The Impact of Different Withering Process Conditions on the Bioactivity and Quality of Black Tea from Azorean Camellia sinensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Tea Sample Preparation
2.3. Tea Extract Preparation
2.4. Determination of the In Vitro Antioxidant Activity of Tea Extracts
2.4.1. Determination of DPPH Free Radical Scavenging Activity (FRSA)
2.4.2. Determination of Ferric Reducing Antioxidant Power (FRAP)
2.4.3. Determination of Ferrous-Ion-Chelating (FIC) Activity
2.5. Determination of Total Phenolic and Total Flavonoid Contents
2.6. Sample Preparation for Theaflavin Determination
RP-HPLC Analysis of Theaflavins
2.7. Extraction Methodology for Crude Catechin and Caffeine (CAF) Contents
RP-HPLC Analysis of Catechins and Caffeine (CAF)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effect of Withering Time on Antioxidant Activity of Camellia sinensis Black Tea
3.1.1. DPPH Free Radical Scavenging Activity (FRSA)
3.1.2. Ferric Reducing Antioxidant Power (FRAP)
3.1.3. Ferrous-Ion-Chelating (FIC) Activity
3.2. Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
3.3. Determination of Theaflavin Content Profiles
3.4. Determination of Catechin Content Profiles and Caffeine
3.5. Pearson Correlations between Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, Z.M.; Zhong, Y.Z.; Duan, Y.H.; Chen, Q.H.; Li, F.N. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr. 2020, 6, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Polito, C.A.; Cai, Z.Y.; Shi, Y.L.; Li, X.M.; Yang, R.; Shi, M.; Li, Q.S.; Ma, S.C.; Xiang, L.P.; Wang, K.R.; et al. Association of tea consumption with risk of Alzheimer’s disease and anti-beta-amyloid effects of tea. Nutrients 2018, 10, 655. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.Y.; Li, Q.S.; Lin, X.M.; Qiao, R.Y.; Yang, R.; Li, X.M.; Dong, Z.B.; Xiang, L.P.; Zheng, X.Q.; Lu, J.L.; et al. Antidiabetic effects of tea. Molecules 2017, 22, 849. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.S.; Wang, Y.Q.; Liang, Y.R.; Lu, J.L. The anti-allergic potential of tea: A review of its components, mechanisms and risks. Food Funct. 2021, 12, 57–69. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Lu, J.L.; Liang, Y.R.; Li, Q.S. Suppressive effects of EGCG on cervical cancer. Molecules 2018, 23, 2334. [Google Scholar] [CrossRef]
- Wang, L.X.; Shi, Y.L.; Zhang, L.J.; Wang, K.R.; Xiang, L.P.; Cai, Z.Y.; Lu, J.L.; Ye, J.H.; Liang, Y.R.; Zheng, X.Q. Inhibitory effects of (−)-Epigallocatechin-3-gallate on esophageal cancer. Molecules 2019, 24, 954. [Google Scholar] [CrossRef]
- Sheng, Y.Y.; Xiang, J.; Wang, Z.S.; Jin, J.; Wang, Y.Q.; Li, Q.S.; Li, D.; Fang, Z.T.; Lu, J.L.; Ye, J.H.; et al. Theacrine from Camellia Kucha and its health beneficial effects. Front. Nutr. 2020, 7, 321. [Google Scholar] [CrossRef]
- Wang, X.; Dong, W.; Zhang, X.; Zhu, Z.; Chen, Y.; Liu, X.; Guo, C. Antiviral mechanism of tea polyphenols against porcine reproductive and respiratory syndrome virus. Pathogens 2021, 10, 202. [Google Scholar] [CrossRef]
- Fanunza, E.; Iampietro, M.; Distinto, S.; Corona, A.; Quartu, M.; Maccioni, E.; Horvat, B.; Tramontano, E. Quercetin blocks ebola virus infection by counteracting the vp24 interferon-inhibitory function. Antimicrob. Agents Chemother. 2020, 64, 10-1128. [Google Scholar] [CrossRef]
- Roschek, B., Jr.; Fink, R.C.; McMichael, M.D.; Li, D.; Alberte, R.S. Elderberry flavonoids bind to and prevent H1N1 infection in vitro. Phytochemistry 2009, 70, 1255–1261. [Google Scholar] [CrossRef]
- Patel, B.; Sharma, S.; Nair, N.; Majeed, J.; Goyal, R.K.; Dhobi, M. Therapeutic opportunities of edible antiviral plants for COVID-19. Mol. Cell Biochem. 2021, 476, 2345–2364. [Google Scholar] [CrossRef] [PubMed]
