Application of Water Treated with Low-Temperature Low-Pressure Glow Plasma (LPGP) in Various Industries
Abstract
:1. Introduction
2. Treating Water with Low-Temperature, Low-Pressure Glow Plasma (LPGP)
3. Structure and Physicochemical Properties of Plasma-Treated Water in the Presence of Various Gases
4. The Use of Low-Temperature, Low-Pressure Glow Plasma in Various Fields of Science
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Fernández, A.; Shearer, N.; Wilson, D.R.; Thompson, A. Effect of microbial loading on the efficiency of cold atmospheric gas plasma inactivation of Salmonella enterica serowar Typhimurium. Int. J. Food Microbiol. 2020, 152, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, B.M. Fundamentals of Ionized Gases; Wiley-VCH: Weinheim, Germany, 2012. [Google Scholar]
- Meichsner, J.; Schmidt, M.; Wagner, H.E. Non-Thermal Plasma Chemistry and Physics; Taylor&Francis: London, UK, 2011; pp. 5–117. [Google Scholar]
- Szałatkiewicz, J. The use of plasma in technology—Current trends. Meas. Autom. Robot. 2010, 2, 17–20. [Google Scholar]
- Bonizzoni, G.; Vassallo, E. Plasma physics and technology; industrial applications. Vacuum 2002, 64, 327–336. [Google Scholar] [CrossRef]
- Skryplonek, K. Cold plasma as an unconventional method of food preservation. J. Food Process. Eng. 2016, 20, 28–33. [Google Scholar]
- Stryczewska, H.D. Cold plasma technologies. Manufacturing, modeling, applications. Electricity 2011, 217, 41–61. [Google Scholar]
- Tanarro, I.; Herrero, V.J.; Carrasco, E.; Jiménez-Redondo, M. Cold plasma chemistry and diagnostics. Vacuum 2011, 85, 1120–1124. [Google Scholar] [CrossRef] [Green Version]
- Surowsky, B.; Schluter, O.; Knorr, D. Interactions on non-thermal atmospheric pressure plasma with solid and liquid food systems: A review. Food Eng. Rev. 2015, 7, 82–108. [Google Scholar] [CrossRef]
- Misra, N.N. The contribution of non-thermal and advanced oxidation technologies towards dissipation of pesticide residues. Trends Food Sci Technol. 2015, 45, 229–244. [Google Scholar] [CrossRef] [Green Version]
- Misra, N.N.; Pankaj, S.K.; Walsh, T.; O’regan, F.; Bourke, P.; Cullen, P.J. In-package nonthermal plasma degradation of pesticides on fresh produce. J. Hazard. Mater. 2014, 271, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Kulawik, P.; Tiwari, B.K. Recent advancements in the application of non-thermal plasma technology for the seafood industry. Crit. Rev. Food Sci. Nutr. 2019, 1549–7852. [Google Scholar] [CrossRef]
- Sunka, P. Pulse electrical discharges in water and their applications. Phys. Plasmas 2001, 8, 2587–2594. [Google Scholar] [CrossRef]
- Bruggeman, P.; Leys, C. Non-thermal plasmas in and in contact with liquids. J. Phys. D Appl. Phys. 2016, 42, 053001. [Google Scholar] [CrossRef]
- Liu, D.X.; Liu, Z.C.; Chen, C.; Yang, A.J.; Li, D.; Rong, M.Z.; Kong, M.G. Aqueous reactive species induced by a surface air discharge: Heterogenous mass transfer and liquid chemistry pathways. Sci. Rep. 2016, 6, 23737. [Google Scholar] [CrossRef] [PubMed]
- Perinban, S.; Orsat, V.; Raghavan, V. Nonthermal Plasma—Liquid Interactions in Food Processing—A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1985–2008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oehmingen, K.; Hoder, T.; Wilke, C.; Brandenburg, R.; Hahnel, M.; Weltmann, K.-D.; Von Woedtke, T. Volume effects of atmospheric-pressure plasma in liquids. IEEE Trans. Plasma Sci. 2011, 39, 2646–2647. [Google Scholar] [CrossRef]
- Oszczęda, Z.; Elkin, I.; Stręk, W. Equipment for Treatment of Water with Plasma. Polish Patent PL216025 B1. Polish Patents Database. 2014. Available online: https://grab.uprp.pl/PropertiesProtection/Site%20pages/Quick%20search.aspx?wersja=english (accessed on 4 February 2020).
