Perceptual and Physiological Responses to Carbohydrate and Menthol Mouth-Swilling Solutions: A Repeated Measures Cross-Over Preliminary Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Mouth Swilling Solutions
2.3. Procedure
2.4. Outcome Measures
2.4.1. Physiological Measures
2.4.2. Subjective Measures
2.4.3. Carbohydrate Intake
2.5. Statistical Analyses
3. Results
3.1. Carbohydrate Intake
3.2. MANOVA
3.2.1. Physiological Outcomes
3.2.2. Subjective Outcomes
3.3. MANCOVA
4. Discussion
Future Research Considerations and Directions
- Habituation to menthol mouth swilling requires further investigation; a comparison between frequent and infrequent users of oral hygiene products may present logical starting populations.
- A larger sample size with homogenous sub-groups (male/female; ethnicities) would allow for a fuller exploration of the trends raised in the present investigation. Given the association between TRPM8 receptors and latitude [87], genomic or metabolomic sequencing may complement this work.
- Despite non-significant trends in Ttymp across the investigation, the addition of core and skin temperatures measurements would facilitate a more thorough description of the heat storage experienced over the experimental time-frame. This is important if these findings are replicated in exercise, where convective and evaporative cooling may increase due to the performance of the velocities attained (e.g., equestrian sports [88]).
- Similarly, the use of measured temperatures as a covariate, alongside nutritional status (especially during exercise), would potentially elucidate physiological accompaniments or drivers for sensory thresholds and responses.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Painelli, S.V.; Nicastro, H.; Lancha, A.H. Carbohydrate mouth rinse: Does it improve endurance exercise performance? Nutr. J. 2010, 9, 1. [Google Scholar] [CrossRef]
- Pottier, A.; Bouckaert, J.; Gilis, W.; Roels, T.; Derave, W. Mouth rinse but not ingestion of a carbohydrate solution improves 1-h cycle time trial performance. J. Appl. Physiol. 2010, 20, 105–111. [Google Scholar] [CrossRef]
- Carter, J.M.; Jeukendrup, A.E. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med. Sci. Sport Exerc. 2004, 36, 2107–2111. [Google Scholar] [CrossRef]
- Peart, D.J. Quantifying the Effect of Carbohydrate Mouth Rinsing on Exercise Performance. J. Strength Cond. Res. 2017, 31, 1737–1743. [Google Scholar] [CrossRef]
- Rollo, D.I.; Williams, C. Effect of Mouth-Rinsing Carbohydrate Solutions on Endurance Performance. Sports Med. 2011, 41, 449–461. [Google Scholar] [CrossRef]
- Burke, L.M.; Maughan, R.J. The Governor has a sweet tooth—Mouth sensing of nutrients to enhance sports performance. Euro J. Sport Sci. 2014, 15, 29–40. [Google Scholar] [CrossRef]
- Ataide-Silva, T.; Ghiarone, T.; Bertuzzi, R.; Stathis, C.G.; Leandro, C.G.; Lima-Silva, A.E. CHO Mouth Rinse Ameliorates Neuromuscular Response with Lower Endogenous CHO Stores. Med. Sci. Sport Exerc. 2016, 48, 1810–1820. [Google Scholar] [CrossRef]
- Che Muhamed, A.M.; Mohamed, N.G.; Ismail, N.; Aziz, A.R.; Singh, R. Mouth rinsing improves cycling endurance performance during Ramadan fasting in a hot humid environment. Appl. Physiol. Nutr. Metab. 2014, 39, 458–464. [Google Scholar] [CrossRef]
