A Rapid HPLC Method for the Simultaneous Determination of Organic Acids and Furans: Food Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation
2.3. Chromatography Conditions
2.4. Standards Mixes and Sample Preparation
2.5. System Calibration
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arias, K.; Al-Resayes, S.I.; Climent, M.J.; Corma, A.; Iborra, S. From Biomass to Chemicals: Synthesis of Precursors of Biodegradable Surfactants from 5-Hydroxymethylfurfural. ChemSusChem 2013, 6, 123–131. [Google Scholar] [CrossRef]
- Bozell, J.J.; Moens, L.; Elliott, D.; Wang, Y.; Neuenscwander, G.; Fitzpatrick, S.; Bilski, R.; Jarnefeld, J. Production of levulinic acid and use as a platform chemical for derived products. Resour. Conserv. Recycl. 2000, 28, 227–239. [Google Scholar] [CrossRef]
- Derle, S.N.; Parikh, P.A. Hydrogenation of levulinic acid and γ-valerolactone: Steps towards biofuels. Biomass Convers. Biorefin. 2014, 4, 293–299. [Google Scholar] [CrossRef]
- Al-Shaal, M.G.; Calin, M.; Delidovich, I.; Palkovits, R. Microwave-assisted reduction of levulinic acid with alcohols producing γ-valerolactone in the presence of a Ru/C catalyst. Catal. Commun. 2016, 75, 65–68. [Google Scholar] [CrossRef]
- Serrano-Ruiz, J.C.; Luque, R.; Campelo, J.M.; Romero, A.A. Continuous-flow processes in heterogeneously catalyzed transformations of biomass derivatives into fuels and chemicals. Challenges 2012, 3, 114–132. [Google Scholar] [CrossRef]
- Alonso, D.M.; Wettstein, S.G.; Bond, J.Q.; Root, T.W.; Dumesic, J.A. Production of biofuels from cellulose and corn stover using alkylphenol solvents. ChemSusChem 2011, 4, 1078–1081. [Google Scholar] [CrossRef] [PubMed]
- Climent, M.J.; Corma, A.; Iborra, S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem. 2014, 16, 516–547. [Google Scholar] [CrossRef] [Green Version]
- Bozell, J.J.; Petersen, G.R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem. 2010, 12, 539–554. [Google Scholar] [CrossRef]
- Hayes, D.J.; Fitzpatrick, S.; Hayes, M.H.; Ross, J.R. The biofine process–production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. Biorefin. Ind. Processes Prod. 2006, 1, 139–164. [Google Scholar]
- Valentini, F.; Kozell, V.; Petrucci, C.; Marrocchi, A.; Gu, Y.; Gelman, D.; Vaccaro, L. Formic acid, a biomass-derived source of energy and hydrogen for biomass upgrading. Energy Environ. Sci. 2019, 12, 2646–2664. [Google Scholar] [CrossRef]
- Lange, J.P. Lignocellulose conversion: An introduction to chemistry, process and economics. Biofuels Bioprod. Biorefin. Innov. A Sustain. Econ. 2007, 1, 39–48. [Google Scholar] [CrossRef]
- Flannelly, T.; Lopes, M.; Kupiainen, L.; Dooley, S.; Leahy, J. Non-stoichiometric formation of formic and levulinic acids from the hydrolysis of biomass derived hexose carbohydrates. RSC Adv. 2016, 6, 5797–5804. [Google Scholar] [CrossRef] [Green Version]
- Müller, K.; Brooks, K.; Autrey, T. Hydrogen storage in formic acid: A comparison of process options. Energy Fuels 2017, 31, 12603–12611. [Google Scholar] [CrossRef]
- Hattori, R.; Yamada, K.; Shibata, H.; Hirano, S.; Tajima, O.; Yoshida, N. Measurement of the isotope ratio of acetic acid in vinegar by HS-SPME-GC-TC/C-IRMS. J. Agric. Food Chem. 2010, 58, 7115–7118. [Google Scholar] [CrossRef]
- Adams, M. Vinegar. In Microbiology of Fermented Foods; Springer: New York, NY, USA, 1998; pp. 1–44. [Google Scholar]
- Lopez-Garcia, R. Citric Acid. In Kirk-Othmer Encyclopedia of Chemical Technology; Wiley: New York, NY, USA, 2000; pp. 1–25. [Google Scholar]