- Pater, A.; Zdaniewicz, M.; Satora, P.; Khachatryan, G.; Oszczęda, Z. Application of Water Treated with Low-Temperature Low-Pressure Glow Plasma for Quality Improvement of Barley and Malt. Biomolecules 2020, 10, 267. [Google Scholar] [CrossRef] [Green Version]
- Tomasik, P. Essentials of Nanotechnology in Food Technology and Cosmetics; Sophia Scientific Editorial Board: Warsaw, Poland, 2019. [Google Scholar]
- Wolski, K.; Talar-Krasa, M.; Leshchenko, A.; Dradrach, A.; Adamczewska-Sowińska, K.; Oszczęda, Z. The Use of Nanowater and Biopreparations in Agriculture; Printing House: Opole, Poland, 2014; p. 256. [Google Scholar]
- Mystkowska, J.; Dabrowski, J.R.; Kowal, K.; Niemirowicz, K.; Car, H. Physical and chemical properties of deionized water and saline treated with low pressure, low temperature glow plasma. Chemik 2013, 67, 722–724. (In Polish) [Google Scholar]
- Białopiotrowicz, T.; Ciesielski, W.; Domanski, J.; Doskocz, M.; Khachatryan, K.; Fiedorowicz, M.; Graz, K.; Koloczek, H.; Kozak, A.; Oszczęda, Z.; et al. Structure and Physicochemical Properties of Water Treated with Low-Temperature Low-Frequency Glow Plasma. Curr. Phys. Chem. 2016, 6, 312–320. [Google Scholar] [CrossRef]
- Chwastowski, J.; Ciesielska, K.; Ciesielski, W.; Khachatryan, K.; Kołoczek, H.; Kulawik, D.; Oszczęda, Z.; Tomasik, P.; Witczak, M. Structure and Physicochemical Properties of Water Treated under Nitrogen with Low-Temperature Glow Plasma. Water 2020, 12, 1314. [Google Scholar] [CrossRef]
- Ciesielska, A.; Ciesielski, W.; Khachatryan, K.; Koloczek, H.; Kulawik, D.; Oszczęda, Z.; Soroka, J.A.; Tomasik, P. Structure and Physicochemical Properties of Water Treated under Methane with Low-Temperature Glow Plasma of Low Frequency. Water 2020, 12, 1638. [Google Scholar] [CrossRef]
- Ciesielska, A.; Ciesielski, W.; Khachatryan, K.; Koloczek, H.; Kulawik, D.; Oszczęda, Z.; Sroka, J.A.; Tomasik, P. Structure and Physicochemical Properties of Water Treated under Carbon Dioxide with Low-Temperature Low-Pressure Glow Plasma of Low Frequency. Water 2020, 12, 1920. [Google Scholar] [CrossRef]
- Ciesielska, A.; Ciesielski, W.; Kołoczek, H.; Kulawik, D.; Kończyk, J.; Oszczęda, Z.; Tomasik, P. Structure and some physicochemical and functional properties of water treated under ammonia with low-temperature low-pressure glow plasma of low frequency. Open Chem. 2020, 18, 1195–1206. [Google Scholar] [CrossRef]
- Chwastowski, J.; Ciesielski, W.; Khachatryan, K.; Kołoczek, H.; Kulawik, D.; Oszczęda, Z.; Soroka, J.A.; Tomasik, P.; Witczak, M. Water of Increased Content of Molecular Oxygen. Water 2020, 12, 2488. [Google Scholar] [CrossRef]
- Ikawa, S.; Tani, A.; Nakashima, Y.; Kitano, K. Physicochemical properties of bactericidal plasma-treated water. J. Phys. D Appl. Phys. 2016, 49, 42. [Google Scholar] [CrossRef]
- Shaw, P.; Kumar, N.; Kwak, H.S.; Park, J.H.; Uhm, H.S.; Bogaerts, A.; Choi, E.H.; Attri, P. Bacterial inactivation by plasma treated water enhanced by reactive nitrogen species. Sci. Rep. 2018, 8, 11268. [Google Scholar] [CrossRef] [Green Version]
