Detection of Intra-Varietal Diversity Based on Differences in the Accumulation of Secondary Metabolites for Winemaking Management of High-Quality Red Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Grape Characteristics
2.2. Chemicals and Reference Compounds
2.3. Organic Acids Analysis in Berry Juice
2.4. Total Anthocyanins and Total Flavonoids
2.5. Anthocyanins Profile
2.6. Resveratrol and Flavonols
2.7. Flavanols and Oligomeric Proanthocyanidin in Grape Skins and Seeds
2.8. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Conflicts of Interest
References
- Nuzzo, V.; D’Onofrio, C.; Dell’Aglio, M.; Rotundo, A. Aglianico. Italian Vitis Database. Available online: www.vitisdb.it (accessed on 5 September 2017).
- Alba, V.; Anaclerio, A.; Gasparro, M.; Caputo, A.R.; Montemurro, C.; Blanco, A.; Antonacci, D. Ampelographic and Molecular Characterisation of Aglianico Accessions (Vitis vinifera L.) Collected in Southern Italy. S. Afr. J. Enol. Vitic. 2011, 32, 164–173. [Google Scholar] [CrossRef]
- De Lorenzis, G.; Squadrito, M.; Rossoni, M.; Di Lorenzo, G.S.; Brancadoro, L.; Scienza, A. Study of intra-varietal diversity in biotypes of Aglianico and Muscat of Alexandria (Vitis. vinifera L.) cultivars. Aust. J. Grape Wine Res. 2017, 23, 132–142. [Google Scholar] [CrossRef]
- Revilla, E.; Losada, M.M.; Gutiérrez, E. Phenolic Composition and Color of Single Cultivar Young Red Wines Made with Mencia and Alicante-Bouschet Grapes in AOC Valdeorras (Galicia, NW Spain). Beverages 2016, 2, 18. [Google Scholar] [CrossRef]
- Mattivi, F.; Prast, A.; Nicolini, G.; Valenti, L. Validation of a new method for the measure of the polyphenolic potential of red grape and discussion of its use in oenology. Riv. Vitic. Enol. 2002, 55, 55–74. [Google Scholar]
- De Pascali, S.A.; Coletta, A.; Del Coco, L.; Basile, T.; Gambacorta, G.; Fanizzi, F.P. Viticultural practice and winemaking effects on metabolic profile of Negroamaro. Food Chem. 2014, 161, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Cheynier, V.; Rigaud, J. HPLC separation and characterization of flavonols in the skins of Vitis vinifera var. Cinsault. Am. J. Enol. Vitic. 1986, 37, 248–252. [Google Scholar]
- Pascual, O.; González-Royo, E.; Gil, M.; Gómez-Alonso, S.; García-Romero, E.; Canals, J.M.; Hermosín-Gutíerrez, I.; Zamora, F. Influence of Grape Seeds and Stems on Wine Composition and Astringency. J. Agric. Food Chem. 2016, 64, 6555–6566. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, V.; Nolè, M. Tradizione ed innovazione nei sistemi viticoli dell’Aglianico del Vulture. In Aglianico. del Vulture: Storie. di Vite., Ambiente., Viticoltura., Enologia., Storia. e Società.; Grafica Zaccara di Lagonegro: Rionero in Vulture (PZ), Italy, 2004; pp. 23–28. [Google Scholar]