- Penniston, K.L.; Nakada, S.Y.; Holmes, R.P.; Assimos, D.G. Quantitative assessment of citric acid in lemon juice, lime juice, and commercially-available fruit juice products. J. Endourol. 2008, 22, 567–570. [Google Scholar] [CrossRef]
- Al-Maiman, S.A.; Ahmad, D. Changes in physical and chemical properties during pomegranate (Punica granatum L.) fruit maturation. Food Chem. 2002, 76, 437–441. [Google Scholar] [CrossRef]
- Bou Ajram, D. Effect of Accelerated Aging on Total Phenolic Content, Antioxidant and Anti-Diabetic Activities of Lebanese Homemade Pomegranate Molasses with and without Addition of Glutathione. Ph.D. Thesis, Notre Dame University-Louaize, Zouk Mosbeh, Lebanon, 2021. [Google Scholar]
- Faria, A.; Calhau, C. Pomegranate in Human Health: An Overview; Bioactive Foods in Promoting Health; Elsevier: Amesterdam, The Netherlands, 2010; pp. 551–563. [Google Scholar]
- Cam, M.; Hisil, Y.; Durmaz, G. Characterisation of pomegranate juices from ten cultivars grown in Turkey. Int. J. Food Prop. 2009, 12, 388–395. [Google Scholar] [CrossRef] [Green Version]
- Viuda-Martos, M.; Fernandez-Lopez, J.; Perez-Alvarez, J. Pomegranate and its many functional components as related to human health: A review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 635–654. [Google Scholar] [CrossRef] [PubMed]
- Üniversitesi, Y.D.; Dali, U.İ.A.B.; Dali, U.İ.B. Yüksek Lisans Tezi. Ph.D. Thesis, Sosyal Bilimler Enstitüsü, Kadıköy, Istanbul, 1998. [Google Scholar]
- Vardin, H.; Abbasoğlu, M. Nar ekşisi ve narın diğer değerlendirme olanakları. Geleneksel Gıdalar Sempozyumu 2004, 23, 195–196. [Google Scholar]
- Kaya, A.; Sözer, N. Rheological behaviour of sour pomegranate juice concentrates (Punica granatum L.). Int. J. Food Sci. Technol. 2005, 40, 223–227. [Google Scholar] [CrossRef]
- Krueger, D.A. Composition of pomegranate juice. J. AOAC Int. 2012, 95, 163–168. [Google Scholar] [CrossRef] [PubMed]
- El Darra, N.; Rajha, H.N.; Saleh, F.; Al-Oweini, R.; Maroun, R.G.; Louka, N. Food fraud detection in commercial pomegranate molasses syrups by UV–VIS spectroscopy, ATR-FTIR spectroscopy and HPLC methods. Food Control 2017, 78, 132–137. [Google Scholar] [CrossRef]
- Kamal, Y.; Alam, P.; Alqasoumi, S.I.; Foudah, A.I.; Alqarni, M.H.; Yusufoglu, H.S. Investigation of antioxidant compounds in commercial pomegranate molasses products using matrix-solid phase dispersion extraction coupled with HPLC. Saudi Pharm. J. 2018, 26, 839–844. [Google Scholar] [CrossRef]
- Xu, W.; Liang, L.; Zhu, M. Determination of sugars in molasses by HPLC following solid-phase extraction. Int. J. Food Prop. 2015, 18, 547–557. [Google Scholar] [CrossRef]
- Liu, X.-z.; He, Q.; Kong, X.-h.; Du, B.-z. Determination of hydroxymethylfurfural in pomegranate juice concentrates by solid phase extraction-ultra performance liquid chromatography. Sci. Technol. Food Ind. 2013, 10, 62–64. [Google Scholar]
- Lopes, M.; Dussan, K.; Leahy, J.; Da Silva, V. Conversion of d-glucose to 5-hydroxymethylfurfural using Al2O3-promoted sulphated tin oxide as catalyst. Catal. Today 2017, 279, 233–243. [Google Scholar] [CrossRef]
- İncedayi, B.; Tamer, C.E.; Çopur, Ö.U. A research on the composition of pomegranate molasses. J. Agric. Fac. Uludag Univ. 2010, 24, 37–47. [Google Scholar]
- Kus, S.; Gogus, F.; Eren, S. Hydroxymethyl furfural content of concentrated food products. Int. J. Food Prop. 2005, 8, 367–375. [Google Scholar] [CrossRef]
