Chemical Contaminants Associated with Palm Wine from Nigeria Are Potential Food Safety Hazards
Abstract
:1. Introduction
2. Methods
3. Styrene
Styrene Exposure
4. Benzene
4.1. Benzene as a Carcinogen
4.2. Benzene Formation in Beverages
5. Trimethyldioxolane
6. Dichloro Methane
7. Methylene Fluoride
8. Dichloroethanol
9. Dimethylhydrazine
10. 3-Methyl-6,7-benzylisoquinoline
11. Tetraacetyl-d-xylonic Nitrile
12. Physical and Other Chemical Contaminants
13. Toxicity Concerns with Use of Plastic Containers
13.1. Plastic Degradation
13.2. Other Plastic Constituents
14. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tra Bi, C.Y.; N’guessan, F.K.; Kouakou, C.A.; Jacques, N.; Casaregola, S.; Djè, M.K. Identification of yeasts isolated from raffia wine (Raphia hookeri) produced in Côte d’Ivoire and genotyping of Saccharomyces cerevisiae strains by PCR inter-delta. World J. Microbiol. Biotechnol. 2016, 32, 125. [Google Scholar] [CrossRef] [PubMed]
- Tapsoba, F.; Legras, J.L.; Savadogo, A.; Dequin, S.; Traore, A.S. Diversity of Saccharomyces cerevisiae strains isolated from Borassus akeassii palm wines from Burkina Faso in comparison to other African beverages. Int. J. Food Microbiol. 2015, 211, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Ouoba, L.I.; Nielsen, D.S.; Anyogu, A.; Kando, C.; Diawara, B.; Jespersen, L.; Sutherland, J.P. Hanseniaspora jakobsenii sp. nov., a yeast isolated from Bandji, a traditional palm wine of Borassus akeassii. Int. J. Syst. Evol. Microbiol. 2015, 65, 3576–3579. [Google Scholar] [CrossRef] [PubMed]
- Canadian Food Inspection Agency. Food Safety Hazards. Available online: http://www.inspection.gc.ca/food/non-federally-registered/product-inspection/inspection-manual/eng/1393949957029/1393950086417?chap=5 (accessed on 14 November 2016).
- Mbuagbaw, L.; Noorduyn, S. The palm wine trade: Occupational and health hazards. Int. J. Occup. Environ. Med. 2012, 3, 157–164. [Google Scholar] [PubMed]
- Food Standards Agency, United Kingdom. Hazard Analysis and Critical Control Points. Available online: https://www.food.gov.uk/business-industry/food-hygiene/haccp (accessed on 16 November 2016).
- Karamoko, D.; Djeni, N.T.; N’Guessan, K.F.; Bouatenin, K.M.J.P.; Dje, K.M. The biochemical and microbiological quality of palm wine samples produced at different periods during tapping and changes which occurred during their storage. Food Control 2012, 26, 504–511. [Google Scholar] [CrossRef]
- Karamoko, D.; Deni, N.T.; Moroh, J.L.A.; Bouatenin, K.M.J.P.; Dje, K.M. Biochemical and microbial properties of palm wine: Effect of tapping length and varietal differences. Food Nutr. Sci. 2016, 7, 763–771. [Google Scholar] [CrossRef]
- Tapsoba, F.; Savadogo, A.; Legras, J.L.; Zongo, C.; Traore, A.S. Microbial diversity and biochemical characteristics of Borassus akeassii wine. Lett. Appl. Microbiol. 2016, 63, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Iwegbue, C.M.; Ojelum, A.L.; Bassey, F.I. A Survey of metal profiles in some traditional alcoholic beverages in Nigeria. Food Sci. Nutr. 2014, 2, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Nwaiwu, O.; Ibekwe, V.I.; Amadi, E.S.; Udebuani, A.C.; Nwanebu, F.C.; Oguoma, O.I.; Nnokwe, J.C. Evaluation of fermentation products of palm wine yeasts and role of Sacoglottis gabonensis supplement on products abundance. Beverages 2016, 2, 1–13. [Google Scholar] [CrossRef]
- Jewison, T.; Knox, C.; Neveu, V.; Djoumbou, Y.; Guo, A.C.; Lee, J.; Liu, P.; Mandal, R.; Krishnamurthy, R.; Sinelnikov, I.; et al. YMDB: The Yeast Metabolome Database. Nucleic. Acids Res. 2012, 40, D815–D820. [Google Scholar] [CrossRef] [PubMed]
- Uzochukwu, S.V.A.; Balogh, E.; Tucknott, O.; Lewis, M.J.; Ngoddy, P.O. Volatile constituents of palm wine and palm sap. J. Sci. Food Agric. 1994, 64, 405–411. [Google Scholar] [CrossRef]
- Lasekan, O.; Otto, S. In vivo analysis of palm wine (Elaeis guineensis) volatile organic compounds (VOCs) by proton transfer reaction-mass spectrometry. Int. J. Mass Spectrom. 2009, 282, 45–49. [Google Scholar] [CrossRef]
- PubChem. The PubChem Project. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 13 September 2016).