- Fares, E.-J.M.; Kayser, B. Carbohydrate Mouth Rinse Effects on Exercise Capacity in Pre- and Postprandial States. J. Nutr. Metab. 2011, 2011, 385962. [Google Scholar] [CrossRef] [Green Version]
- Lane, S.C.; Bird, S.R.; Burke, L.M.; Hawley, J.A. Effect of a carbohydrate mouth rinse on simulated cycling time-trial performance commenced in a fed or fasted state. Appl. Physiol. Nutr. Metab. 2013, 38, 134–139. [Google Scholar] [CrossRef]
- Stuempfle, K.J.; Hoffman, M.D. Gastrointestinal distress is common during a 161-km ultramarathon. J. Sports Sci. 2015, 33, 1814–1821. [Google Scholar] [CrossRef]
- de Oliveira, E.P.; Burini, R.C.; Jeukendrup, A. Gastrointestinal Complaints During Exercise: Prevalence, Etiology, and Nutritional Recommendations. Sports Med. 2014, 44, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Stevens, C.J.; Best, R. Menthol: A Fresh Ergogenic Aid for Athletic Performance. Sports Med. 2017, 47, 1035–1042. [Google Scholar] [CrossRef] [Green Version]
- Beaven, C.M.; Maulder, P.; Pooley, A.; Kilduff, L.; Cook, C. Effects of caffeine and carbohydrate mouth rinses on repeated sprint performance. Appl. Physiol. Nutr. Metab. 2013, 38, 633–637. [Google Scholar] [CrossRef]
- Best, R.; McDonald, K.; Hurst, P.; Pickering, C. Can taste be ergogenic? Eur. J. Nutr. 2020, 1–10. [Google Scholar] [CrossRef]
- Costa, R.J.S.; Snipe, R.; Camões-Costa, V.; Scheer, V.; Murray, A. The Impact of Gastrointestinal Symptoms and Dermatological Injuries on Nutritional Intake and Hydration Status During Ultramarathon Events. Sports Med. Open 2016, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.J.S.; Snipe, R.M.J.; Kitic, C.M.; Gibson, P.R. Systematic review: Exercise-induced gastrointestinal syndrome-implications for health and intestinal disease. Aliment. Pharmacol. Ther. 2017, 46, 246–265. [Google Scholar] [CrossRef] [Green Version]
- Papakonstantinou, E.; Kechribari, I.; Sotirakoglou, Κ.; Tarantilis, P.; Gourdomichali, T.; Michas, G.; Kravvariti, V.; Voumvourakis, K.; Zampelas, A. Acute effects of coffee consumption on self-reported gastrointestinal symptoms, blood pressure and stress indices in healthy individuals. Nutr. J. 2016, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Stuempfle, K.J.; Hoffman, M.D.; Hew-Butler, T. Association of gastrointestinal distress in ultramarathoners with race diet. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 103–109. [Google Scholar] [CrossRef]
- Wardenaar, F.C.; Dijkhuizen, R.; Ceelen, I.J.M.; Jonk, E.; de Vries, J.H.M.; Witkamp, R.F.; Mensink, M. Nutrient Intake by Ultramarathon Runners: Can They Meet Recommendations? Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 375–386. [Google Scholar] [CrossRef]
- Cramer, M.N.; Thompson, M.W.; Périard, J.D. Thermal and Cardiovascular Strain Mitigate the Potential Benefit of Carbohydrate Mouth Rinse During Self-Paced Exercise in the Heat. Front. Physiol. 2015, 6, 524–529. [Google Scholar] [CrossRef] [Green Version]
