Ultrasonic Effects on the Quality of Mulberry Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preperation
2.2. Experimental Design
- -
- Group one: The mulberry mash was introduced into the ultrasound at different times of 30, 60, 90, and 120 min. The ultrasonic temperature was fixed at 60 °C.
- -
- Group two: The mash was treated with the ultrasound at 30, 45, 60, and 75 °C. The treatment time was fixed at 60 min.
2.3. Analytical Methods
2.3.1. Determination of the Juice Yield
- m1: the weight of the mulberry fruit mash, g
- m2: the weight of the mulberry juice, g
- C: the concentration of the soluble solid compounds in the obtained juice, % (w/w)
- w: the moisture of the initial mulberry mash, %
2.3.2. Measurement of the Total Soluble Solids (°Bx), Titratable Acidity (%), pH, and Moisture Content (%)
- N of NaOH = 0.1 M
- Equation wt. citric acid = 64.04
- mL of the sample = 10 mL
2.3.3. Extraction of the Total Phenolic Content
2.3.4. Measurement of the Total Phenolic Content
2.3.5. Determination of the Antioxidant Capacity
2.3.6. Measurement of the Total Anthocyanin Contents
- A = (A520nm − A700nm)pH1.0 − (A520nm − A700nm)pH4.5
- MW (molecular weight) = 449.2 g/mol for cyanidin-3-glucoside
- DF = dilution factor established in D
- l = 1 cm
- ε = 26,900 molar extinction coefficient, in L/mol·cm, for cyanidin-3-glucoside
2.3.7. Measurement of the l-Ascorbic Acid Content
2.4. Statistical Analysis
3. Results and Discussion
3.1. The Effects of Different Sonication Time on the Yield and Quality of Mulberry Juice
3.1.1. Juice Yield, Total Soluble Solids (TSS), Titratable Acidity (TA), pH, and Moisture Content (MC)
3.1.2. l-Ascorbic Acid Content, Total Phenolic Content, and Total Anthocyanin Content
3.1.3. Antioxidant Capacity (AC)
3.2. Effects of Different Sonication Temperatures on the Yield and Quality of Mulberry Juice
3.2.1. Juice Yield, Total Soluble Solids (TSS), Titratable Acidity (TA), pH, and Moisture Content (MC)
3.2.2. l-Ascorbic Acid Content (L-AA), Total Phenolic Content (TPC), and Total Anthocyanin Content (TAC)
3.2.3. Antioxidant Capacities (AC)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bae, S.-H.; Suh, H.-J. Antioxidant activities of five different mulberry cultivars in Korea. LWT Food Sci. Technol. 2007, 40, 955–962. [Google Scholar] [CrossRef]
- Huang, H.P.; Ou, T.T.; Wang, C.J. Mulberry (Sang Shèn Zĭ) and its bioactive compounds, the chemoprevention effects and molecular mechanisms in vitro and in vivo. J. Tradit. Complement. Med. 2013, 3, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.R.; Lee, J.S.; Lee, K.R.; Kim, Y.E.; Baek, N.I.; Hong, E.K. Effects of mulberry ethanol extracts on hydrogen peroxide-induced oxidative stress in pancreatic β-cells. Int. J. Mol. Med. 2014, 33, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed]
- Salih, N.D.; Hazir, N.S.M.; Hamid, M.H.A. The Effect of Mulberry (Morus sp.) Tea Supplement on Acetaminophen Induced Renal Failure in Rats. World J. Pharm. Pharm. Sci. 2015, 4, 111–125. [Google Scholar]
- Lin, J.Y.; Tang, C.Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 2007, 101, 140–147. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhao, L. The Mulberry (Morus alba L.) Fruit—A Review of Characteristic Components and Health Benefits. J. Agric. Food Chem. 2017, 65, 10383–10394. [Google Scholar] [CrossRef] [PubMed]
- Valero, M.; Recrosio, N.; Saura, D.; Muñoz, N.; Martí, N.; Lizama, V. Effects of ultrasonic treatments in orange juice processing. J. Food Eng. 2007, 80, 509–516. [Google Scholar] [CrossRef]
- Shirsath, S.; Sonawane, S.; Gogate, P. Intensification of extraction of natural products using ultrasonic irradiations—A review of current status. Chem. Eng. Process. Process Intensif. 2012, 53, 10–23. [Google Scholar] [CrossRef]