- Eggers, M.; Jungke, P.; Wolkinger, V.; Bauer, R.; Kessler, U.; Frank, B. Antiviral activity of plant juices and green tea against SARS-CoV-2 and influenza virus. Phytother. Res. 2022, 36, 2109–2115. [Google Scholar] [CrossRef] [PubMed]
- He, H.-F. Research progress on theaflavins: Efficacy, formation, and preparation. Food Nutr. Res. 2017, 61, 1344521. [Google Scholar] [CrossRef]
- Collings, E.R.; Alamar, M.C.; Redfern, S.; Cools, K.; Terry, L.A. Spatial changes in leaf biochemical profile of two tea cultivars following cold storage under two different vapour pressure deficit (VPD) conditions. Food Chem. 2019, 277, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Orchard, J.E. Tea Research Foundation of Kenya; Technical Report 1988-91; ODA TCO: Kericho, Kenya, 1991; p. 126. [Google Scholar]
- Wilkie, A.S. Leaf handling study. Q. Newsl.-Tea Res. Found. Cent. Afr. 1995, 120, 26–38. [Google Scholar]
- Ravichandran, R.; Parthiban, R. The impact of processing techniques on tea volatiles. Food Chem. 1998, 62, 347–353. [Google Scholar] [CrossRef]
- Vicky, O.M.; Simeon, N.K.; Kombo, A.; David, M.; Achuti, D.; Matoke, A.; Abunda, O.; Ben, B.O.; Sewe, T. Influence of New Technology on Financial Performance; a case of Small scale Tea industry in Kebirigo, Kenya. Int. J. Arts Commer. 2012, 1, 80–98. [Google Scholar]
- Soheili-Fard, F.; Ghassemzadeh, H.R.; Salvatian, S.B. Impact of Withering time duration on some Biochemical Properties and Sensory Quality Attributes of Black Tea. Biol. Forum Int. J. 2015, 7, 1045–1049. [Google Scholar]
- Obanda, M.; Owuor, P.O.; Mang’oka, R.; Kavoi, M.M. Changes in thearubigin fractions and theaflavin levels due to variations in processing conditions and their influence on black tea liquor brightness and total colour. Food Chem. 2004, 85, 163–173. [Google Scholar] [CrossRef]
- Deb, S.; Jolvis Pou, K.R. A review of withering in the processing of black tea. Biosyst. Eng. 2016, 41, 365–372. [Google Scholar] [CrossRef]
- Baruah, D.; Bhuyan, L.P.; Hazarika, M. Impact of moisture loss and temperature on biochemical changes during withering stage of black tea processing on four Tocklai released clones. Two Bud 2012, 59, 134–142. [Google Scholar]
- Bokuchava, M.A.; Skobeleva, N.I. The biochemistry and technology of tea manufacture. Crit. Rev. Food Sci. Nutr. 1980, 12, 303–370. [Google Scholar] [CrossRef] [PubMed]
- Omiadze, N.T.; Mchedlishvili, N.I.; Rodrigez-Lopez, J.N.; Abutidze, M.O.; Sadunishvili, T.A.; Pruidze, N.G. Biochemical processes at the stage of withering during black tea production. Appl. Biochem. Microbiol. 2014, 50, 394–397. [Google Scholar] [CrossRef]
- Owuor, P.O.; Orchard, J.E. Withering, Annual Report; Tea Research Foundation of Kenya: Kericho, Kenia, 1989; pp. 89–102. [Google Scholar]
- Ullah, M.R. A reappraisal of withering process in black tea manufacture. I. Physical and chemical withers and their effects on tea liquors. Two Bud 1984, 31, 20–24. [Google Scholar]
- Teshome, K. Effect of tea processing methods on biochemical composition and sensory quality of black tea (Camellia sinensis (L.) O. Kuntze): A review. J. Hortic. For. 2019, 11, 84–95. [Google Scholar]
- Obanda, M.; Owuor, P.O.; Bore, J.K. Effects of moisture loss and temperature of leaf during withering on black tea quality parameters. Tea 1997, 18, 45–50. [Google Scholar]
- Molyneux, P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 2004, 26, 211–219. [Google Scholar]