- Bosch, L.T.; Kohler, R.; Ortmann, R.; Wieneke, S.; Viol, W. Insecticidal Effects of Plasma Treated Water. Int. J. Environ. Res. Public Health 2017, 14, 1460. [Google Scholar] [CrossRef] [Green Version]
- Murawski, M.; Schwarz, T.; Grygier, J.; Patkowski, K.; Oszczęda, Z.; Jelkin, I.; Kosiek, A.; Gruszecki, T.M.; Szymanowska, A.; Skrzypek, T.; et al. The utility of nanowater for ram semen cryopreservation. Exp. Biol. Med. 2015, 240, 611–617. [Google Scholar] [CrossRef] [Green Version]
- Szymanowicz, J.; Schwarz, T.; Murawski, M.; Małopolska, M.; Oszczęda, Z.; Tuz, R.; Nowicki, J.; Bartlewski, P.M. Storage of boar semen at 16–18 °C in the long-term commercial extender prepared with deionized water or nanowater. Anim. Reprod. 2019, 16, 864–870. [Google Scholar] [CrossRef]
- Rzęsa, A. Report: Assessment of the Possibility of Using Water Treated with Plasma Generators in Improving and Perfecting the Results of the Breeding Performance of Sows; Department of Immunology, Pathophysiology and Preventive Veterinary Medicine, University of Life Sciences: Wrocław, Poland, 2018. [Google Scholar]
- Center for Research on the Effectiveness of New Technologies in Animal Production. Report: Chicken Breeding; Sophia Scientific Editorial Board: Tomaszowo, Poland, 2016; pp. 68–114. [Google Scholar]
- Center for Research on the Effectiveness of New Technologies in Animal Production. Report: Turkey Breeding; Sophia Scientific Editorial Board: Tomaszowo, Poland, 2016; pp. 68–114. [Google Scholar]
- Jung, S.; Kim, H.J.; Park, S.; Yong, H.I.; Choe, J.H.; Jeon, H.J.; Choe, W.; Jo, C. The use of atmospheric pressure plasma-treated water as a source of nitrite for emulsion-type sausage. Meat Sci. 2015, 108, 132–137. [Google Scholar] [CrossRef]
- Jung, S.; Kim, H.J.; Park, S.; Yong, H.I.; Choe, J.H.; Jeon, H.J.; Choe, W.; Jo, C. Color Developing Capacity of Plasma-treated Water as a Source of Nitrite for Meat Curing. Korean J. Food Sci. Agric. 2015, 35, 703–706. [Google Scholar] [CrossRef] [Green Version]
- Yong, H.I.; Park, J.; Kim, H.-J.; Jung, S.; Park, S.; Lee, H.J.; Choe, W.; Jo, C. An innovative curing process with plasma-treated water production of loin ham and for its quality and safety. Plasma Processes Polym. 2017, 15, 1700050. [Google Scholar] [CrossRef]
- Sitarska, M. Report: Assessment of the Suitability of Plasma-Treated Water in Plant Breeding; Institute of Environmental Protection, University of Science and Technology: Wrocław, Poland, 2013. [Google Scholar]
- Dziamba, S.; Dziamba, J.; Kozłowski, P.; Elskin, I.; Oszczęda, Z.; Prycik, M. Report: The Influence of Declustered Water on the Growth, Development, Yielding and Quality of Some Plants; University of Life Sciences in Lublin: Lublin, Poland, 2017. [Google Scholar]
- Pisulewska, E.; Ciesielski, W.; Jackowska, M.; Gąstoł, M.; Oszczęda, Z.; Tomasik, P. Cultivation of peppermint (Mentha piperita rubescens) using water treated with low-pressure, low-temperature glow plasma of low frequency. Electron. J. Pol. Agric. Univ. 2018, 21, 3. [Google Scholar] [CrossRef]