- Lalou, S.; Hatzidimitriou, E.; Papadopoulou, M.; Kontogianni, V.G.; Tsiafoulis, C.G.; Gerothanassis, I.P.; Tsimidou, M.Z. Beyond traditional balsamic vinegar: Compositional and sensorial characteristics of industrial balsamic vinegars and regulatory requirements. J. Food Compos. Anal. 2015, 43, 175–184. [Google Scholar] [CrossRef]
- Hillmann, H.; Mattes, J.; Brockhoff, A.; Dunkel, A.; Meyerhof, W.; Hofmann, T. Sensomics analysis of taste compounds in balsamic vinegar and discovery of 5-acetoxymethyl-2-furaldehyde as a novel sweet taste modulator. J. Agric. Food Chem. 2012, 60, 9974–9990. [Google Scholar] [CrossRef]
- Belitz, H.-D.; Grosch, W.; Schieberle, P. Food Cemistry; Springer: New York, NY, USA, 2009. [Google Scholar]
- Theobald, A.; Müller, A.; Anklam, E. Determination of 5-hydroxymethylfurfural in vinegar samples by HPLC. J. Agric. Food Chem. 1998, 46, 1850–1854. [Google Scholar] [CrossRef]
- Sobolev, A.; Circi, S.; Mannina, L. Advances in Nuclear Magnetic Resonance Spectroscopy for Food Authenticity Testing. In Advances in Food Authenticity Testing; Elsevier: Amsterdam, The Netherlands, 2016; pp. 147–170. [Google Scholar]
Sequence Order | Sample Name |
---|---|
1 | STD1 |
2 | STD2 |
3 | STD3 |
4 | POM.A |
5 | STD1-inline-POM.A |
6 | STD2-inline-POM.A |
7 | POM. B |
8 | STD1-inline-POM.B |
9 | STD2-inline-POM.B |
Sample Name | Ccitric, Vial (mg/mL) | Ccitric, Sample (mg/mL) | %Citric Acid (g/g Molasses) | RRFCitric | CHMF, Vial (mg/mL) | CHMF, Sample (mg/mL) | %HMF (g/g Molasses) | RRFHMF |
---|---|---|---|---|---|---|---|---|
POM. (A) | 1.948 | 121.656 | 8.814% | 6.315 * | 0.176 | 10.970 | 0.795% | 34.116 * |
POM. (B) | 2.004 | 125.1936 | 9.070% | 6.451 ** | 0.189 | 11.794 | 0.854% | 32.099 ** |
Standard Deviation (mg/mL) | ±0.040 | ±2.502 | - | - | ±0.009 | ±0.582 | - | - |
Sample | Cacetic, Vial (mg/mL) | Cacetic, sample (mg/mL) | %Acetic Acid (g/g Sample) | RRFacetic | CHMF, vial (mg/mL) | CHMF, sample (mg/mL) | %HMF (g/g Sample) | RRFHMF |
---|---|---|---|---|---|---|---|---|
B.VIN (A) | 1.547 | 79.480 | 7.001% | 1.888 * | 0.044 | 2.168 | 0.191% | 31.330 * |
B.VIN (B) | 1.582 | 81.279 | 7.159% | 1.878 ** | 0.044 | 2.138 | 0.188% | 31.166 ** |
Standard Deviation (mg/mL) | ±0.025 | ±1.272 | - | - | ±0.0004 | ±0.021 | - | - |
ACV (A) | 0.939 | 44.384 | 4.249% | 1.922 * | - | - | - | - |
ACV (B) | 0.928 | 43.884 | 4.201% | 1.930 ** | - | - | - | - |
Standard Deviation (mg/mL) | ±0.008 | ±0.354 | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hijazi, A.; Pisano, I.; Illek, P.; Leahy, J.J. A Rapid HPLC Method for the Simultaneous Determination of Organic Acids and Furans: Food Applications. Beverages 2022, 8, 6. https://doi.org/10.3390/beverages8010006
Hijazi A, Pisano I, Illek P, Leahy JJ. A Rapid HPLC Method for the Simultaneous Determination of Organic Acids and Furans: Food Applications. Beverages. 2022; 8(1):6. https://doi.org/10.3390/beverages8010006
Chicago/Turabian StyleHijazi, Ayman, Italo Pisano, Paulina Illek, and James J. Leahy. 2022. "A Rapid HPLC Method for the Simultaneous Determination of Organic Acids and Furans: Food Applications" Beverages 8, no. 1: 6. https://doi.org/10.3390/beverages8010006
APA StyleHijazi, A., Pisano, I., Illek, P., & Leahy, J. J. (2022). A Rapid HPLC Method for the Simultaneous Determination of Organic Acids and Furans: Food Applications. Beverages, 8(1), 6. https://doi.org/10.3390/beverages8010006