- Clarke, N.D.; Kornilios, E.; Richardson, D.L. Carbohydrate and Caffeine Mouth Rinses Do Not Affect Maximum Strength and Muscular Endurance Performance. J. Strength Cond. Res. 2015, 29, 2926–2931. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.; Rollo, I. Carbohydrate Nutrition and Team Sport Performance. Sports Med. 2015, 45, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Stellingwerff, T.; Cox, G.R. Systematic review: Carbohydrate supplementation on exercise performance or capacity of varying durations. Appl. Physiol. Nutr. Metab. 2014, 39, 998–1011. [Google Scholar] [CrossRef]
- Gant, N.; Stinear, C.M.; Byblow, W.D. Carbohydrate in the mouth immediately facilitates motor output. Brain Res. 2010, 1350, 151–158. [Google Scholar] [CrossRef]
- Chambers, E.S.; Bridge, M.W.; Jones, D.A. Carbohydrate sensing in the human mouth: Effects on exercise performance and brain activity. J. Physiol. 2009, 587, 1779–1794. [Google Scholar] [CrossRef]
- Liszt, K.I.; Ley, J.P.; Lieder, B.; Behrens, M.; Stöger, V.; Reiner, A.; Hochkogler, C.M.; Köck, E.; Marchiori, A.; Hans, J.; et al. Caffeine induces gastric acid secretion via bitter taste signaling in gastric parietal cells. Proc. Natl. Acad. Sci. USA 2017, 114, E6260–E6269. [Google Scholar] [CrossRef] [Green Version]
- Lipchock, S.V.; Spielman, A.I.; Mennella, J.A.; Mansfield, C.J.; Hwang, L.-D.; Douglas, J.E.; Reed, D.R. Caffeine Bitterness is Related to Daily Caffeine Intake and Bitter Receptor mRNA Abundance in Human Taste Tissue. Perception 2017, 46, 245–256. [Google Scholar] [CrossRef]
- Devillier, P.; Naline, E.; Grassin-Delyle, S. The pharmacology of bitter taste receptors and their role in human airways. Pharmacol. Ther. 2015, 155, 11–21. [Google Scholar] [CrossRef]
- Eccles, R.; Du-Plessis, L.; Dommels, Y.; Wilkinson, J.E. Cold pleasure. Why we like ice drinks, ice-lollies and ice cream. Appetite 2013, 71, 357–360. [Google Scholar] [CrossRef]
- Eccles, R. Menthol and Related Cooling Compounds. J. Physiol. Pharmacol. 1994, 46, 618–630. [Google Scholar] [CrossRef]
- Klein, A.H.; Carstens, M.I.; Zanotto, K.L.; Sawyer, C.M.; Ivanov, M.; Cheung, S.; Carstens, E. Self- and Cross-desensitization of Oral Irritation by Menthol and Cinnamaldehyde (CA) via Peripheral Interactions at Trigeminal Sensory Neurons. Chem. Senses 2010, 36, 199–208. [Google Scholar] [CrossRef]
- Frasnelli, J.; Albrecht, J.; Bryant, B.; Lundström, J.N. Perception of specific trigeminal chemosensory agonists. Neuroscience 2011, 189, 377–383. [Google Scholar] [CrossRef] [Green Version]
- Nazıroğlu, M.; Özgül, C. Effects of Antagonists and Heat on TRPM8 Channel Currents in Dorsal Root Ganglion Neuron Activated by Nociceptive Cold Stress and Menthol. Neurochem. Res. 2011, 37, 314–320. [Google Scholar] [CrossRef]
- Bautista, D.M.; Siemens, J.; Glazer, J.M.; Tsuruda, P.R.; Basbaum, A.I.; Stucky, C.L.; Jordt, S.-E.; Julius, D. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 2007, 448, 204–208. [Google Scholar] [CrossRef]
- Gavva, N.R.; Davis, C.; Lehto, S.G.; Rao, S.; Wang, W. Transient receptor potential melastatin 8 (TRPM8) channels are involved in body temperature regulation. Mol. Pain 2012, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Hummel, T.; Livermore, A. Intranasal chemosensory function of the trigeminal nerve and aspects of its relation to olfaction. Int. Arch. Occup. Environ. Health 2002, 75, 305–313. [Google Scholar] [CrossRef]