- Ciesielska, K.; Ciesielski, W.; Kulawik, D.; Oszczęda, Z.; Tomasik, P. Cultivation of cress involving water treated under different atmospheres with low-temperature, low-pressure glow plasma of low-frequency. Water 2020, 12, 2152. [Google Scholar] [CrossRef]
- Jaworska, M.; Domański, J.; Tomasik, P.; Znój, K. Preliminary studies on stimulation of entomopathogenic fungi with magnetic field. J. Plant Dis. Prot. 2016, 12, 295–300. [Google Scholar] [CrossRef]
- Jaworska, M.; Oszczęda, Z.; Tomasik, P. Water treated with low-temperature, low-pressure, low-frequency glow plasma as a stimulant of pathogenicity and reproduction of biopesticides Part I. Entomopathogenic fungi. Pol. J. Nat. Sci. 2018, 33, 561–568. [Google Scholar]
- Zhou, R.; Li, J.; Zhou, R.; Zhang, X.; Yang, S. Atmospheric-pressure plasma treated water for seed germination and seedling growth of mung bean and its sterilization effect on mung bean sprouts. Innov. Food Sci. Emerg. Technol. 2019, 53, 36–44. [Google Scholar] [CrossRef]
- Ciesielska, K.; Ciesielski, W.; Girek, T.; Kołoczek, H.; Oszczęda, Z.; Tomasik, P. Reaction of Lavandula angustifolia Mill. to Water Treated with Low-Temperature, Low-Pressure Glow Plasma of Low Frequency. Water 2020, 12, 3168. [Google Scholar] [CrossRef]
- Schnabel, U.; Handorf, O.; Stachowiak, J.; Boehm, D.; Weit, C.; Weihe, T.; Schafer, J.; Below, H.; Bourke, P.; Ehlbeck, J. Plasma-Functionalized Water: From Bench to Prototype for fresh-Cut Lettuce. Food Eng. Rev. 2020, 13, 115–135. [Google Scholar] [CrossRef]
- Terebun, P.; Kwiatkowski, M.; Hensel, K.; Kopacki, M.; Pawłat, J. Influence of Plasma Activated Water Generated in a Gliding Arc Discharge Reactor on Germination of Beetroot and Carrot Seeds. Water 2021, 11, 6164. [Google Scholar] [CrossRef]
- Starek-Wójcicka, A.; Sagan, A.; Terebun, P.; Kwiatkowski, M.; Kiczorowski, P.; Pawlat, J. Influence of a Helium-Nitrogen RF Plasma Jet on Onion Seed Germination. Appl. Sci. 2020, 10, 8973. [Google Scholar] [CrossRef]
- Pawłat, J.; Starek, A.; Sujak, A.; Terebun, P.; Kwiatkowski, M.; Budzeń, M.; Andrejko, D. Effects of atmospheric pressure plasma jet operating with DBD on Lavatera thuringiaca L. seeds’ germination. PLoS ONE 2018, 13, e0194349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomczyk, K. Solubility of Selected Salts in Water and Nanowater; Kraków University of Health Promotion: Kraków, Poland, 2017. [Google Scholar]
- Ohl, A.; Schröder, K. Plasma assisted Surface modification of biointerfaces. In Low Temperature Plasma Physics: Fundamental Aspects and Applications; Hippler, R., Kersten, H., Schmidt, M., Schoenbach, K.H., Eds.; Wiley-VCH: Weinheim, Germany, 2008; pp. 803–819. [Google Scholar]
- Walschus, W.; Schröder, K.; Finke, B.; Nebe, B.; Meichsner, J.; Hippler, R.; Bader, R.; Podbielski, A.; Schlosser, M. Application of Low-Temperature Plasma Processes for Biomaterials. Biomater. Appl. Nanomed. 2011, 6, 6,127–142. [Google Scholar]