- Center for Disease Control and Prevention, United States of America. Chemical Listing and Documentation of Revised IDLH Values. Available online: https://www.cdc.gov/niosh/idlh/intridl4.html (accessed on 20 January 2017).
- USDE. New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces Greenhouse Gas Emissions. Available online: http://www1.eere.energy.gov/office_eere/pdfs/exelus_case_study.pdf (accessed on 15 November 2016).
- Nakaia, M.; Tsubokuraa, M.; Suzukia, M.; Fujishimaa, S.; Watanabeb, Y.; Hasegawab, Y.; Oyamab, K.; Shozo, O. Genotoxicity of styrene oligomers extracted from polystyrene intended for use in contact with food. Toxicol. Rep. 2014, 1, 1175–1180. [Google Scholar] [CrossRef]
- Arochena, L.; Fernández-Nieto, M.; Aguado, E.; García del Potro, M.; Sastre, J. Eosinophilic bronchitis caused by styrene. J. Investig. Allergol. Clin. Immunol. 2014, 24, 68–69. [Google Scholar] [PubMed]
- Fischer, C.S.; Bayer, O.; Strupp, M. Transient bilateral vestibular dysfunction caused by intoxication with low doses of styrene. Eur. Arch. Otorhinolaryngol. 2014, 271, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.C. Relationship between styrene exposure and hearing loss: Review of human studies. Int. J. Occup. Med. Environ. Health 2007, 20, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Campo, P.; Maguin, K. Solvent-induced hearing loss: Mechanisms and prevention strategy. Int. J. Occup. Med. Environ. Health 2007, 20, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Seeber, A.; Blaszkewicz, M.; Golka, K.; Hallier, E.; Kiesswetter, E.; Schäper, M.; van Thriel, C. Neurobehavioral effects of experimental exposures to low levels of styrene. Toxicol. Lett. 2004, 151, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Benignus, V.A.; Geller, A.M.; Boyes, W.K.; Bushnell, P.J. Human neurobehavioral effects of long-term exposure to styrene: A meta-analysis. Environ. Health Perspect. 2005, 113, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Vodicka, P.; Tuimala, J.; Stetina, R.; Kumar, R.; Manini, P.; Naccarati, A.; Maestri, L.; Vodickova, L.; Kuricova, M.; Järventaus, H.; et al. Cytogenetic markers, DNA single-strand breaks, urinary metabolites, and DNA repair rates in styrene-exposed lamination workers. Environ. Health Perspect. 2004, 112, 867–871. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. Assessing Outdoor Air near Schools-Monitored Pollutants. Available online: https://www3.epa.gov/air/sat/pollutants.html (5 January 2016).
- Smith, M.T. Advances in understanding benzene health effects and susceptibility. Annu. Rev. Publ. Health 2010, 3, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.K.; Park, J.H.; Kwon, S.W. Evaluation of headspace-gas chromatography/mass spectrometry for the analysis of benzene in vitamin C drinks; pitfalls of headspace in benzene detection. Biomed. Chromatogr. 2008, 22, 900–905. [Google Scholar] [CrossRef] [PubMed]
- Okwu, D.E.; Nnamdi, F.U. Evaluation of the chemical composition of Dacryodes edulis and Raphia hookeri Mann and Wendl exudates used in herbal medicine in south eastern Nigeria. Afr. J. Tradit. Complement. Altern. Med. 2008, 5, 194–200. [Google Scholar] [CrossRef] [PubMed]
- NTP—National Toxicology Program. Report on Carcinogens, 13th ed.Department of Health and Human Services, Public Health Service: Research Triangle Park, NC, USA, 2014. Available online: http://ntp.niehs.nih.gov/pubhealth/roc/roc13/ (accessed on 17 November 2016).