- Byrne, C.; Owen, C.; Cosnefroy, A.; Lee, J.K.W. Self-Paced Exercise Performance in the Heat After Pre-Exercise Cold-Fluid Ingestion. J. Athl. Train. 2011, 46, 592. [Google Scholar] [CrossRef] [Green Version]
- Watson, H.R.; Hems, R.; Rowsell, D.G.; Spring, D.J. New compounds with the menthol cooling effect. J. Soc. Cosmet. Chem. 1978, 29, 185–200. [Google Scholar]
- Wise, P.M.; Bryant, B. The Effect of Temperature and Menthol on Carbonation Bite. Chem. Senses 2014, 39, 571–582. [Google Scholar] [CrossRef]
- Cliff, M.A.; Green, B.G. Sensitization and desensitization to capsaicin and menthol in the oral cavity: Interactions and individual differences. Physiol. Behav. 1996, 59, 487–494. [Google Scholar] [CrossRef]
- Flood, T.R.; Waldron, M.; Jeffries, O. Oral L-menthol reduces thermal sensation, increases work-rate and extends time to exhaustion, in the heat at a fixed rating of perceived exertion. Eur. J. Appl. Physiol. 2017, 117, 1501–1512. [Google Scholar] [CrossRef]
- Stevens, C.J.; Bennett, K.J.M.; Sculley, D.V.; Callister, R.; Taylor, L.; Dascombe, B.J. A comparison of mixed-method cooling interventions on pre-loaded running performance in the heat. J. Strength Cond. Res. 2016, 31, 621–629. [Google Scholar]
- Stevens, C.J.; Thoseby, B.; Sculley, D.V.; Callister, R.; Taylor, L.; Dascombe, B.J. Running performance and thermal sensation in the heat are improved with menthol mouth rinse but not ice slurry ingestion. Scand. J. Med. Sci. Sports 2016, 26, 1209–1216. [Google Scholar] [CrossRef]
- Mündel, T.; Jones, D.A. The effects of swilling an l(−)-menthol solution during exercise in the heat. Eur. J. Appl. Physiol. 2009, 109, 59–65. [Google Scholar] [CrossRef]
- Best, R.; Spears, I.; Hurst, P.; Berger, N. The Development of a Menthol Solution for Use during Sport and Exercise. Beverages 2018, 4, 44. [Google Scholar] [CrossRef] [Green Version]
- Meamarbashi, A.; Rajabi, A. The effects of peppermint on exercise performance. J. Int. Soc. Sport Nutr. 2013, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Dawes, C. Physiological factors affecting salivary flow rate, oral sugar clearance, and the sensation of dry mouth in man. J. Dent. Res. 1987, 66, 648–653. [Google Scholar] [CrossRef]
- Eccles, R. Role of cold receptors and menthol in thirst, the drive to breathe and arousal. Appetite 2000, 34, 29–35. [Google Scholar] [CrossRef]
- Havenith, G.; Kuklane, K.; Fan, J.; Hodder, S.; Ouzzahra, Y.; Lundgren, K.; Au, Y.; Loveday, D. A database of static clothing thermal insulation and vapor permeability values of non-Western ensembles for use in ASHRAE Standard 55, ISO 7730, and ISO 9920. Ashrae Trans. 2015, 121, 19. [Google Scholar]
- AC08013703; Ergonomics of the Thermal Environment. Estimation of Thermal Insulation and Water Vapour Resistance of a Clothing Ensemble; British Standards Institute: London, UK, 2008. [CrossRef]
- Pezzullo, J.C. Latin Squares for Constructing “Williams Designs,” Balanced for First-Order Carry-Over (Residual) Effects. Available online: http://statpages.info/latinsq.html (accessed on 24 April 2018).