- Bermudez-Aguirre, D. Ultrasound: Advances in Food Processing and Preservation; Academic Press: London, UK, 2017; pp. 215–230. [Google Scholar]
- Jerman, T.; Trebše, P.; Vodopivec, B.M. Ultrasound-assisted solid liquid extraction (USLE) of olive fruit (Olea europaea) phenolic compounds. Food Chem. 2010, 123, 175–182. [Google Scholar] [CrossRef]
- Valdramidis, V.P.; Cullen, P.J.; Tiwari, B.K.; O’donnell, C.P. Quantitative modelling approaches for ascorbic acid degradation and non-enzymatic browning of orange juice during ultrasound processing. J. Food Eng. 2010, 96, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Dolatowski, Z.J.; Stadnik, J.; Stasiak, D. Applications of ultrasound in food technology. Acta Sci. Pol. Technol. Aliment. 2007, 6, 88–99. [Google Scholar]
- Bhat, R.; Kamaruddin, N.S.B.C.; Min-Tze, L.; Karim, A. Sonication improves kasturi lime (Citrus microcarpa) juice quality. Ultrason. Sonochem. 2011, 18, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Soh, C.; Liew, S.; Teh, F. Effects of sonication and carbonation on guava juice quality. Food Chem. 2007, 104, 1396–1401. [Google Scholar] [CrossRef]
- Feng, H.; Yang, W.; Hielscher, T. Power ultrasound. Food Sci. Technol. Int. 2008, 14, 433–436. [Google Scholar] [CrossRef]
- Herrera, M.; De Castro, M.L. Ultrasound-assisted extraction of phenolic compounds from strawberries prior to liquid chromatographic separation and photodiode array ultraviolet detection. J. Chromatogr. A 2005, 1100, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.; Pinto, G.A. Ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder. J. Food Eng. 2007, 80, 869–872. [Google Scholar] [CrossRef]
- Ma, Y.Q.; Chen, J.C.; Liu, D.H.; Ye, X.Q. Simultaneous extraction of phenolic compounds of citrus peel extracts: Effect of ultrasound. Ultrason. Sonochem. 2009, 16, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.K.; Abert-Vian, M.; Fabiano-Tixier, A.-S.; Dangles, O.; Chemat, F. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem. 2010, 119, 851–858. [Google Scholar] [CrossRef]
- Knorr, D.; Zenker, M.; Heinz, V.; Lee, D.-U. Applications and potential of ultrasonics in food processing. Trends Food Sci. Technol. 2004, 15, 261–266. [Google Scholar] [CrossRef]
- Oms-Oliu, G.; Odriozola-Serrano, I.; Soliva-Fortuny, R.; Elez-Martínez, P.; Martín-Belloso, O. Stability of health-related compounds in plant foods through the application of non thermal processes. Trends Food Sci. Technol. 2012, 23, 111–123. [Google Scholar] [CrossRef]
- Lieu, L.N. Application of ultrasound in grape mash treatment in juice processing. Ultrason. Sonochem. 2010, 17, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Jiang, A. Effect of ultrasound treatment on quality and microbial load of carrot juice. Food Sci. Technol. (Camp.) 2016, 36, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Yusof, S.; Hamid, N.; Baharin, B. Optimizing conditions for hot water extraction of banana juice using response surface methodology (RSM). J. Food Eng. 2006, 75, 473–479. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, S.S. Food Analysis Laboratory Manual; Springer: New York, NY, USA, 2003; pp. 95–102. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gathersberg, MD, USA, 2002. [Google Scholar]
- Vinson, J.A.; Hao, Y.; Su, X.; Zubik, L. Phenol antioxidant quantity and quality in foods: Vegetables. J. Agric. Food Chem. 1998, 46, 3630–3634. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Lim, T.T.; Tee, J.J. Antioxidant properties of several tropical fruits: A comparative study. Food Chem. 2007, 103, 1003–1008. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization of red radish anthocyanins. J. Food Sci. 1996, 61, 322–326. [Google Scholar] [CrossRef]
