Development of Blueberry and Carrot Juice Blend Fermented by Lactobacillus reuteri LR92
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blueberry and Carrot Blend
2.2. Bacterial Strain
2.3. Fermentation Process
2.4. Resistance of L. reuteri in the Blend to Acidity and Bile Salts
2.5. Stability in the Storage Period
2.6. Counting of Viable Cells
2.7. Establishment of Antioxidant Capacity for the Fermented Blueberry and Carrot Blend
2.7.1. Extract Preparation
2.7.2. Total Phenolics Analysis (Reduction of Folin–Ciocalteau Reagent)
2.7.3. Antioxidant Capacity: Capacity of Scavenging Free DPPH• Radicals
2.7.4. Antioxidant Capacity: Capacity of Scavenging Free Radicals (ABTS•+)
2.8. Statistical Analysis
3. Results
3.1. Centesimal Composition
3.2. Fermentation Process
3.3. Stability in the Storage Period
3.4. Resistance of L. reuteri in the Blend to Acidity and Bile Salts
3.5. Antioxidant Capacity under Storage
4. Discussion
4.1. Centesimal Composition
4.2. Fermentation Process
4.3. Stability in the Storage Period
4.4. Resistance of L. reuteri in the Blend to Acidity and Bile Salts
4.5. Antioxidant Capacity under Storage
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Quinteros, E.T.T. Processamento e Estabilidade de Néctares de Acerola-Cenoura. Master’s Thesis, Faculty of Food Engineering, State University of Campinas, Campinas, Brazil, 1995. [Google Scholar]
- Dimitrovski, D.; Velickova, E.; Dimitrovska, M.; Langerholc, T.; Winkelhausen, E. Synbiotic functional drink from Jerusalem artichoke juice fermented by probiotic Lactobacillus plantarum PCS26. J. Food Sci. Technol. 2016, 53, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Cardeñosa, V.; Girones-Vilaplana, A.; Muriel, J.L.; Moreno, D.A.; Moreno-Rojas, J.M. Influence of genotype, cultivation system and irrigation regime on antioxidant capacity and selected phenolics of blueberries (Vaccinium corymbosum L.). Food Chem. 2016, 202, 276–283. [Google Scholar]
- Reque, P.M.; Steffens, R.S.; Jablonski, A.; Flôres, S.H.; Rios, A.O.; Jong, E.V. Cold storage of blueberry (Vaccinium spp.) fruits and juice: Anthocyanin stability and antioxidant activity. J. Food Compos. Anal. Res. 2013, 33, 111–116. [Google Scholar] [CrossRef]
- Skrede, G.; Wrolstad, R.E.; Durst, R.W. Changes in anthocyanins and polyphenolics during juice processing of Highbush blueberries (Vaccinium corymbosum L.). J. Food Sci. 2000, 55, 357–364. [Google Scholar] [CrossRef]
- Lima, K.S.C.; Lima, A.L.S.; Luchese, R.H.; Godoy, R.L.O.; Sabaa-Srur, A.U.O. Minimally processed carrots in modified atmosphere packaging and gama irradiation treatment: Microbiological, fisical-chemistry and chemistry evaluation. Food Sci. Technol. 2003, 23, 240–250. [Google Scholar]
- Food and Agriculture Organization (FAO); World Health Organization (WHO). Guidelines for the Evaluation of Probiotics in Food: Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food; FAO/WHO: London, ON, Canada, 2002. [Google Scholar]
- Kun, S.; Rezessy-Szabo, J.M.; Nguyes, Q.D.; Hoschke, A. Changes of microbial population and some components in carrot juice during fermentation with selected Bifidobacterium strains. Process Biochem. 2008, 43, 816–821. [Google Scholar] [CrossRef]
- Rivera-Espinoza, Y.; Gallardo-Navarro, Y. Non-dairy probiotic products. Food Microbiol. 2010, 27, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mestry, A.P.; Mujumdar, A.S.; Thorat, N. Optimization of Spray Drying of an Innovative Functional Food: Fermented Mixed Juice of Carrot and Watermelon. Dry. Technol. 2011, 29, 1121–1131. [Google Scholar] [CrossRef]
- Costa, M.G.M.; Fonteles, T.V.; de Jesus, A.L.T.; Rodrigues, S. Sonicated pineapple juice as substrate for L. casei cultivation for probiotic beverage development: Process optimisation and product stability. Food Chem. 2013, 139, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Perricone, M.; Bevilacqua, A.; AltierI, C.; Sinigaglia, M.; Corbo, M.R. Challenges for production of probiotic fruit juices. Beverages 2015, 1, 95–103. [Google Scholar] [CrossRef]
