Comparison of Iron (III) Reducing Antioxidant Capacity (iRAC) and ABTS Radical Quenching Assays for Estimating Antioxidant Activity of Pomegranate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Samples and Antioxidant Standard
2.2. Iron (III) Reducing Antioxidant Capacity (iRAC) Assay
2.3. ABTS Assay
2.4. Folin–Ciocalteu Assay for Total Phenols
2.5. Data Analysis and Statistical Analysis
3. Results
3.1. Calibration Results of iRAC, ABTS, and Folin-Ciocalteu Methods
3.2. Total Antioxidant Capacity for Pomegranate Samples
3.3. Total Phenols Content of Pomegranate Samples by Folin–Ciocalteu Assay
4. Discussion
4.1. Total Antioxidant Capacity and TPC of Pomegranate Juice
4.2. Total Antioxidant Capacity and TPC for Pomegranate Fruit
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Akhtar, S.; Ismail, T.; Fraternale, D.; Sestili, P. Pomegranate peel and peel extracts: Chemistry and food features. Food Chem. 2015, 174, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Asgary, S.; Keshvari, M.; Sahebkar, A.; Sarrafzadegan, N. Pomegranate consumption and blood pressure: A review. Curr. Pharm. Des. 2017, 23, 1042–1050. [Google Scholar] [CrossRef] [PubMed]
- Faria, A.; Calhau, C. The bioactivity of pomegranate: Impact on health and disease. Crit. Rev. Food Sci. Nutr. 2011, 51, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Kalaycioglu, Z.; Erim, F.B. Total phenolic contents, antioxidant activities, and bioactive ingredients of juices from pomegranate cultivars worldwide. Food Chem. 2017, 221, 496–507. [Google Scholar] [CrossRef] [PubMed]
- Sahebkar, A.; Ferri, C.; Giorgini, P.; Bo, S.; Nachtigal, P.; Grassi, D. Effects of pomegranate juice on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res. 2017, 115, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; McClees, S.F.; Afaq, F. Pomegranate for prevention and treatment of cancer: An update. Molecules 2017, 22, 177. [Google Scholar] [CrossRef] [PubMed]
- Thangavelu, A.; Elavarasu, S.; Sundaram, R.; Kumar, T.; Rajendran, D.; Prem, F. Ancient seed for modern cure-pomegranate review of therapeutic applications in periodontics. J. Pharm. Bioallied Sci. 2017, 9 (Suppl. 1), S11–S14. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Tian, L. Diverse phytochemicals and bioactivities in the ancient fruit and modern functional food pomegranate (Punica granatum). Molecules 2017, 22, 1606. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Holcroft, D.M.; Kader, A.A. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem. 2000, 48, 4581–4589. [Google Scholar] [CrossRef] [PubMed]
- Seeram, N.P.; Aviram, M.; Zhang, Y.; Henning, S.M.; Feng, L.; Dreher, M.; Heber, D. Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J. Agric. Food Chem. 2008, 56, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.J.; Wei, J.Y.; Yang, J.J.; Xu, J.; Pang, W.; Jiang, Y.G. Pomegranate juice is potentially better than apple juice in improving antioxidant function in elderly subjects. Nutr. Res. 2008, 28, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Carlsen, M.H.; Halvorsen, B.L.; Holte, K.; Bohn, S.K.; Dragland, S.; Sampson, L.; Willey, C.; Senoo, H.; Umezono, Y.; Sanada, C.; et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr. J. 2010, 9, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tezcan, F.; Gultekin-Ozguven, M.; Diken, T.; Ozcelik, B.; Erim, F.B. Antioxidant activity and total phenolic, organic acid and sugar content in commercial pomegranate juices. Food Chem. 2009, 115, 873–877. [Google Scholar] [CrossRef]
- Surek, E.; Nilufer-Erdil, D. Changes in phenolics and antioxidant activity at each step of processing from pomegranate into nectar. Int. J. Food Sci. Nutr. 2014, 65, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, V.; DerMarderosian, A.; Porter, J.R. Anthocyanins and polyphenol oxidase from dried arils of pomegranate (Punica granatum L.). Food Chem. 2013, 118, 11–16. [Google Scholar] [CrossRef]
- Baslar, M.; Karasu, S.; Kilicli, M.; Us, A.A.; Sagdiç, O. Degradation kinetics of bioactive compounds and antioxidant activity of pomegranate arils during the drying process. Int. J. Food Eng. 2014, 10, 839–848. [Google Scholar] [CrossRef]
- Anon, AOAC SMPR 2011.011. Standard method performance requirements for in vitro determination of total antioxidant activity in foods, beverages, food ingredients, and dietary supplements. J. AOAC Int. 2012, 956, 1557.