- EC (European Commission). Commission Regulation No 2676/90 of 03/10/1990 on “Community Analysis Methods to Use in Wine Sector”. Off. J. Europ. Union 1990, L 272, 0001–0192. [Google Scholar]
- Cane, P. Il controllo di qualità dei vini mediante HPLC: Determinazione di acidi organici. L’Enotecnico 1990, 26, 69–72. [Google Scholar]
- Di Stefano, R.; Cravero, M.C. Metodi per lo studio dei polifenoli dell’uva. Riv. Vitic. Enol. 1991, 44, 37–45. [Google Scholar]
- Hebrero, E.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. High Performance Liquid Chromatography-Diode Array Spectroscopy Identification of Anthocyanins of Vitis vinifera variety Tempranillo. Am. J. Enol. Vitic. 1988, 39, 227–233. [Google Scholar]
- Welch, C.R.; Wu, Q.; Simon, J.E. Recent Advances in Anthocyanin Analysis and Characterization. Curr. Anal. Chem. 2008, 4, 75–101. [Google Scholar] [CrossRef] [PubMed]
- Gabetta, B.; Fuzzati, N.; Griffini, A.; Lolla, E.; Pace, R.; Ruffilli, T.; Peterlongo, F. Characterization of proanthocyanidins from grape seeds. Fitoterapia 2000, 71, 162–175. [Google Scholar] [CrossRef]
- Bochkov, D.V.; Sysolyatin, S.V.; Kalashnikov, A.I.; Surmacheva, I.A. Shikimic acid: review of its analytical, isolation, and purification techniques from plant and microbial sources. J. Chem. Biol. 2012, 5, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Makris, D.P.; Kallithraka, S.; Mamalos, A. Differentiation of young red wines based on cultivar and geographical origin with application of chemometrics of principal polyphenolic constituents. Talanta 2006, 70, 1143–1152. [Google Scholar] [CrossRef] [PubMed]
- Tamborra, P.; Esti, M. Authenticity markers in Aglianico, Uva di Troia, Negramaro and Primitivo grapes. Anal. Chim. Acta 2010, 660, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Rapeanu, G.; Vicol, C.; Bichescu, C. Possibilities to assess the wines authenticity. Innov. Rom. Food Biotechnol. 2009, 5, 1–9. [Google Scholar]
- Tamborra, P.; Bolettieri, D.; Latorraca, M.; Tamborra, M.; Paradiso, F.; Savino, M. The shikimic acid: An important metabolite for the Aglianico del Vulture wines. Ital. J. Agron. 2014, 9, 182–184. [Google Scholar] [CrossRef]
- Alcalde-Eon, C.; García-Estévez, I.; Martín-Baz, A.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Anthocyanin and flavonol profiles of Vitis vinifera L. cv Rufete grapes. Biochem. Syst. Ecol. 2014, 53, 76–80. [Google Scholar] [CrossRef]
