int. J. Remote Sens. 2008, 29, 4961–4991. [Google Scholar] [CrossRef]
- Prata, A.J. A new long-wave formula estimating downward clear sky radiation at the surface. Q. J. R. Meteorol. Soc. 1996, 122, 1127–1151. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration guidelines for computing crop water requirements. In FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization: Italy, Rome, 1998. [Google Scholar]
- MODIS Data Products. Available online: http://modis.gsfc.nasa.gov/data/dataprod/ (accessed on 22 November 2015).
- Wan, W.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 46, 736–745. [Google Scholar]
- Freitas, S.; Trigo, I.; Macedo, J.; Barroso, C.; Silva, R.; Perdigao, R. Land surface temperature from multiple geostationary satellite. Int. J. Remote Sens. 2013, 34, 3051–3068. [Google Scholar] [CrossRef]
- Centre Aval de Traitement des Données SMOS (CATDS). Available products from CPDC. Available online: http://www.catds.fr/Products/Available-products-from-CPDC (accessed on 15 January 2016).
- Santamaría-Artigas, A.; Mattar, C.; Wigneron, J.-P. Application of a Combined Optical–Passive Microwave Method to Retrieve Soil Moisture at Regional Scale Over Chile. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1493–1504. [Google Scholar] [CrossRef]
- Casanova, M.; Salazar, O.; Seguel, O.; Luzio, W. The Soils of Chile; Springer: Dordrecht, The Netherlands, 2013; p. 185. ISBN 978-94-007-5948-0. [Google Scholar]
- Olivera-Guerra, L.; Mattar, C.; Merlin, O.; Durán-Alarcón, C.; Santamaría-Artigas, A.; Fuster, R. An operational method for the disaggregation of land surface temperature to estimate actual evapotranspiration in the semi-arid region of Chile. Int. J. Appl. Earth Obs. Geoinform. 2016, in press. [Google Scholar]
- Mattar, C.; Wigneron, J.; Sobrino, J.A.; Novello, N.; Calvet, J.C.; Albergel, C.; Richaume, P.; Mialon, A.; Guyon, D.; Jimenez-Munoz, J.C. A combined optical-microwave method to retrieve soil moisture over vegetated areas. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1404–1413. [Google Scholar] [CrossRef][Green Version]
- Mattar, C.; Hernández, J.; Santamaría-Artigas, A.; Durán-Alarcón, C.; Olivera, L.; Inzunza, M.; Tapia, E.; Escobar-Lavín, E. A first in-flight absolute calibration of the Chilean Earth Observation Satellite. ISPRS J. Photogramm. Remote Sens. 2014, 92, 16–25. [Google Scholar] [CrossRef]
Parameters | Units | Copiapó Olives | Copiapó Vineyards | Chimbarongo | Oromo |
---|---|---|---|---|---|
Sand (2–0.05 mm) | % | 9.30 | 40.20 | 51.80 | 74.10 |
Silt (0.05–0.002 mm) | % | 49.40 | 40.60 | 35.30 | 20.30 |
Clay (<0.002 mm) | % | 41.30 | 19.20 | 12.90 | 5.60 |
Ca2+ | mmol+/L | 34.53 | 52.70 | 5.30 | 1.19 |
Mg2+ | 42.27 | 106.21 | 0.99 | 0.34 | |
Na+ | 106.61 | 6.62 | 1.32 | 0.67 | |
K+ | 3.53 | 6.85 | 0.72 | 0.20 | |
SO4−2 | mmol−/L | 287.38 | 287.38 | 0.03 | 0.07 |
Cl− | ND | ND | 0.94 | 0.51 | |
HCO−3 | 0.01 | 6.40 | 0.5 | 1.3 | |
pH | unitless | 7.92 | 7.9 | 6.49 | 7.98 |
Electrical Conductivity (E.C.) | dS/m | 12.74 | 21.575 | 0.25 | 0.88 |
Sodium Absorption Ratio (SAR) | unitless | 17.20 | 1.10 | 0.77 | 0.93 |
Percentage of Interchangeable Sodium (ESP) | % | 25.20 | 1.62 | 1.13 | 1.34 |
Water Saturation | 68.72 | 7.9 | 92.53 | 21.01 |
Measurement Technique | SM Olives (m3·m−3) | SM Vineyards (m3·m−3) |
---|---|---|
Hydrosense II | 36.8 | 36.5 |
ML3 | 35.5 | 35.0 |
Gravimetry | 38.1 | 33.6 |
TDR wire length | ||
0.05 m | 5.7 | 5.8 |
0.10 m | 11.5 | 11.6 |
0.15 m | 17.2 | 17.4 |
0.20 m | 24.1 | 24.4 |
0.25 m | 28.7 | 29.1 |
0.30 m (Full length) | 34.4 | 34.9 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mattar, C.; Santamaría-Artigas, A.; Durán-Alarcón, C.; Olivera-Guerra, L.; Fuster, R.; Borvarán, D. The LAB-Net Soil Moisture Network: Application to Thermal Remote Sensing and Surface Energy Balance. Data 2016, 1, 6. https://doi.org/10.3390/data1010006
Mattar C, Santamaría-Artigas A, Durán-Alarcón C, Olivera-Guerra L, Fuster R, Borvarán D. The LAB-Net Soil Moisture Network: Application to Thermal Remote Sensing and Surface Energy Balance. Data. 2016; 1(1):6. https://doi.org/10.3390/data1010006
Chicago/Turabian StyleMattar, Cristian, Andrés Santamaría-Artigas, Claudio Durán-Alarcón, Luis Olivera-Guerra, Rodrigo Fuster, and Dager Borvarán. 2016. "The LAB-Net Soil Moisture Network: Application to Thermal Remote Sensing and Surface Energy Balance" Data 1, no. 1: 6. https://doi.org/10.3390/data1010006