- Food and Drug Administration. Data on Benzene in Soft Drinks and Other Beverages. Available online: https://www.fda.gov/Food/FoodborneIllnessContaminants/ChemicalContaminants/ucm055815.htm (accessed on 11 November 2016).
- Green, T.W.; Wuts, P.G.M. Protective Groups in Organic Synthesis; Wiley-Interscience: New York, NY, USA, 1999; pp. 308–322. [Google Scholar]
- Gribble, G.W. Naturally Occurring Organohalogen Compounds—A Comprehensive Update; Springer: New York, NY, USA, 2010; pp. 9–348. [Google Scholar]
- Liu, T.; Xu, Q.E.; Zhang, C.H.; Zhang, P. Occupational exposure to methylene chloride and risk of cancer: A meta-analysis. Cancer Causes Control 2013, 24, 2037–2049. [Google Scholar] [CrossRef] [PubMed]
- Methylene Chloride; Natural Resources Defense Council: New York, NY, USA, 2010; Available online: https://www.nrdc.org/sites/default/files/methyleneChloride.pdf (accessed on 11 November 2016).
- Hall, R.M. Dangers of Bathtub Refinishing; Center for Disease Control: Atlanta, GA, USA, 2013. Available online: http://blogs.cdc.gov/niosh-science-blog/2013/02/04/bathtub-refinishing/ (accessed on 11 November 2016).
- Ema, M.; Naya, M.; Yoshida, K.; Nagaosa, R. Reproductive and developmental toxicity of hydrofluorocarbons used as refrigerants. Reprod. Toxicol. 2010, 29, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Brzezińska, M.; Nosalewicz, M.; Pasztelan, M.; Włodarczyk, T. Methane production and consumption in loess soil at different slope position. Sci. World J. 2012, 2012, 1–8. [Google Scholar]
- Smith, K.D.; Gordon, P.B.; Rivetta, A.; Allen, K.E.; Berbasova, T.; Slayman, C.; Strobel, S.A. Yeast Fex1p is a constitutively expressed fluoride channel with functional asymmetry of its two homologous domains. J. Biol. Chem. 2015, 290, 19874–19887. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.T. An overview of environmental hazards and exposure risk of hydrofluorocarbons (HFCs). Chemosphere 2005, 61, 1539–1547. [Google Scholar] [CrossRef] [PubMed]
- Difluoromethane. CAS No. 75-10-5. Chemical Book. CAS Database List. Available online: http://www.chemicalbook.com/ChemicalProductProperty_EN_cb6175830.html (accessed on 11 November 2016).
- National Research Council, USA. Accute Exposure Guidelines for Selected Airborne Chemicals; National Academies Press: Washington, DC, USA, 2010; Volume 8, pp. 144–185. [Google Scholar]
- A Insecticide and Acaricide Used to Control a Variety of Insects on An Extensive Range of Crops. Available online: http://sitem.herts.ac.uk/aeru/iupac/Reports/657.htm (assessed on 31 October 2016).