- Yusof, H.I.M.; Owusu-Apenten, R.; Nigam, P.S. Determination of iron (III) reducing antioxidant capacity for manuka honey and comparison with ABTS and other methods. J. Adv. Biol. Biotechnol. 2018, 18. [Google Scholar] [CrossRef]
- Kirkpatrick, G.; Nigam, P.; Owusu-Apenten, R.K. Total phenols, antioxidant capacity and antibacterial activity of Manuka honey chemical constituents. J. Adv. Biol. Biotechnol. 2017, 15. [Google Scholar] [CrossRef]
- Walker, R.B.; Everette, J.D. Comparative reaction rates of various antioxidants with ABTS radical cation. J. Agric. Food Chem. 2009, 57, 1156–1161. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Charrondiere, U.R.; Rittenschober, D.; Nowak, V.; Stadlmayr, B.; Wijesinha-Bettoni, R.; Haytowitz, D. Improving food composition data quality: Three new FAO/INFOODS guidelines on conversions, data evaluation and food matching. Food Chem. 2016, 193, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Ozgen, M.; Durgac, C.; Serce, S.; Kaya, C. Chemical and antioxidant properties of pomegranate cultivars grown in the Mediterranean region of Turkey. Food Chem. 2008, 111, 703–706. [Google Scholar] [CrossRef]
- Cam, M.; Hisil, Y.; Durmaz, G. Classification of eight pomegranate juices based on antioxidant capacity measured by four methods. Food Chem. 2009, 112, 721–726. [Google Scholar] [CrossRef]
- Hmid, I.; Elothmani, D.; Hanine, H.; Oukabli, A.; Mehinagic, E. Comparative study of phenolic compounds and their antioxidant attributes of eighteen pomegranate (Punica granatum L.) cultivars grown in Morocco. Arab. J. Chem. 2017, 10, S2675–S2684. [Google Scholar] [CrossRef]
- Gozlekci, S.; Saracoglu, O.; Onursal, E.; Ozgen, M. Total phenolic distribution of juice, peel, and seed extracts of four pomegranate cultivars. Pharmacogn. Mag. 2011, 7, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Nuncio-Jáuregui, N.; Cano-Lamadrid, M.; Hernández, F.; Carbonell-Barrachina, Á.A.; Calín-Sánchez, Á. Comparison of fresh and commercial pomegranate juices from Mollar de Elche cultivar grown under conventional or organic farming practices. Beverages 2015, 1, 34–44. [Google Scholar] [CrossRef]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough study of reactivity of various compound classes toward the Folin−Ciocalteu reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef]
- Fawole, O.A.; Opara, U.L. Changes in physical properties, chemical and elemental composition and antioxidant capacity of pomegranate (cv. Ruby) fruit at five maturity stages. Sci. Hort. 2013, 150, 37–46. [Google Scholar] [CrossRef]
- Elfalleh, W.; Hannachi, H.; Tlili, N.; Yahia, Y.; Nasri, N.; Ferchichi, A. Total phenolic contents and antioxidant activities of pomegranate peel, seed, leaf and flower. J. Med. Plants Res. 2012, 6, 4724–4730. [Google Scholar] [CrossRef]