- Paiva, L.; Lima, E.; Motta, M.; Marcone, M.; Baptista, J. Variability of antioxidant properties, catechins, caffeine, L-theanine and other amino acids in different plant parts of Azorean Camellia sinensis. Curr. Res. Food Sci. 2020, 3, 227–334. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Wang, T.; Jónsdóttir, R.; Ólafsdóttir, G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 2009, 116, 240–248. [Google Scholar] [CrossRef]
- Waterhouse, A.L. Determination of total phenolics. In Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Ed.; John Wiley & Sons: New York, NY, USA, 2002; pp. I1.1.1–I1.1.8. [Google Scholar]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Matsubara, S.; Rodriguez-Amaya, D.B. Catechin and theaflavin levels of teas commercialized in Brazil. Food Sci. Technol. 2006, 26, 401–407. [Google Scholar] [CrossRef]
- Baptista, J.; Lima, E.; Paiva, L.; Castro, A.R. Value of off-season fresh Camellia sinensis leaves. Antiradical activity, total phenolics content and catechin profiles. LWT Food Sci. Technol. 2014, 59, 1152–1158. [Google Scholar] [CrossRef]
- Ntezimana, B.; Li, Y.; He, C.; Yu, X.; Zhou, J.; Chen, Y.; Yu, Z.; Ni, D. Different Withering Times Affect Sensory Qualities, Chemical Components, and Nutritional Characteristics of Black Tea. Foods 2021, 10, 2627. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Zeng, W.; Tong, X.; Feng, W.; Chen, Y.; Ni, D. The new insight into the influence of fermentation temperature on quality and bioactivities of black tea. LWT-Food Sci. Technol. 2020, 117, 108–646. [Google Scholar] [CrossRef]
- Tong, T.; Liu, Y.-J.; Kang, J.; Zhang, C.-M.; Kang, S.-G. Antioxidant Activity and Main Chemical Components of a Novel Fermented Tea. Molecules 2019, 24, 2917. [Google Scholar] [CrossRef]
- Rohadi, R.; Lelita, D.I.; Putri, A.S. Antioxidant capacity of white tea (Camellia sinensis) extract: Compared to green, oolong and black tea. IOP Conf. Ser. Earth Environ. Sci. 2019, 292, 012018. [Google Scholar] [CrossRef]
- Rahman, M.; Jahan, I.A.; Ahmed, S.; Ahmed, K.S.; Roy, M.; Zzaman, W.; Ahmad, I. Bioactive compounds and antioxidant activity of black and green tea available in Bangladesh. Food Res. 2021, 5, 107–111. [Google Scholar] [CrossRef]
- Tomlins, K.I.; Mashingaidze, A. Influence of withering, including leaf handling, on the manufacturing and quality of black teas—A review. Food Chem. 1997, 60, 573–580. [Google Scholar] [CrossRef]
- Muthumani, T.; Kumar, R.S.S. Studies on freeze-withering in black tea manufacturing. Food Chem. 2007, 101, 103–106. [Google Scholar] [CrossRef]
- Ohgitani, E.; Shin-Ya, M.; Ichitani, M.; Kobayashi, M.; Takihara, T.; Kawamoto, M.; Kinugasa, H.; Mazda, O. Significant inactivation of SARS-CoV-2 in vitro by a green tea catechin, a catechin-derivative, and black tea galloylated theaflavins. Molecules 2021, 26, 3572. [Google Scholar] [CrossRef] [PubMed]
- Macheka, L.; Chifamba, V.; Mubaiwa, J.; Madamombe, G.M.; Ngadze, R.T.; Manditsera, F. Effect of Withering Temperature and Time on Biochemical Properties of Vegetatively Propagated and Seedling Tea. Nutr. Food Sci. Int. J. 2022, 11, 555814. [Google Scholar] [CrossRef]
- Lee, M.-K.; Kim, H.-W.; Lee, S.-H.; Kim, Y.J.; Asamenew, G.; Choi, J.; Lee, J.-W.; Jung, H.-A.; Yoo, S.M.; Kim, J.-B. Characterization of catechins, theaflavins, and flavonols by leaf processing step in green and black teas (Camellia sinensis) using UPLC-DAD-QToF/MS. Eur. Food Res. Technol. 2019, 245, 997–1010. [Google Scholar] [CrossRef]
- Zhang, L.; Ho, C.-T.; Zhou, J.; Santos, J.S.; Armstrong, L.; Granato, D. Chemistry and biological activities of processed Camellia sinensis teas: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1474–1495. [Google Scholar]