- Teixeira, J.S.; Seeras, A.; Sanchez-Maldonado, A.F.; Zhang, C.; Su, M.S.; Gänzle, M.G. Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri. Food Microbiol. 2014, 42, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Coccorullo, P.; Strisciuglio, C.; Martinelli, M.; Miele, E.; Greco, L.; Staiano, A. Lactobacillus reuteri (DSM 17938) in infants with functional chronic constipation: A double-blind, randomized, placebo-controlled study. J. Pediatr. 2010, 157, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.L.; Martoni, C.J.; Tamber, S.; Parent, M.; Prakash, S. Evaluation of safety and tolerance of microencapsulated Lactobacillus reuteri NCIMB 30242 in a yogurt formulation: A randomized, placebo-controlled, double-blind study. Food Chem. Toxicol. 2012, 50, 2216–2223. [Google Scholar] [CrossRef] [PubMed]
- Taranto, M.P.; Medici, M.; Perdigón, G.; Ruiz Holgado, A.P.; Valdez, G.F. Effect of Lactobacillus reuteri on the prevention of hypercholesterolemia in ice. J. Dairy Sci. 2000, 83, 401–403. [Google Scholar] [CrossRef]
- Dinleyici, E.C.; Dalgic, N.; Guven, S.; Metin, O.; Yasa, O.; Kurugol, Z.; Turel, O.; Tanir, G.; Yazar, A.S.; Arica, V.; et al. Lactobacillus reuteri DSM 17938 shortens acute infectious diarrhea in a pediatric outpatient setting. J. Pediatr. 2015, 91, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Perricone, M.; Corbo, M.R.; Sinigaglia, M.; Speranza, B.; Bevilacqua, A. Viability of Lactobacillus reuteri in fruit juices. J. Funct. Foods 2014, 10, 421–426. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). Agricultural Research Service. USDA Food Composition Databases. Available online: https://ndb.nal.usda.gov/ndb/search (accessed on 25 June 2016).
- Tamminen, M.; Salminen, S.; Ouwehand, A.C. Fermentation of carrot juice by probiotics: Viability and preservation of adhesion. Int. J. Biotechnol. Wellness Ind. 2013, 2, 10–15. [Google Scholar] [CrossRef]
- Jägerstad, M.; Jastrebova, J.; Svensson, U. Folates in fermented vegetables—A pilot study. LWT Food Sci. Technol. 2006, 37, 603–611. [Google Scholar] [CrossRef]
- Bergqvist, S.W.; Sandberg, A.S.; Calrlsson, N.G.; Andid, T. Improved iron solubility in carrot juice fermented by homo- and hetero-fermentative lactic acid bacteria. Food Microbiol. 2005, 22, 53–61. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method form Determination of Sugars and Related Substances. Nature 1956, 28, 350–356. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Physiol. Pharmacol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Association of Official Agricultural Chemists (AOAC). Official Methods of Analysis, 15th ed.; AOAC: Washington, DC, USA, 2006. [Google Scholar]
- Spinosa, W.A.; dos Júnior, V.S.; Galvan, D.; Fiorio, J.L.; Gomez, R.J.H.C. Fermentation kinetics of rice syrup, with high contente of dextrose equivalente, by Saccharomyces cerevisae and characterization of volatile compounds from wine. J. Food Process. Pres. 2016, 40, 1199–1205. [Google Scholar] [CrossRef]
- Krasaekoopt, W.; Bhandari, B.; Deeth, H. The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int. Dairy J. 2004, 14, 737–743. [Google Scholar] [CrossRef]
- Swain, T.; Hills, W.E. The phenolic constituents of Prunnus domestica. The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 19, 63–68. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of free radical method to evaluate antioxidant activity. Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Sánchez-Gonzalez, I.; Jiménez-Escrig, A.; Saura-Calixto, F. In vitro antioxidant activity of coffees brewed using different procedures (Italian, espresso and filter). Food Chem. 2005, 90, 133–139. [Google Scholar] [CrossRef]
- Shah, N.P. Functional cultures and health benefits. Int. Dairy J. 2007, 17, 1262–1277. [Google Scholar] [CrossRef]
- Charteris, W.P.; Kelly, P.M.; Morelli, L.; Collins, J.K. Ingredient selection criteria for probiotic microorganisms in functional dairy foods. Int. J. Dairy Technol. 1998, 51, 123–136. [Google Scholar] [CrossRef]
- Ronginski, V.; Lissi, E.A. Review of methods to determine chain-breaking antioxidant activity in food. Food Chem. 2005, 92, 235–254. [Google Scholar]