- Tawfik, M.K.; Mohamed, M.I. Exenatide suppresses 1,2-dimethylhydrazine-induced colon cancer in diabetic mice: Effect on tumor angiogenesis and cell proliferation. Biomed. Pharmacother. 2016, 82, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Malayeri, M.R.; Dadkhah, A.; Fatemi, F.; Dini, S.; Torabi, F.; Tavajjoh, M.M.; Rabiei, J. Chemotherapeutic effect of Berberis integerrima hydroalcoholic extract on colon cancer development in the 1,2-dimethyl hydrazine rat model. Z. Naturforsch. C 2016, 71, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Prasad, V.G.; Reddy, N.; Francis, A.; Nayak, P.G.; Kishore, A.; Nandakumar, K.; Rao, M.C.; Shenoy, R. Sambar, an Indian dish prevents the development of dimethyl hydrazine-induced colon cancer: A preclinical study. Pharmacogn. Mag. 2016, 12, S441–S445. [Google Scholar] [PubMed]
- Fiala, E.S. Investigations into the metabolism and mode of action of the colon carcinogens 1,2-dimethyl hydrazine and azoxymethane. Cancer 1977, 40, 2436–2445. [Google Scholar] [CrossRef]
- Carlsen, L.; Kenesova, O.A.; Batyrbekova, S.E. A preliminary assessment of the potential environmental and human health impact of unsymmetrical dimethylhydrazine as a result of space activities. Chemosphere 2007, 67, 1108–1116. [Google Scholar] [CrossRef] [PubMed]
- Galanie, S.; Smolke, C.D. Optimization of yeast-based production of medicinal protoberberine alkaloids. Microb. Cell. Fact. 2015, 14, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, K.M.; Smolke, C.D. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat. Chem. Biol. 2008, 4, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Morais, L.C.; Barbosa-Filho, J.M.; Almeida, R.N. Central depressant effects of reticuline extracted from Ocotea duckei in rats and mice. J. Ethnopharmacol. 1998, 62, 57–61. [Google Scholar] [CrossRef]
- Narcross, L.; Fossati, E.; Bourgeois, L.; Dueber, J.E.; Martin, V.J. Microbial factories for the production of benzylisoquinoline alkaloids. Trends Biotechnol. 2016, 34, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Minami, H. Fermentative production of plant benzylisoquinoline alkaloids in microbes. Biosci. Biotechnol. Biochem. 2013, 77, 1617–1622. [Google Scholar] [CrossRef] [PubMed]
- Diaz, G.J. Toxicosis by plant alkaloids in humans and animals in Colombia. Toxins (Basel) 2015, 7, 5408–5416. [Google Scholar] [CrossRef] [PubMed]
- Diaz, G.J.; Roldán, L.P.; Cortés, A. Intoxication of Crotalaria pallida seeds to growing broiler chicks. Vet. Hum. Toxicol. 2003, 45, 187–189. [Google Scholar] [PubMed]
- Keerthana, G.; Kalaivani, M.K.; Sumathy, A. In Vitro alpha amylase inhibitory and anti-oxidant activities of ethanolic leaf extract of Croton bonplandianum. Asian J. Pharm. Clin. Res. 2013, 6, 32–36. [Google Scholar]
- Hameed, I.H.; Hamza, L.F.; Sabreen, A. Kamal Analysis of bioactive chemical compounds of Aspergillus niger by using gas chromatography-mass spectrometry and Fourier-transform infrared spectroscopy. J. Pharmacogn. Phytother. 2015, 7, 132–163. [Google Scholar]
- Toghueo, K.R.M.; Dinkar, S.; Fekam, B.F. Impact of small chemical elicitors on the production of volatile metabolites by endophytic fungi Fusarium sp. and Phomopsis sp. from Cameroonian medicinal plants. Sch. Acad. J. Pharm. 2016, 5, 371–376. [Google Scholar]
- Ramadan, M.M.; Elbandy, M.A.; Fadel, M.; Ghanem, K.Z. Biotechnological production of volatile and non-volatile antioxidant compounds from fermented soy bean meal with Trichoderma sp. Res. J. Pharm. Biol. Chem. Sci. 2014, 5, 537–547. [Google Scholar]
- Al-qudah, M.A.; Abu zarga, M.H. Chemical composition of essential oils from aerial parts of Sisymbrium irio from Jordan. E-J. Chem. 2010, 7, 6–10. [Google Scholar] [CrossRef]
- Shubharani, R.; Sivaram, V.; Kishore, B.R. In Vitro cytotoxicity of Indian bee propolis on cancer cell lines. Int. J. Pharm. Biol. Sci. 2014, 5, 698–706. [Google Scholar]
- Food Standard Agency. United Kingdom. Guidance notes, Importing Food Containing Contaminants. Available online: https://www.food.gov.uk/business-industry/imports/importers/contaminant (accessed on 20 January 2016).
- Ukhun, M.E.; Okolie, N.P.; Onyerinde, A.O. Some mineral profile of fresh and bottled palm wine—A comparative study. Afr. J. Biotechnol. 2005, 4, 829–832. [Google Scholar]
- Erah, P.O.; Akujieze, C.N.; Oteze, G.E. The quality of ground water in Benin City: A baseline study on inorganic chemicals and microbial contaminants of health importance in boreholes and open wells. Trop. J. Pharm. Res. 2002, 1, 75–82. [Google Scholar] [CrossRef]
- European commission. Union Guidance on Regulation (EU) No 10/2011 on Plastic Materials and Articles Intended to Come into Contact with Food as Regards Information in the Supply Chain. Available online: https://ec.europa.eu/food/sites/food/files/safety/docs/cs_fcm_plastic-guidance_201110_reg_en.pdf (accessed on 2 October 2016).