- Ramdani, D.; Chaudhry, A.S.; Seal, C.J. Alkaloid and Polyphenol Analysis by HPLC in Green and Black Tea Powders and their Potential Use as Additives in Ruminant Diets. In AIP Conference Proceedings, Proceedings of the 1st International Conference and Exhibition on Powder Technology Indonesia (Icepti) 2017, Jatinangor, Indonesia, 8–9 August 2017; AIP Publishing: Melville, NY, USA, 2018; Volume 1927, p. 030008. [Google Scholar] [CrossRef]
- Friedman, M.; Kim, S.-Y.; Lee, S.-J.; Han, G.-P.; Han, J.-S.; Lee, K.-R.; Kozukue, N. Distribution of Catechins, Theaflavins, Caffeine, and Theobromine in 77 Teas Consumed in the United States. J. Food Sci. 2005, 70, C550–C559. [Google Scholar]
FRSA (EC50—µg/mL) 1 | FRAP (EC50—µg/mL) 2 | FIC (%) | Extraction Yield (%) | |
---|---|---|---|---|
6 h | 14.94 ± 0.39 a | 15.73 ± 0.86 c | 36.40 ± 2.69 d | 26.73 ± 0.45 a |
9 h | 14.41 ± 0.27 a | 15.34 ± 0.26 c | 53.30 ± 2.69 b | 25.47 ± 0.35 c |
12 h | 14.88 ± 0.77 a | 15.54 ± 0.24 c | 46.96 ± 2.16 c | 26.13 ± 0.15 b |
16 h | 14.50 ± 0.35 a | 13.32 ± 0.31 b | 33.75 ± 2.47 d | 25.57 ± 0.38 c |
20 h | 20.98 ± 0.25 b | 22.27 ± 0.31 d | 55.36 ± 1.68 b | 25.73 ± 0.40 bc |
BHT * | 44.89 ± 1.44 c | 5.99 ± 0.23 a | - | - |
EDTA * | - | - | 97.64 ± 0.58 a | - |
Compounds (mg/g DW) | Withering Time (Hours) | ||||
---|---|---|---|---|---|
6 h | 9 h | 12 h | 16 h | 20 h | |
CAF | 72.41 ± 4.11 b | 63.31 ± 2.61 c | 103.52 ± 5.46 a | 65.57 ± 0.77 c | 61.31 ± 0.77 c |
GC | 4.16 ± 0.08 b | 3.18 ± 0.05 c | 8.00 ± 0.13 a | 3.87 ± 0.07 bc | 1.75 ± 0.08 d |
EGC | 1.24 ± 0.16 bc | 1.33 ± 1.05 b | 1.84 ± 0.08 a | 1.21 ± 0.03 c | 0.82 ± 0.04 d |
C | 0.15 ± 0.04 c | 0.27 ± 0.03 b | 0.50 ± 0.06 a | 0.31 ± 0.02 b | 0.12 ± 0.01 c |
EC | 0.30 ± 0.07 c | 0.28 ± 0.07 c | 0.77 ± 0.02 a | 0.39 ±0.02 b | 0.31 ± 0.03 c |
EGCG | 2.59 ± 0.18 c | 2.35 ± 0.14 c | 5.06 ± 0.12 a | 3.05 ± 0.10 b | 2.96 ± 0.11 b |
GCG | 0.56 ± 0.01 b | 0.29 ± 0.07 d | 0.80 ± 0.03 a | 0.47 ± 0.06 c | 0.30 ± 0.09 d |
ECG | 0.79 ± 0.05 b | 0.67 ± 0.09 c | 1.49 ± 0.10 a | 0.66 ± 0.07 c | 0.62 ± 0.02 c |
CG | 0.45 ± 0.02 b | 0.28 ± 0.02 cd | 0.73 ± 0.04 a | 0.36 ± 0.06 bc | 0.25 ± 0.04 d |
ECDs | 4.92 c | 4.63 c | 9.16 a | 5.31 b | 4.71 c |
Total Catechins | 10.24 b | 8.65 c | 19.19 a | 10.32 b | 7.13 d |
TPC | TFC | Total Catechins | Total TFs | GC + GCG + C + CG | EGC + EC + EGCG + ECG | |
---|---|---|---|---|---|---|
TPC | 1 | - | - | - | - | - |
TFC | 0.952 | 1 | - | - | - | - |
Total catechins | 0.233 | 0.306 | 1 | - | - | - |
Total TFs | −0.196 | −0.358 | 0.547 | 1 | - | - |
GC + GCG + C + CG | 0.258 | 0.278 | 0.976 | 0.651 | 1 | - |
EGC + EC + EGCG + ECG | 0.280 | 0.369 | 0.980 | 0.470 | 0.923 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paiva, L.S.; Dias, A.P.; Marcone, M.F.; Baptista, J.A.B. The Impact of Different Withering Process Conditions on the Bioactivity and Quality of Black Tea from Azorean Camellia sinensis. Beverages 2023, 9, 94. https://doi.org/10.3390/beverages9040094
Paiva LS, Dias AP, Marcone MF, Baptista JAB. The Impact of Different Withering Process Conditions on the Bioactivity and Quality of Black Tea from Azorean Camellia sinensis. Beverages. 2023; 9(4):94. https://doi.org/10.3390/beverages9040094
Chicago/Turabian StylePaiva, Lisete Sousa, Ana Paula Dias, Massimo Francesco Marcone, and José António Bettencourt Baptista. 2023. "The Impact of Different Withering Process Conditions on the Bioactivity and Quality of Black Tea from Azorean Camellia sinensis" Beverages 9, no. 4: 94. https://doi.org/10.3390/beverages9040094
APA StylePaiva, L. S., Dias, A. P., Marcone, M. F., & Baptista, J. A. B. (2023). The Impact of Different Withering Process Conditions on the Bioactivity and Quality of Black Tea from Azorean Camellia sinensis. Beverages, 9(4), 94. https://doi.org/10.3390/beverages9040094