- Boulton, R.B. The copigmentation of anthocyanins and its role in the color of red wine: A Critical Review. Am. J. Enol. Vitic. 2001, 52, 67–87. [Google Scholar]
- Soleas, G.J.; Grass, L.; Josephy, P.D.; Goldberg, D.M.; Diamandis, E.P. A comparison of the anticarcinogenic properties of four red wine polyphenols. Clin. Biochem. 2006, 39, 492–497. [Google Scholar] [CrossRef]
- Fresco, P.; Borges, F.; Diniz, C.; Marques, M.P. New insights on the anticancer properties of dietary polyphenols. Med. Res. Rev. 2006, 26, 747–766. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Montealegre, R.; Romero-Peces, R.; Chacón-Vozmediano, J.L.; Martínez-Gascueña, J.; García-Romero, E. Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate. J. Food Compos. Anal. 2006, 19, 687–693. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Phenolic compounds. In Handbook of Enology: The Chemistry of Wine Stabilization and Treatments Vol 2, 2nd ed.; J. Wiley & Sons, Ltd.: Chichester, UK, 2006. [Google Scholar]
- Bautista-Ortín, A.B.; Busse-Valverde, N.; López-Roca, J.M.; Gil-Muñoz, R.; Gómez-Plaza, E. Grape seed removal: Effect on phenolics, chromatic and organoleptic characteristics of red wine. Int. J. Food Sci. Technol. 2014, 49, 34–41. [Google Scholar] [CrossRef]
- Crupi, P.; Pichierri, A.; Basile, T.; Antonacci, D. Postharvest stilbenes and flavonoids enrichment of table grape cv Redglobe (Vitis vinifera L.) as affected by interactive UV-C exposure and storage conditions. Food Chem. 2013, 141, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Balestrieri, M.L.; Schiano, C.; Felice, F.; Casamassimi, A.; Balestrieri, A.; Milone, L.; Servillo, L.; Napoli, C. Effect of Low Doses of Red Wine and Pure Resveratrol on Circulating Endothelial Progenitor Cells. J. Biochem. 2008, 143, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Soleas, G.J.; Diamandis, E.P.; Goldberg, D.M. Resveratrol: A molecule whose time has come? And gone? Clin. Biochem. 1997, 30, 91–113. [Google Scholar] [CrossRef]
Sample | Berry Weight g | °Brix | Tartaric Acid g/L | Malic Acid g/L | Shikimic Acid mg/L | Citric Acid g/L |
---|---|---|---|---|---|---|
M1 | 1.87 ± 0.19 abcd | 17.0 ± 0.5 a | 3.77 ± 0.18 a | 2.21 ± 0.30 d | 34.3 ± 3.5 d | 0.13 ± 0.02 a |
M2 | 1.62 ± 0.16 abc | 23.5 ± 0.8 d | 3.84 ± 0.19 a | 1.58 ± 0.21 bcd | 15.4 ± 1.3 a | 0.22 ± 0.03 b |
M5 | 2.2 ± 0.20 d | 17.8 ± 0.2 a | 3.75 ± 0.18 a | 2.01 ± 0.27 d | 25.2 ± 2.5 bc | 0.15 ± 0.02 ab |
M6 | 1.31 ± 0.12 a | 25.1 ± 0.3 e | 4.93 ± 0.24 b | 0.89 ± 0.12 a | 33.7 ± 2.9 d | 0.32 ± 0.04 c |