- Rababah, T.M.; Banat, F.; Rababah, A.; Ereifej, K.; Yang, W. Optimization of extraction conditions of total phenolics, antioxidant activities, and anthocyanin of oregano, thyme, terebinth, and pomegranate. J. Food Sci. 2010, 75, C626–C632. [Google Scholar] [CrossRef] [PubMed]
Method * | Slope (M−1 cm−1) | R2 | Lld-ULD (µM) | CV (%) |
---|---|---|---|---|
iRAC (TX) | 53,397 ± 667 | 0.9993 | 2.8–1000 | 4.0 |
ABTS (TX) | 25,466 ± 378 | 0.9993 | 5.0–250 | 9.8 |
Folin (GA) | 17,207 ± 315 | 0.9986 | 0.8–1000 | 3.1 |
Sample | TPC (mg GAE/100 g DB) |
---|---|
Oven-dried Pomegranate | 5830 ± 356 (A) |
Freeze-dried Pomegranate | 6916 ± 200 (B) |
POM Wonderful 100% PJ | 1559 ±74 (C) |
Sample | TAC (mM) * | TPC (mg GAE/100 mL) | Ref. |
---|---|---|---|
POMW 100%PJ | 41.6 ± 1.8 | 380 ± 20 | [10] |
PJ (From frozen arils) | 10.0–20.0 | 140–212 | [9] |
PJ (From frozen arils) | 5.6 ± 1.17 | 150 ± 2.5 | [24] |
PJ (8 Cultivars) | 12.89 ± 0.31 | 272 ± 46 | [25] |
PJ (15 cultivars) | 10.6–18.30 | 139–948 | [26] |
Sample ↕ | TPC (mg GAE/100 g DB) | Ref. |
---|---|---|
Seed, Cekirdeksiz-IV PG | 58.5 | [27] |
Seed, Katirbasi PG Seed | 60.5 | [27] |
Seed, Lefan PG | 62.4 | [27] |
Seed, Asinar PG | 81 | [27] |
Seed, Gabsi PG (water) | 794 | [31] |
Peel, Asinar PG | 887 | [27] |
Seed, Gabsi PG (meth.) | 1184 | [31] |
Peel, Cekirdeksiz-IV PG | 1268 | [27] |
Peel, Katirbasi PG | 1564 | [27] |
Peel, Gabsi PG (water) | 5365 | [31] |
Peel, Gabsi PG (meth.) | 8560 | [31] |
Lefan PG (Meth: water) | 1773 | [27] |
Sweet PG | 2116 | [32] |
Lefan PG (Meth: Water) | 2612 | [27] |
Sour PG | 3255 | [32] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, H.C.; Sultana, B.; Singh Nigam, P.; Owusu-Apenten, R. Comparison of Iron (III) Reducing Antioxidant Capacity (iRAC) and ABTS Radical Quenching Assays for Estimating Antioxidant Activity of Pomegranate. Beverages 2018, 4, 58. https://doi.org/10.3390/beverages4030058
Wan HC, Sultana B, Singh Nigam P, Owusu-Apenten R. Comparison of Iron (III) Reducing Antioxidant Capacity (iRAC) and ABTS Radical Quenching Assays for Estimating Antioxidant Activity of Pomegranate. Beverages. 2018; 4(3):58. https://doi.org/10.3390/beverages4030058
Chicago/Turabian StyleWan, Hau Ching, Bushra Sultana, Poonam Singh Nigam, and Richard Owusu-Apenten. 2018. "Comparison of Iron (III) Reducing Antioxidant Capacity (iRAC) and ABTS Radical Quenching Assays for Estimating Antioxidant Activity of Pomegranate" Beverages 4, no. 3: 58. https://doi.org/10.3390/beverages4030058
APA StyleWan, H. C., Sultana, B., Singh Nigam, P., & Owusu-Apenten, R. (2018). Comparison of Iron (III) Reducing Antioxidant Capacity (iRAC) and ABTS Radical Quenching Assays for Estimating Antioxidant Activity of Pomegranate. Beverages, 4(3), 58. https://doi.org/10.3390/beverages4030058