- Barwood, M.J.; Gibson, O.R.; Gillis, D.J.; Jeffries, O.; Morris, N.B.; Pearce, J.; Ross, M.L.; Stevens, C.; Rinaldi, K.; Kounalakis, S.N.; et al. Menthol as an Ergogenic Aid for the Tokyo 2021 Olympic Games: An Expert-Led Consensus Statement Using the Modified Delphi Method. Sports Med. 2020, 50, 1709–1727. [Google Scholar] [CrossRef]
- Zhang, H.; Huizenga, C.; Arens, E.; Wang, D. Thermal sensation and comfort in transient non-uniform thermal environments. Eur. J. Appl. Physiol. 2004, 92, 728–733. [Google Scholar] [CrossRef]
- Engell, D.B.; Maller, O.; Sawka, M.N.; Francesconi, R.N.; Drolet, L.; Young, A.J. Thirst and fluid intake following graded hypohydration levels in humans. Physiol. Behav. 1987, 40, 229–236. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sport Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Sterne, J.A.C.; Smith, G.D. Sifting the evidence-what’s wrong with significance tests? Physiol. Ther. 2001, 81, 1464–1469. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med. Sci. Sport Exerc. 2016, 48, 543–568. [Google Scholar]
- Gillis, D.J.; Barwood, M.J.; Newton, P.S.; House, J.R.; Tipton, M.J. The influence of a menthol and ethanol soaked garment on human temperature regulation and perception during exercise and rest in warm, humid conditions. J. Therm. Biol. 2016, 58, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Barwood, M.J.; Corbett, J.; White, D.K. Spraying with 0.20% L-menthol does not enhance 5 km running performance in the heat in untrained runners. J. Sports Med. Phys. Fit. 2014, 54, 595–604. [Google Scholar]
- Best, R.; Payton, S.; Spears, I.; Riera, F.; Berger, N. Topical and Ingested Cooling Methodologies for Endurance Exercise Performance in the Heat. Sports 2018, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Rothschild, J.A.; Kilding, A.E.; Plews, D.J. What Should I Eat before Exercise? Pre-Exercise Nutrition and the Response to Endurance Exercise: Current Prospective and Future Directions. Nutrients 2020, 12, 3473. [Google Scholar] [CrossRef]
- Heikura, I.A.; Stellingwerff, T.; Burke, L.M. Self-Reported Periodization of Nutrition in Elite Female and Male Runners and Race Walkers. Front. Physiol. 2018, 9, 1732. [Google Scholar] [CrossRef]
- Impey, S.G.; Hammond, K.M.; Shepherd, S.O.; Sharples, A.P.; Stewart, C.; Limb, M.; Smith, K.; Philp, A.; Jeromson, S.; Hamilton, D.L.; et al. Fuel for the work required: A practical approach to amalgamating train-low paradigms for endurance athletes. Physiol. Rep. 2016, 4, e12803-15. [Google Scholar] [CrossRef]
- Willmott, A.G.B.; Gibson, O.R.; Hayes, M.; Maxwell, N.S. The effects of single versus twice daily short term heat acclimation on heat strain and 3000 m running performance in hot, humid conditions. J. Therm. Biol. 2016, 56, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Périard, J.D.; Racinais, S.; Sawka, M.N. Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports. J. Appl. Physiol. 2015, 25, 20–38. [Google Scholar] [CrossRef]
- Stevens, C.J. Evidence for training in additional clothing as an alternative heat acclimation strategy for athletes. Temperature 2018, 5, 101. [Google Scholar] [CrossRef] [Green Version]
- Zurawlew, M.J.; Mee, J.A.; Walsh, N.P. Heat Acclimation by Post-Exercise Hot Water Immersion in the Morning Reduces Thermal Strain During Morning and Afternoon Exercise-Heat-Stress. Int. J. Sports Physiol. Perform. 2018, 13, 1281–1286. [Google Scholar] [CrossRef]