M8 | 1.54 ± 0.15 ab | 23.1 ± 0.6 d | 3.66 ± 0.18 a | 1.38 ± 0.13 abc | 15.8 ± 1.6 a | 0.21 ± 0.03 b |
M9 | 1.56 ± 0.17 ab | 23.1 ± 0.3 d | 3.88 ± 0.19 a | 0.89 ± 0.12 a | 21.6 ± 2.2 ab | 0.20 ± 0.03 b |
M10 | 1.77 ± 0.16 abcd | 20.4 ± 0.2 bc | 3.79 ± 0.19 a | 1.06 ± 0.14 ab | 31.3 ± 3.2 cd | 0.15 ± 0.02 ab |
M11 | 1.93 ± 0.18 bcd | 21.1 ± 0.2 c | 4.65 ± 0.23 b | 2.09 ± 0.28 d | 32.2 ± 3.3 cd | 0.22 ± 0.03 b |
M12 | 1.96 ± 0.20 bcd | 21.4 ± 0.5 cd | 3.80 ± 0.19 a | 1.87 ± 0.25 cd | 18.2 ± 1.9 ab | 0.16 ± 0.02 ab |
M13 | 1.58 ± 0.15 abc | 19.3 ± 0.8 b | 3.91 ± 0.19 a | 1.60 ± 0.21 bcd | 30.6 ± 2.3 cd | 0.13 ± 0.02 a |
M14 | 1.78 ± 0.18 abcd | 21.4 ± 0.4 cd | 3.82 ± 0.19 a | 2.89 ± 0.39 e | 35.6 ± 3.3 d | 0.15 ± 0.02 ab |
M15 | 2.07 ± 0.19 cd | 21.5 ± 0.7 cd | 4.60 ± 0.23 b | 1.19 ± 0.16 ab | 22.77 ± 2.34 ab | 0.09 ± 0.01 a |
M16 | 1.52 ± 0.14 ab | 21.6 ± 0.5 cd | 5.12 ± 0.25 b | 0.67 ± 0.09 a | 23.2 ± 2.3 ab | 0.20 ± 0.03 b |
M17 | 1.77 ± 0.18 abcd | 21.6 ± 0.3 cd | 3.95 ± 0.19 a | 1.29 ± 0.17 abc | 23.2 ± 2.4 ab | 0.13 ± 0.02 a |
Sample | Total Flavonoids (Skins) ** | Total Anthocyanins * | Other Flavonoids (Skins) ** | Total Flavonoids (Seeds) ** |
---|---|---|---|---|
M1 | 2593 ± 21 fg | 1283 ± 30 g | 1083 ± 37 cd | 2376.5 ± 16.1 l |
M2 | 1867 ± 27 c | 714 ± 54 bc | 1026 ± 31 d | 1894.1 ± 14.3 k |
M5 | 1562 ± 35 a | 643 ± 25 abc | 804 ± 60 a | 1004.4 ± 20.5 f |
M6 | 3484 ± 13 j | 1692 ± 70 h | 1491 ± 23 f | 1379.2 ± 21.0 i |
M8 | 2247 ± 23 e | 1144 ± 35 f | 900 ± 35 ab | 1097.9 ± 21.3 gh |
M9 | 2554 ± 23 f | 1316 ± 25 g | 1009 ± 41 bc | 1517.2 ± 14.5 j |
M10 | 2688 ± 26 gh | 1116 ± 36 f | 1375 ± 42 f | 741.1 ± 17.5 d |
M11 | 2107 ± 41 d | 824 ± 41 c | 1137 ± 50 de | 381.1 ± 19.9 a |
M12 | 2039 ± 42 d | 978 ± 60 e | 888 ± 24 ab | 900.6 ± 14.3 e |
M13 | 1886 ± 38 c | 702 ± 21 bc | 1059 ± 25 cd | 637.2 ± 13.2 c |
M14 | 1751 ± 24 b | 747 ± 42 bc | 873 ± 35 a | 1054.0 ± 17.9 g |
M15 | 1508 ± 25 a | 564 ± 20 a | 845 ± 41 a | 1113.1 ± 10.1 h |
M16 | 2996 ± 37 i | 1631 ± 77 h | 1075 ± 72 d | 1554.9 ± 7.9 j |
M17 | 2761 ± 31 h | 1287 ± 50 g | 1246 ± 38 e | 535.5 ± 18.9 b |
Compound (%) | M1 | M2 | M5 | M6 | M8 | M9 | M10 | M11 | M12 | M13 | M14 | M15 | M16 | M17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dp-3-gl | 5.2 | 3.6 | 4.5 | 6.0 | 4.2 | 5.5 | 3.3 | 6.5 | 4.5 | 5.5 | 8.1 | 5.2 | 4.4 | 4.3 |
Cy-3-gl | 0.4 | 0.1 | 0.4 | 0.5 | 0.3 | 0.3 | 0.1 | 1.0 | 0.4 | 0.5 | 1.6 | 0.5 | 0.3 | 0.4 |
Pt-3-gl | 6.0 | 5.3 | 5.6 | 7.4 | 6.4 | 6.0 | 5.1 | 7.0 | 5.2 | 5.7 | 7.7 | 6.0 | 6.9 | 5.9 |