- Yui, H.; Someya, Y.; Kusmama, Y.; Kanno, K.; Banno, M. Atmospheric discharge plasma in aqueous solution: Importance of the generation of water vapor bubbles for plasma onset and physicochemical evolution. J. Appl. Phys. 2018, 124, 103301. [Google Scholar] [CrossRef]
- Ziuzina, D.; Sarangapani, C.; Boehm, D.; Bourke, P. Hydra as a Model for Screening Ecotoxicological Effects of Plasma-Treated Water. Plasma Med. 2018, 8, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Krasik, Y.E.; Cousens, S.; Ambujakshan, A.; Corr, C.; Dai, X.J. Generation of underwater discharges inside gas bubbles using a 30-needles-to-plate electrode. J. Appl. Phys. 2017, 122, 153303. [Google Scholar] [CrossRef]
- Schnabel, U.; Handorf, O.; Yarova, K.; Zessin, B.; Zechlin, S.; Sydow, D.; Zellmer, E.; Stachowiak, J.; Andrasch, A.; Below, H.; et al. Plasma-Treated Air and Water—Assessment of Synergistic Antimicrobial Effects for Sanitation of Food Processing Surfaces and Environment. Foods 2019, 8, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Nguyen, D.; Quoc Ho, P.; Van Pham, T.; Van Nguyen, T.; Kim, L. Treatment of surface water using cold plasma for domestic water supply. Environ. Eng. Res. 2019, 24, 412–417. [Google Scholar] [CrossRef]
- Kitano, K.; Ikawa, S.; Nakashima, Y.; Tani, A. Extraction of bactericidal components in cryopreserved plasma-treated water. In Proceedings of the 22nd International Symposium on Plasma Chemistry, Antwero, Belgium, 5–10 July 2015. [Google Scholar]
- Handorf, O.; Pauker, V.I.; Schnabel, U.; Weihe, T.; Freund, E.; Bekeschus, S.; Riedel, K.; Ehlbeck, J. Characterization of Antimicrobial Effects of Plasma-Treated Water (PTW) Produced by Microwave-Induced Plasma (MidiPLexc) on Pseudomonas fluorescens Biofilms. Appl. Sci. 2020, 10, 3118. [Google Scholar] [CrossRef]
- Schnabel, U.; Yarova, K.; Zessin, B.; Stachowiak, J.; Ehlbeck, J. The Combination of Plasma-Processed Air (PPA) and Plasma-Treated Water (PTW) Causes Synergistic Inactivation of Candida albicans SC5314. Appl. Sci. 2020, 10, 3303. [Google Scholar] [CrossRef]
- Pawłat, J.; Terebun, P.; Kwiatkowski, M.; Wolny-Koładka, K. Possibility of Humid Municipal Wastes Hygienisation Using Gliding Arc Plasma Reactor. Water 2021, 13, 194. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pater, A.; Zdaniewicz, M.; Satora, P. Application of Water Treated with Low-Temperature Low-Pressure Glow Plasma (LPGP) in Various Industries. Beverages 2022, 8, 8. https://doi.org/10.3390/beverages8010008
Pater A, Zdaniewicz M, Satora P. Application of Water Treated with Low-Temperature Low-Pressure Glow Plasma (LPGP) in Various Industries. Beverages. 2022; 8(1):8. https://doi.org/10.3390/beverages8010008
Chicago/Turabian StylePater, Aneta, Marek Zdaniewicz, and Paweł Satora. 2022. "Application of Water Treated with Low-Temperature Low-Pressure Glow Plasma (LPGP) in Various Industries" Beverages 8, no. 1: 8. https://doi.org/10.3390/beverages8010008
APA StylePater, A., Zdaniewicz, M., & Satora, P. (2022). Application of Water Treated with Low-Temperature Low-Pressure Glow Plasma (LPGP) in Various Industries. Beverages, 8(1), 8. https://doi.org/10.3390/beverages8010008