- Zurawlew, M.J.; Walsh, N.P.; Fortes, M.B.; Potter, C. Post-exercise hot water immersion induces heat acclimation and improves endurance exercise performance in the heat. Scand. J. Med. Sci. Sports 2016, 26, 745–754. [Google Scholar] [CrossRef] [Green Version]
- Stevens, C.J.; Ross, M.L.R.; Carr, A.J.; Vallance, B.; Best, R.; Urwin, C.; Périard, J.D.; Burke, L. Postexercise Hot-Water Immersion Does Not Further Enhance Heat Adaptation or Performance in Endurance Athletes Training in a Hot Environment. Int. J. Sport Physiol. 2020, 1–9. [Google Scholar] [CrossRef]
- Stanley, J.; Halliday, A.; D’Auria, S.; Buchheit, M.; Leicht, A.S. Effect of sauna-based heat acclimation on plasma volume and heart rate variability. Eur. J. Appl. Physiol. 2014, 115, 785–794. [Google Scholar] [CrossRef]
- Stevens, C.J.; Ross, M.L.R.; Vogel, R.M. Development of a “Cooling” Menthol Energy Gel for Endurance Athletes: Effect of Menthol Concentration on Acceptability and Preferences. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 40–45. [Google Scholar] [CrossRef]
- Costa, R.J.S.; Hoffman, M.D.; Stellingwerff, T. Considerations for ultra-endurance activities: Part 1- nutrition. Res. Sports Med. 2019, 27, 166–181. [Google Scholar] [CrossRef]
- Burdon, C.A.; Johnson, N.A.; Chapman, P.G. Influence of beverage temperature on palatability and fluid ingestion during endurance exercise: A systematic review. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Mündel, T.; King, J.; Collacott, E.; Jones, D.A. Drink temperature influences fluid intake and endurance capacity in men during exercise in a hot, dry environment. Exp. Physiol. 2006, 91, 925–933. [Google Scholar] [CrossRef]
- Brunstrom, J.M.; Macrae, A.W. Effects of Temperature and Volume on Measures of Mouth Dryness, Thirst and Stomach Fullness in Males and Females. Appetite 1997, 29, 31–42. [Google Scholar] [CrossRef]
- Torregrossa, A.-M.; Bales, M.B.; Breza, J.M.; Houpt, T.A.; Smith, J.C.; Contreras, R.J. Water Restriction and Fluid Temperature Alter Preference for Water and Sucrose Solutions. Chem. Senses 2011, 37, 279–292. [Google Scholar] [CrossRef] [Green Version]
- Bongers, C.C.W.G.; Thijssen, D.H.J.; Veltmeijer, M.T.W.; Hopman, M.T.E.; Eijsvogels, T.M.H. Precooling and percooling (cooling during exercise) both improve performance in the heat: A meta-analytical review. Br. J. Sports Med. 2014, 49, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Stevens, C.J.; Mauger, A.R.; Hassmèn, P.; Taylor, L. Endurance Performance is Influenced by Perceptions of Pain and Temperature: Theory, Applications and Safety Considerations. Sports Med. 2017, 48, 525–537. [Google Scholar] [CrossRef]
- Périard, J.D.; Travers, G.J.S.; Racinais, S.; Sawka, M.N. Cardiovascular adaptations supporting human exercise-heat acclimation. Auton. Neurosci. 2016, 196, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, K.; Peart, D.J. Aerobic capacity is not improved following 10-day supplementation with peppermint essential oil. Appl. Physiol. Nutr. Metab. 2017, 42, 558–561. [Google Scholar] [CrossRef] [Green Version]
- Racinais, S.; Alonso, J.-M.; Coutts, A.J.; Flouris, A.D.; Girard, O.; González Alonso, J.; Hausswirth, C.; Jay, O.; Lee, J.K.W.; Mitchell, N.; et al. Consensus Recommendations on Training and Competing in the Heat. Sports Med. 2015, 45, 925–938. [Google Scholar] [CrossRef] [Green Version]