- Mousavi, Z.E.; Mousavi, S.M.; Razavi, S.H.; Emam-Djomeh, Z.; Kiani, H. Fermentation of pomegranate juice by probiotic lactic acid bacteria. World J. Microbiol. Biotechnol. 2011, 27, 123–128. [Google Scholar] [CrossRef]
- Lima, I.F.P.; Lindner, J.D.; Soccol, V.T.; Parada, J.L.; Soccol, C.R. Development of an innovative nutraceutical fermented beverage from Herbal Mate (Ilex paraguariensis A. St.-Hil.) extract. Int. J. Mol. Sci. 2012, 12, 788–800. [Google Scholar] [CrossRef] [PubMed]
- Moraes, J.O.; Pertuzatti, P.B.; Corrêa, F.V.; Salas-Mellado, M.L.M. Study of rabbiteye blueberry (Vaccinium ashei Reade) in the process of food products. Food Sci. Technol. 2007, 27, 18–22. [Google Scholar]
- Yáñez, R.; Marques, S.; Gírio, F.M.; Roseiro, J.C. The effect of acid stress on lactate production and growth kinetics in Lactobacillus rhamnosus culture. Process Biochem. 2008, 43, 356–361. [Google Scholar] [CrossRef]
- Meng, X.C.; Stanton, G.F.; Fitzgerald, C.D.; Ross, R.P. Anydrobiotics: The challenges of drying probiotic cultures. Food Chem. 2007, 106, 1406–1416. [Google Scholar] [CrossRef]
- Nualkaekul, S.; Charalampopouloos, D. Survival of Lactobacillus plantarum in model solution and fruit juices. Int. J. Food Microbiol. 2011, 146, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Vasiljevic, T.; Shah, N.P. Probiotics—From Metchnikoff to bioactives. Int. Dairy J. 2008, 18, 714–728. [Google Scholar] [CrossRef]
- Pallin, A.; Agback, P.; Jonsson, H.; Roos, S. Evaluation of growth, metabolism and production of potentially bioactive components during fermentation of barley with Lactobacillus reuteri. Food Microbiol. 2016, 57, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Céspedes, M.; Cárdenas, P.; Staffolani, M.; Ciappini, M.C.; Vinderola, G. Performance in Nondairy Drinks of Probiotic L. casei Strains Usually Employed in Dairy Products. J. Food Sci. 2013, 78, M756–M762. [Google Scholar] [CrossRef] [PubMed]
- Krasaekoopt, W.; Watcharapoka, S. Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. LWT Food Sci. Technol. 2014, 57, 761–766. [Google Scholar] [CrossRef]
- Moraes Filho, M.L.; Hirozawa, S.S.; Prudencio, S.H.; Ida, E.I.; Garcia, S. Petit suisse from black soybean: bioactive compounds and antioxidant properties during development process. Int. J. Food Sci. Nutr. 2014, 65, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Melo, E.A.; Maciel, M.I.S.; Lima, V.L.A.G.; Leal, F.L.L.; Caetano, A.C.S.; Nascimento, R.J. Antioxidant capacity of vegetables commonly consumed. Food Sci. Technol. 2006, 26, 639–644. [Google Scholar]
Treatment | Moisture (%) | Protein (%) | Lipids (%) | Ash (%) | Total Sugars (%) | pH |
---|---|---|---|---|---|---|
Unfermented | 93.00 ± 0.84 | 0.22 ± 0.04 | 0 | 0.14 ± 0.01 | 8.09 a ± 1.15 | 3.84 a ± 0.07 |
Fermented | 93.53 ± 0.22 | 0.17 ± 0.02 | 0 | 0.11± 0.02 | 3.97 b ± 0.2 | 3.1 b ± 0.01 |
Time (days) | Total Phenolic Compounds (mg·GAE·100 mL−1) | ABTS•+ (µMol·trolox/mL) | DPPH• (µMol·trolox/mL) |
---|---|---|---|
0 | 112.27 a (±9.21) | 0.52 b (±0.19) | 9.47 a (±0.52) |
7 | 118.58 a (±3.66) | 1.35 a,b (±0.49) | 9.62 a (±0.72) |
14 | 114.42 a (±4.45) | 2.19 a,b (±0.84) | 8.25 a (±1.39) |
21 | 127.55 a (±6.11) | 2.84 a (±0.57) | 7.92 a (±1.69) |
28 | 120.98 a (±3.03) | 3.09 a (±0.81) | 8.20 a (±1.11) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mauro, C.S.I.; Guergoletto, K.B.; Garcia, S. Development of Blueberry and Carrot Juice Blend Fermented by Lactobacillus reuteri LR92. Beverages 2016, 2, 37. https://doi.org/10.3390/beverages2040037
Mauro CSI, Guergoletto KB, Garcia S. Development of Blueberry and Carrot Juice Blend Fermented by Lactobacillus reuteri LR92. Beverages. 2016; 2(4):37. https://doi.org/10.3390/beverages2040037
Chicago/Turabian StyleMauro, Carolina Saori Ishii, Karla Bigetti Guergoletto, and Sandra Garcia. 2016. "Development of Blueberry and Carrot Juice Blend Fermented by Lactobacillus reuteri LR92" Beverages 2, no. 4: 37. https://doi.org/10.3390/beverages2040037
APA StyleMauro, C. S. I., Guergoletto, K. B., & Garcia, S. (2016). Development of Blueberry and Carrot Juice Blend Fermented by Lactobacillus reuteri LR92. Beverages, 2(4), 37. https://doi.org/10.3390/beverages2040037