- Obahiagbon, F.I.; Oviasogie, P. Changes in the physicochemical characteristics of processed and stored Raphia hookeri palm sap (shelf life studies). Am. J. Food Technol. 2007, 2, 323–326. [Google Scholar]
- Osarolube, E.; Nwaiwu, O. Probing yeast fermented palm wine interactions with the surface of its plastic container. Arch. Appl. Sci. Res. 2016, 8, 77–84. [Google Scholar]
- McNeill, I.C.; Memetea, L.; Cole, J.C. A study of the products of PVC thermal degradation. Polym. Degrad. Stab. 1995, 49, 181–191. [Google Scholar] [CrossRef]
- Sharma, V.; Shrivastava, P.; Agarwal, D.D. Degradation of PET-bottles to monohydroxyethyl terephthalate (MHT) using ethylene glycol and hydrotalcite. J. Polym. Res. 2015, 22, 241. [Google Scholar] [CrossRef]
- Bach, C.; Dauchy, X.; Chagnon, M.C.; Etienne, S. Chemical compounds and toxicological assessments of drinking water stored in polyethylene terephthalate (PET) bottles: A source of controversy reviewed. Water Res. 2012, 46, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Bach, C.; Dauchy, X.; Severin, I.; Munoz, J.F.; Etienne, S.; Chagnon, M.C. Effect of sunlight exposure on the release of intentionally and/or non-intentionally added substances from polyethylene terephthalate (PET) bottles into water: Chemical analysis and in vitro toxicity. Food Chem. 2014, 162, 63–71. [Google Scholar] [CrossRef] [PubMed]
Compounds | PubChem CID 1 | Estimated Concentrations 2 in Palm Wine (ppm) | IDLH 3 (ppm) | Uses | Possible Sources | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | |||||
1. Styrene | 7501 | 4495 | 4299 | 3132 | 1938 | 1867 | 1505 | 5614 | 700 | Plastics | Plastic container |
2. Benzene | 241 | 332 | 268 | 173 | 87 | 121 | 56 | 343 | 500 | Solvent | Benzoic acid + Vitamin C |
3. Trimethyldioxolane | 12586 | 3281 | 1533 | 789 | 3560 | 462 | 2298 | 3581 | 500 4 | Solvent | Derivative |
4. Dichloromethane | 6344 | 108 | 168 | 367 | 835 | 151 | 135 | 301 | 2300 | Solvent | Environment |
5. Methylene fluoride | 6345 | 126 | 28 | 48 | 21 | 46 | 140 | 58 | 25 5 | refrigerant | Environment |
6. Dichloroethanol | 11718 | 693 | 118 | 134 | 158 | 70 | 390 | 125 | 3000 6 | Solvent | Environment |
7. Dimethylhydrazine | 5976 | 926 | 4889 | 9162 | 7238 | 352 | 766 | 540 | 50 | Pesticides | Environment |
8. Dimethylhydrazine | 16680696 | 73 | 138 | 210 | 169 | 127 | 53 | 116 | 66.1 7 | Pharmacy | Leaves or tissue |
9. Tetraacetyl-d-xylonic | 541568 | 87 | 68 | 132 | 96 | 118 | 88 | 152 | 250 8 | Plant part | Plant compound nitrile |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nwaiwu, O.; Itumoh, M. Chemical Contaminants Associated with Palm Wine from Nigeria Are Potential Food Safety Hazards. Beverages 2017, 3, 16. https://doi.org/10.3390/beverages3010016
Nwaiwu O, Itumoh M. Chemical Contaminants Associated with Palm Wine from Nigeria Are Potential Food Safety Hazards. Beverages. 2017; 3(1):16. https://doi.org/10.3390/beverages3010016
Chicago/Turabian StyleNwaiwu, Ogueri, and Martin Itumoh. 2017. "Chemical Contaminants Associated with Palm Wine from Nigeria Are Potential Food Safety Hazards" Beverages 3, no. 1: 16. https://doi.org/10.3390/beverages3010016
APA StyleNwaiwu, O., & Itumoh, M. (2017). Chemical Contaminants Associated with Palm Wine from Nigeria Are Potential Food Safety Hazards. Beverages, 3(1), 16. https://doi.org/10.3390/beverages3010016