- Leterme, A.; Brun, L.; Dittmar, A.; Robin, O. Autonomic nervous system responses to sweet taste: Evidence for habituation rather than pleasure. Physiol. Behav. 2008, 93, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Verastegui-Tena, L.; van Trijp, H.; Piqueras-Fiszman, B. Heart rate and skin conductance responses to taste, taste novelty, and the (dis)confirmation of expectations. Food Qual. Prefer. 2018, 65, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Brinkmann, K.; Franzen, J. Not everyone’s heart contracts to reward: Insensitivity to varying levels of reward in dysphoria. Biol. Psychol. 2013, 94, 263–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, M.; Gendolla, G.H.E. The heart contracts to reward: Monetary incentives and preejection period. Psychophysiol 2009, 46, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Key, F.M.; Abdul-Aziz, M.A.; Mundry, R.; Peter, B.M.; Sekar, A.; D’Amato, M.; Dennis, M.Y.; Schmidt, J.M.; Andrés, A.M. Human local adaptation of the TRPM8 cold receptor along a latitudinal cline. PLoS Genet. 2018, 14, e1007298-22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Best, R.; Standing, R. The Spatiotemporal Characteristics of 0-24-Goal Polo. Animals 2019, 9, 446. [Google Scholar] [CrossRef] [Green Version]
Variable | Swill | Comparison | p Value | ES; 90% C.I. | Descriptor |
---|---|---|---|---|---|
Thermal | Control | Menthol | 0.001 * | 0.66; 0.34 to 0.96 | Moderate |
Sensation | Carbohydrate | 0.835 | 0.04; −0.26 to 0.34 | Trivial | |
Water | 0.878 | 0.06; −0.24 to 0.36 | Trivial | ||
Menthol | Control | 0.001 * | −0.66; −0.96 to −0.34 | Moderate | |
Carbohydrate | 0.001 * | −0.71; −1.01 to −0.40 | Moderate | ||
Water | 0.001 * | −0.66; −0.97 to −0.35 | Moderate | ||
Carbohydrate | Control | 0.835 | −0.04; −0.34 to 0.26 | Trivial | |
Menthol | 0.001 * | 0.71; 0.40 to 1.01 | Moderate | ||
Water | 0.965 | 0.02; −0.28 to 0.33 | Trivial | ||
Water | Control | 0.878 | −0.06; −0.36 to 0.24 | Trivial | |
Menthol | 0.001 * | 0.66; 0.35 to 0.97 | Moderate | ||
Carbohydrate | 0.965 | −0.02; −0.33 to 0.28 | Trivial | ||
Thirst | Control | Menthol | 0.001 * | 0.75; 0.43 to 1.06 | Moderate |
Carbohydrate | 0.134 | 0.26; −0.05 to 0.56 | Small | ||
Water | 0.011 * | 0.33; 0.02 to 0.63 | Small | ||
Menthol | Control | 0.001 * | −0.75; −1.06 to −0.43 | Moderate | |
Carbohydrate | 0.022 * | −0.55; −0.85 to −0.24 | Small | ||
Water | 0.263 | −0.49; −0.79 to 0.18 | Small | ||
Carbohydrate | Control | 0.134 | 0.26; −0.56 to 0.05 | Small | |
Menthol | 0.022 * | 0.55; 0.24 to 0.85 | Small | ||
Water | 0.259 | −0.07; −0.37 to 0.23 | Trivial | ||
Water | Control | 0.011 * | −0.33; −0.02 to 0.44 | Small | |
Menthol | 0.263 | 0.49; −0.18 to 0.79 | Small | ||
Carbohydrate | 0.259 | 0.07; −0.23 to 0.37 | Trivial |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Best, R.; Maulder, P.S.; Berger, N. Perceptual and Physiological Responses to Carbohydrate and Menthol Mouth-Swilling Solutions: A Repeated Measures Cross-Over Preliminary Trial. Beverages 2021, 7, 9. https://doi.org/10.3390/beverages7010009
Best R, Maulder PS, Berger N. Perceptual and Physiological Responses to Carbohydrate and Menthol Mouth-Swilling Solutions: A Repeated Measures Cross-Over Preliminary Trial. Beverages. 2021; 7(1):9. https://doi.org/10.3390/beverages7010009
Chicago/Turabian StyleBest, Russ, Peter S. Maulder, and Nicolas Berger. 2021. "Perceptual and Physiological Responses to Carbohydrate and Menthol Mouth-Swilling Solutions: A Repeated Measures Cross-Over Preliminary Trial" Beverages 7, no. 1: 9. https://doi.org/10.3390/beverages7010009
APA StyleBest, R., Maulder, P. S., & Berger, N. (2021). Perceptual and Physiological Responses to Carbohydrate and Menthol Mouth-Swilling Solutions: A Repeated Measures Cross-Over Preliminary Trial. Beverages, 7(1), 9. https://doi.org/10.3390/beverages7010009