- Rahman, M.M.; Khan, M.M.R.; Hosain, M.M. Analysis of Vitamin C (ascorbic acid) Contents in Various Fruits and Vegetables by UV-spectrophotometry. Bangladesh J. Sci. Ind. Res. 2007, 42, 417–424. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Le, V.V.M. Application of ultrasound to pineapple mash treatment in juice processing. Int. Food Res. J. 2012, 19, 547–552. [Google Scholar]
- Zou, Y.; Xie, C.; Fan, G.; Gu, Z.; Han, Y. Optimization of ultrasound-assisted extraction of melanin from Auricularia auricula fruit bodies. Innov. Food Sci. Emerg. Technol. 2010, 11, 611–615. [Google Scholar] [CrossRef]
- Petrier, C.; Combet, E.; Mason, T. Oxygen-induced concurrent ultrasonic degradation of volatile and non-volatile aromatic compounds. Ultrason. Sonochem. 2007, 14, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Escarpa, A.; González, M. Approach to the content of total extractable phenolic compounds from different food samples by comparison of chromatographic and spectrophotometric methods. Anal. Chim. Acta 2001, 427, 119–127. [Google Scholar] [CrossRef]
- Mason, T.; Paniwnyk, L.; Lorimer, J. The uses of ultrasound in food technology. Ultrason. Sonochem. 1996, 3, S253–S260. [Google Scholar] [CrossRef]
- Chowdhury, P.; Viraraghavan, T. Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes—A review. Sci. Total Environ. 2009, 407, 2474–2492. [Google Scholar] [CrossRef] [PubMed]
- Jahouach-Rabai, W.; Trabelsi, M.; Van Hoed, V.; Adams, A.; Verhé, R.; De Kimpe, N.; Frikha, M. Influence of bleaching by ultrasound on fatty acids and minor compounds of olive oil. Qualitative and quantitative analysis of volatile compounds (by SPME coupled to GC/MS). Ultrason. Sonochem. 2008, 15, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, D.; Chen, J.; Ye, X.; Yu, D. Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-β-carotene from citrus peels. Ultrason. Sonochem. 2011, 18, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, Y.; Chen, G.; Yue, W.; Liang, Q.; Wu, Q. Optimisation of ultrasound assisted extraction of phenolic compounds from Sparganii rhizoma with response surface methodology. Ultrason. Sonochem. 2013, 20, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Phan, L.; Le, V. Enzyme-assisted and ultrasound-assisted extraction of phenolics from mulberry (Morus alba) fruit: Comparison of kinetic parameters and antioxidant level. Int. Food Res. J. 2014, 21, 1937. [Google Scholar]
- Corrales, M.; Toepfl, S.; Butz, P.; Knorr, D.; Tauscher, B. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innov. Food Sci. Emerg. Technol. 2008, 9, 85–91. [Google Scholar] [CrossRef]
- Zafra-Rojas, Q.Y.; Cruz-Cansino, N.; Ramírez-Moreno, E.; Delgado-Olivares, L.; Villanueva-Sánchez, J.; Alanís-García, E. Effects of ultrasound treatment in purple cactus pear (Opuntia ficus-indica) juice. Ultrason. Sonochem. 2013, 20, 1283–1288. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Hou, X. Sonication enhances quality and antioxidant activity of blueberry juice. Food Sci. Technol. (Camp.) 2017, 37, 599–603. [Google Scholar] [CrossRef] [Green Version]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innov. Food Sci. Emerg. Technol. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Ashokkumar, M.; Sunartio, D.; Kentish, S.; Mawson, R.; Simons, L.; Vilkhu, K.; Versteeg, C.K. Modification of food ingredients by ultrasound to improve functionality: A preliminary study on a model system. Innov. Food Sci. Emerg. Technol. 2008, 9, 155–160. [Google Scholar] [CrossRef]
- Masibo, M.; He, Q. Major mango polyphenols and their potential significance to human health. Compr. Rev. Food Sci. Food. Saf. 2008, 7, 309–319. [Google Scholar] [CrossRef]