Pn-3-gl | 3.0 | 3.5 | 4.0 | 3.6 | 3.0 | 2.1 | 3.2 | 6.5 | 3.3 | 4.1 | 8.6 | 4.2 | 2.2 | 3.5 |
Mv-3-gl | 58.1 | 58.5 | 60.1 | 57.7 | 58.0 | 62.6 | 60.0 | 55.9 | 60.0 | 54.1 | 52.4 | 53.7 | 61.0 | 59.1 |
Total acetylated | 3.0 | 1.2 | 0.2 | 1.1 | 3.5 | 1.5 | 0.1 | 0.8 | 0.7 | 3.3 | 1.4 | 3.7 | 2.6 | 1.0 |
Total coumaroylated | 24.3 | 27.8 | 25.2 | 23.7 | 24.6 | 22.0 | 28.2 | 22.3 | 25.9 | 26.8 | 20.2 | 26.7 | 22.6 | 25.8 |
Compound | M1 | M2 | M5 | M6 | M8 | M9 | M10 |
---|---|---|---|---|---|---|---|
Gallic acid | n.r. | 0.7 ± 0.4 a | 9.0 ± 0.1 f | 10.5 ± 0.1 h | 6.4 ± 0.2 c | 9.8 ± 0.1 g | 5.4 ± 0.2 b |
(−)-Epigallocatechin | n.r. | n.r. | n.r. | n.r. | 8.1 ± 0.5 c | 1.5 ± 0.2 ab | 1.4 ± 0.1 ab |
(+)-Catechin | 4.4 ± 0.3 f | n.r. | n.r. | n.r. | 1.0 ± 0.1 a | 2.0 ± 0.1 cde | 1.4 ± 0.2 ab |
(−)-Epicatechin | 6.3 ± 0.4 g | 1.0 ± 0.3 a | 2.5 ± 0.1 d | 3.2 ± 0.2 e | 2.2 ± 0.1 cd | 3.9 ± 0.1 f | 3.2 ± 0.2 e |
(−)-Epigallocat. gallate | 5.4 ± 0.3 g | 4.1 ± 0.1 ef | 2.7 ± 0.2 bc | 4.6 ± 0.1 f | 2.8 ± 0.2 bc | 3.6 ± 0.1 de | 3.1 ± 0.2 cd |
Procyanidin B1 | 10.8 ± 0.3 f | 6.9 ± 0.2 cd | 7.3 ± 0.3 cd | 6.9 ± 0.2 cd | 7.1 ± 0.1 d | 10.5 ± 0.3 e | 6.1 ± 0.2 bc |
Procyanidin B2 | 3.7 ± 0.2 a | 5.2 ± 0.3 b | n.r. | n.r. | n.r. | n.r. | n.r. |
Procyanidin B3 | 1.1 ± 0.2 a | 1.7 ± 0.1 b | 1.1 ± 0.2 a | n.r. | n.r. | 2.5 ± 0.1 de | 2.4 ± 0.2 de |
Procyanidin B4 | 2.0 ± 0.2 ab | n.r. | 3.4 ± 0.2 de | 8.7 ± 0.5 h | 6.3 ± 0.1 g | 5.1 ± 0.1f | 1.8 ± 0.2 ab |
Compound | M11 | M12 | M13 | M14 | M15 | M16 | M17 |
Gallic acid | 9.7 ± 0.1 g | 9.9 ± 0.1 gh | 5.7 ± 0.3 b | 8.2 ± 0.1 e | 7.2 ± 0.2 d | 12.2 ± 0.2 i | 6.0 ± 0.3 bc |
(−)-Epigallocatechin | n.r. | n.r. | n.r. | 1.6 ± 0.3 b | 0.8 ± 0.1 a | n.r. | n.r. |
(+)-Catechin | 1.7 ± 0.1 bcd | 1.6 ± 0.1 bc | 1.5 ± 0.2 b | 1.7 ± 0.1 bcd | 1.6 ± 0.1 bc | 2.4 ± 0.2 e | 2.0 ± 0.1 cde |
(−)-Epicatechin | 2.3 ± 0.1 cd | 2.4 ± 0.1 cd | 1.7 ± 0.2 b | 1.9 ± 0.2 bc | 1.9 ± 0.2 bc | 4.4 ± 0.1 f | 2.5 ± 0.1 d |
(−)-Epigallocat. gallate | 3.4 ± 0.2 d | 2.3 ± 0.1 ab | 3.5 ± 0.3 d | 2.1 ± 0.1 a | 3.1 ± 0.3 cd | 2.6 ± 0.1 abc | 3.4 ± 0.2 d |
Procyanidin B1 | 9.3 ± 0.4 e | 7.3 ± 0.2 d | 5.8 ± 0.1 ab | 5.2 ± 0.1 a | 7.7 ± 0.2 d | 17.5 ± 0.5 g | 6.3 ± 0.2 bc |
Procyanidin B2 | n.r. | n.r. | n.r. | n.r. | n.r. | n.r. | n.r. |
Procyanidin B3 | 2.2 ± 0.1 cd | 2.7 ± 0.2 e | 2.6 ± 0.2 de | 1.8 ± 0.1 bc | 2.8 ± 0.1 ef | 3.2 ± 0.2 f | 1.6 ± 0.1 b |
Procyanidin B4 | 2.9 ± 0.1 cd | 4.9 ± 0.4 f | 1.4 ± 0.1 a | 3.7 ± 0.2 e | 2.3 ± 0.1 bc | 9.8 ± 0.3 i | 4.5 ± 0.1 f |
Compound | M1 | M2 | M5 | M6 | M8 | M9 | M10 |
---|---|---|---|---|---|---|---|
Gallic acid | 31.1 ± 0.5 j | 26.8 ± 0.3 i | 8.3 ± 0.1 de | 10.4 ± 0.2 g | 13.2 ± 0.3 h | 10.4 ± 0.1 g | 6.0 ± 0.2 a |
(−)-Epigallocatechin | 65.6 ± 0.4 l | 52.2 ± 0.3 k | 26.9 ± 0.1 d | 41.0 ± 0.5 h | 38.1 ± 0.2 g | 47.0 ± 0.2 j | 21.7 ± 0.3 b |
(+)-Catechin | 136.1 ± 0.2 m | 132.6 ± 0.2 l | 59.6 ± 0.4 e | 92.1 ± 0.3 i | 85.8 ± 0.4 g | 101.4 ± 0.1 k | 47.7 ± 0.3 b |
(−)-Epigallocat. gallate | 93.9 ± 0.3 m | 73.3 ± 0.2 l | 40.6 ± 0.1 f | 51.7 ± 0.1 h | 59.9 ± 0.2 j | 64.3 ± 0.1 k | 31.1 ± 0.1 b |
(−)-Epicatechin gallate | 138.3 ± 0.3 n | 106.7 ± 0.2 m | 18.7 ± 0.2 d | 24.3 ± 0.3 g | 73.4 ± 0.2 l | 29.3 ± 0.3 i | 13.2 ± 0.1 b |
(−)-Epicatechin | 107.0 ± 0.3 m | 90.3 ± 0.2 l | 48.1 ± 0.2 e | 55.0 ± 0.3 f | 74.4 ± 0.3 k | 68.1 ± 0.2 i | 34.4 ± 0.2 b |
Procyanidin B1 | 5.1 ± 0.2 l | 4.6 ± 0.2 kl | 2.4 ± 0.1 bcd | 3.7 ± 0.2 hi | 3.4 ± 0.2 fgh | 4.0 ± 0.1 hijk | 2.0 ± 0.2 b |
Procyanidin B3 | 44.2 ± 0.3 j | 39.6 ± 0.2 i | 18.6 ± 0.4 d | 33.5 ± 0.1 h | 27.4 ± 0.3 f | 34.1 ± 0.1 h | 15.1 ± 0.2 b |
Procyanidin B4 | 79.8 ± 0.3 l | 47.1 ± 0.2 k | 27.2 ± 0.4 e | 32.4 ± 0.3 f | 42.0 ± 0.3 j | 41.2 ± 0.3 ij | 19.7 ± 0.2 b |
Procyanidin B2 | 14.3 ± 0.1 k | 10.1 ± 0.1 j | 6.0 ± 0.1 e | 6.9 ± 0.1 f | 8.3 ± 0.2 i | 8.8 ± 0.4 i | 4.0 ± 0.1 b |
Other Procyanidins | 137.1 | 108.9 | 35.3 | 75.2 | 73.4 | 100.5 | 89.2 |
Compound | M11 | M12 | M13 | M14 | M15 | M16 | M17 |
Gallic acid | 10.9 ± 0.1 g | 9.0 ± 0.1 ef | 7.0 ± 0.3 b | 12.7 ± 0.3 h | 7.3 ± 0.2 bc | 7.9 ± 0.1 cd | 9.3 ± 0.2 f |
(−)-Epigallocatechin | 17.0 ± 0.2 a | 31.6 ± 0.1 f | 23.8 ± 0.2 c | 42.5 ± 0.4 i | 29.2 ± 0.1 e | 23.0 ± 0.3 c | 42.6 ± 0.3 i |
(+)-Catechin | 40.7 ± 0.1 a | 70.0 ± 0.3 f | 55.0 ± 0.1 d | 97.6 ± 0.2 j | 58.7 ± 0.4 e | 49.1 ± 0.1 c | 87.4 ± 0.3 h |
(−)-Epigallocat. gallate | 20.2 ± 0.2 a | 50.3 ± 0.3 g | 32.6 ± 0.1 c | 52.0 ± 0.3 h | 37.8 ± 0.2 e | 36.2 ± 0.2 d | 54.5 ± 0.2 i |
(−)-Epicatechin gallate | 9.7 ± 0.2 a | 21.3 ± 0.2 f | 17.7 ± 0.3 c | 70.1 ± 0.4 k | 19.5 ± 0.2 e | 43.8 ± 0.4 j | 28.5 ± 0.3 h |
(−)-Epicatechin | 26.3 ± 0.1 a | 59.2 ± 0.1 g | 41.6 ± 0.1 cd | 70.8 ± 0.2 j | 41.1 ± 0.4 c | 42.2 ± 0.1 d | 60.6 ± 0.3 h |
Procyanidin B1 | 1.2 ± 0.4 a | 2.6 ± 0.1 bcde | 2.0 ± 0.3 b | 3.0 ± 0.2 defg | 2.8 ± 0.1 cdef | 2.2 ± 0.2 bc | 3.7 ± 0.2 hij |
Procyanidin B3 | 10.8 ± 0.2 a | 21.5 ± 0.4 e | 17.8 ± 0.3 c | 28.4 ± 0.2 g | 22.1 ± 0.2 e | 18.1 ± 0.1 cd | 29.0 ± 0.3 g |
Procyanidin B4 | 17.4 ± 0.1 a | 34.9 ± 0.2 g | 23.6 ± 0.2 c | 40.5 ± 0.2 i | 25.1 ± 0.2 d | 24.8 ± 0.1 d | 36.9 ± 0.3 h |
Procyanidin B2 | 2.9 ± 0.2 a | 7.3 ± 0.1 g | 4.7 ± 0.2 c | 7.6 ± 0.1 h | 5.4 ± 0.2 d | 4.6 ± 0.3 c | 7.7 ± 0.1 h |