- Cheok, C.Y.; Chin, N.L.; Yusof, Y.A.; Talib, R.A.; Law, C.L. Optimization of total monomeric anthocyanin (TMA) and total phenolic content (TPC) extractions from mangosteen (Garcinia mangostana Linn.) hull using ultrasonic treatments. Ind. Crops Prod. 2013, 50, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.; Ubaid, N.; Qureshi, T.M.; Munir, M.; Mehmood, A. Effect of ultrasound and chemical treatment on total phenol, flavonoids and antioxidant properties on carrot-grape juice blend during storage. Ultrason. Sonochem. 2018, 45, 1–6. [Google Scholar] [CrossRef] [PubMed]
Parameters | Content |
---|---|
Total soluble solids (°Brix) | 10.94 ± 0.08 |
Titratable acidity (%) | 1.11 ± 0.07 |
pH | 3.32 ± 0.03 |
Moisture content | 89.06 ± 0.08 |
l-Ascorbic acid (L-AA) (mg/100 mL) | 18.02 ± 1.20 |
Total phenolic content (TPC) (mg GAE/100 mL) | 67.01 ± 1.62 |
Total anthocyanin content (TAC) (mg cy-3-glc/100 mL) | 50.01 ± 1.52 |
Antioxidant capacity (AC) (%DPPH inhibition) | 55.14 ± 2.48 |
Times (min) | Extraction Yield (%) | Total Soluble Solids (°Brix) | Titratable Acidity (%) | pH | Moisture Content (%) |
---|---|---|---|---|---|
0 (Pressed juice) | 71.03 ± 0.21 d | 11.12 ± 0.05 d | 1.17 ± 0.03 bc | 3.24 ± 0.02 b | 88.88 ± 0.05 b |
30 | 83.74 ± 0.27 b | 11.81 ± 0.08 ab | 1.42 ± 0.10 a | 3.21 ± 0.04 b | 88.19 ± 0.08 de |
60 | 90.21 ± 0.22 a | 11.95 ± 0.03 a | 1.50 ± 0.09 a | 3.23 ± 0.03 b | 88.05 ± 0.03 e |
90 | 82.41 ± 0.28 c | 11.66 ± 0.05 b | 1.35 ± 0.09 ab | 3.20 ± 0.02 b | 88.34 ± 0.05 d |
120 | 81.80 ± 0.12 d | 11.44 ± 0.07 c | 1.31 ± 0.08 ab | 3.18 ± 0.03 b | 88.56 ± 0.07 c |
Times (min) | L-AA (mg/100 mL) | TPC (mg GAE/100 mL) | TAC (mg cy-3-glc/100 mL) | AC (%DPPH inhibition) |
---|---|---|---|---|
0 (Pressed juice) | 20.73 ± 1.22 c | 73.74 ± 1.34 d | 55.33 ± 1.71 d | 65.08 ± 3.02 c |
30 | 31.08 ± 2.27 b | 159.84 ± 2.32 b | 118.01 ± 2.59 b | 76.02 ± 2.94 ab |
60 | 37.38 ± 1.53 a | 183.29 ± 2.01 a | 132.48 ± 1.68 a | 83.67 ± 3.82 a |
90 | 36.04 ± 2.03 a | 164.96 ± 2.38 b | 129.03 ± 1.51 a | 72.58 ± 2.34 bc |
120 | 27.05 ± 1.67 b | 131.18 ± 3.33 c | 109.14 ± 2.06 c | 69.15 ± 2.65 bc |
Temperature (°C) | Extraction Yield (%) | Total Soluble Solids (TSS–°Brix) | Titratable Acidity (%) | pH | Moisture Content (MC-%) |
---|---|---|---|---|---|
30 | 86.44 ± 0.20 c | 11.67 ± 0.07 c | 1.41 ± 0.04 bc | 3.23 ± 0.02 b | 88.32 ± 0.07 b |
45 | 92.07 ± 0.13 a | 12.09 ± 0.04 a | 1.63 ± 0.08 a | 3.25 ± 0.03 b | 87.91 ± 0.04 d |
60 | 90.18 ± 0.17 b | 11.91 ± 0.05 b | 1.51 ± 0.09 ab | 3.22 ± 0.04 ab | 88.09 ± 0.05 c |
75 | 83.62 ± 0.23 d | 11.78 ± 0.04 bc | 1.31 ± 0.07 cd | 3.18 ± 0.02 b | 88.22 ± 0.04 bc |
Temperature (°C) | L-AA (mg/100 mL) | TPC (mg GAE/100 mL) | TAC (mg cy-3-glc/100 mL) | AC (%DPPH Inhibition) |
---|---|---|---|---|
30 | 31.62 ± 1.87 bc | 164.92 ± 2.45 c | 118.12 ± 1.51 d | 80.18 ± 2.16 b |
45 | 40.28 ± 1.77 a | 202.15 ± 1.25 a | 142.15 ± 1.73 a | 91.58 ± 3.32 a |
60 | 36.08 ± 1.73 ab | 183.32 ± 1.97 b | 132.37 ± 1.84 b | 83.75 ± 3.66 ab |
75 | 28.11 ± 1.98 c | 126.42 ± 3.49 d | 124.84 ± 2.81 c | 67.32 ± 3.63 c |
Correlation Coefficients | L-AA | TPC | TAC |
---|---|---|---|
AC (% DPPH inhibition) | 0.596 * | 0.891 * | 0.412 * |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, C.L.; Nguyen, H.V.H. Ultrasonic Effects on the Quality of Mulberry Juice. Beverages 2018, 4, 56. https://doi.org/10.3390/beverages4030056
Nguyen CL, Nguyen HVH. Ultrasonic Effects on the Quality of Mulberry Juice. Beverages. 2018; 4(3):56. https://doi.org/10.3390/beverages4030056
Chicago/Turabian StyleNguyen, Chi L., and Ha V. H. Nguyen. 2018. "Ultrasonic Effects on the Quality of Mulberry Juice" Beverages 4, no. 3: 56. https://doi.org/10.3390/beverages4030056
APA StyleNguyen, C. L., & Nguyen, H. V. H. (2018). Ultrasonic Effects on the Quality of Mulberry Juice. Beverages, 4(3), 56. https://doi.org/10.3390/beverages4030056