Other Procyanidins | 48.1 | 121.8 | 90.8 | 134.8 | 49.6 | 91.7 | 141.3 |
Sample | Resveratrol | Myricetin Derivatives ‡ | Quercetin Derivatives ‡ | Kaempferol Derivatives ‡ |
---|---|---|---|---|
M1 | 16.8 ± 0.6 i | 66.5 ± 0.4 i | 71.9 ± 3 e | 30.5 ± 1.9 g |
M2 | 5.1 ± 1.4 a | 29.1 ± 0.2 fg | 33.6 ± 1.3 ab | 9.4 ± 0.6 b |
M5 | 9.1 ± 0.2 cde | 19.0 ± 0.1 d | 33.5 ± 1.2 ab | 0.5 ± 0.5 a |
M6 | 11.8 ± 0.3 gh | 66.0 ± 1.0 i | 94.0 ± 3.2 f | 19.3 ± 0.4 cd |
M8 | 11.0 ± 0.2 fg | 28.7 ± 0.9 f | 92.5 ± 1.9 f | 45.7 ± 1.0 h |
M9 | 7.6 ± 0.1 b | 31.1 ± 1.5 gh | 62.2 ± 4.7 d | 25.2 ± 0.6 f |
M10 | 6.0 ± 0.2 a | 14.3 ± 0.2 b | 40.2 ± 0.3 bc | 18.0 ± 0.4 cd |
M11 | 11.7 ± 1.1 fgh | 14.7 ± 0.4 bc | 41.3 ± 0.2 bc | 16.4 ± 0.5 c |
M12 | 8.8 ± 0.4 cd | 19.2 ± 0.2 de | 37.8 ± 1.7 b | 15.8 ± 1.7 c |
M13 | 8.9 ± 0.3 cde | 16.2 ± 0.7 bc | 46.8 ± 4.2 c | 23.4 ± 0.6 ef |
M14 | 15.8 ± 0.5 i | 12.1 ± 0.2 a | 29.2 ± 0.5 a | 8.5 ± 3.2 b |
M15 | 7.5 ± 0.1 b | 14.3 ± 0.6 b | 56.6 ± 3.6 d | 30.6 ± 0.6 g |
M16 | 10.6 ± 0.3 f | 32.3 ± 1.4 h | 101.0 ± 4.2 f | 44.8 ± 0.4 h |
M17 | 8.6 ± 0.2 c | 20.9 ± 0.3 de | 46.3 ± 1.9 c | 21.3 ± 1.1 de |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savino, M.; Basile, T.; Alba, V.; Bolettieri, D.; Paradiso, F.; Tamborra, P.; Suriano, S.; Tarricone, L. Detection of Intra-Varietal Diversity Based on Differences in the Accumulation of Secondary Metabolites for Winemaking Management of High-Quality Red Wines. Beverages 2017, 3, 45. https://doi.org/10.3390/beverages3030045
Savino M, Basile T, Alba V, Bolettieri D, Paradiso F, Tamborra P, Suriano S, Tarricone L. Detection of Intra-Varietal Diversity Based on Differences in the Accumulation of Secondary Metabolites for Winemaking Management of High-Quality Red Wines. Beverages. 2017; 3(3):45. https://doi.org/10.3390/beverages3030045
Chicago/Turabian StyleSavino, Michele, Teodora Basile, Vittorio Alba, Dina Bolettieri, Fiorella Paradiso, Pasquale Tamborra, Serafino Suriano, and Luigi Tarricone. 2017. "Detection of Intra-Varietal Diversity Based on Differences in the Accumulation of Secondary Metabolites for Winemaking Management of High-Quality Red Wines" Beverages 3, no. 3: 45. https://doi.org/10.3390/beverages3030045
APA StyleSavino, M., Basile, T., Alba, V., Bolettieri, D., Paradiso, F., Tamborra, P., Suriano, S., & Tarricone, L. (2017). Detection of Intra-Varietal Diversity Based on Differences in the Accumulation of Secondary Metabolites for Winemaking Management of High-Quality Red Wines. Beverages, 3(3), 45. https://doi.org/10.3390/beverages3030045