Leaf Infusion of Ribes magellanicum Poir.: A Traditional Beverage from Southern Patagonia with Strong Inhibitory Effects on α-Glucosidase
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Plant Material
2.3. Sample Processing and Extraction
2.4. Phenolic, Flavonoid, and Procyanidin Contents
2.5. Antioxidant Capacity
2.6. Enzyme Inhibition Assays
2.6.1. α-Amylase
2.6.2. α-Glucosidase
2.6.3. Lipase
2.7. Assay-Guided Isolation of α-Glucosidase Inhibitors from R. Magellanicum Leaves
2.8. Chromatographic Analyses
2.8.1. Thin Layer Chromatography (TLC) Analysis
2.8.2. HPLC-DAD Profiles
2.8.3. HPLC-DAD-MS/MS
2.9. Infrared (IR) Analysis
2.10. Statistical Analyses
3. Results
3.1. Phenolic, Flavonoid, and Procyanidin Contents and Antioxidant Capacity
3.2. Enzyme Inhibition Assays
3.3. Assay-Guided Isolation of the α-Glucosidase Inhibitors
3.4. HPLC–MS/MS Analyses
3.4.1. Proanthocyanidins
3.4.2. Flavonoids
3.4.3. Phenylpropanoids
3.4.4. Flavonolignans
3.4.5. Other Compounds
3.4.6. Unknown Compounds
3.5. HPLC-DAD Fingerprints and Main Phenolics Quantification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Puspitasari, Y.E.; Tuenter, E.; Breynaert, A.; Foubert, K.; Herawati, H.; Hariati, A.M.; Aulanni’am, A.; De Bruyne, T.; Hermans, N. α-Glucosidase inhibitory activity of tea and Kombucha from Rhizophora mucronata leaves. Beverages 2024, 10, 22. [Google Scholar] [CrossRef]
- Geraris Kartelias, I.; Panagiotakopoulos, I.; Nasopoulou, C.; Karantonis, H.C. Evaluating the effect of adding selected herbs, spices, and fruits to fermented Olympus Mountain tea (Sideritis scardica) Kombucha sweetened with Thyme honey: Assessment of physicochemical and functional properties. Beverages 2024, 10, 9. [Google Scholar] [CrossRef]
- Vasić, D.; Katanić Stanković, J.S.; Urošević, T.; Kozarski, M.; Naumovski, N.; Khan, H.; Popović-Djordjević, J. Insight into bioactive compounds, antioxidant and anti-diabetic properties of rosehip (Rosa canina L.)-based tisanes with addition of hibiscus flowers (Hibiscus sabdariffa L.) and saffron (Crocus sativus L.). Beverages 2024, 10, 1. [Google Scholar] [CrossRef]
- de Mösbach, W. Botánica Indígena de Chile; Aldunate, C., Villagrán, C., Eds.; Museo Chileno de Arte Precolombino: Santiago, Chile, 1992; 140p, Códigos BN: MC0027380. [Google Scholar]
- Mølgaard, P.; Holler, J.G.; Asar, B.; Liberna, I.; Rosenbæk, L.B.; Jebjerg, C.P.; Jørgensen, L.; Lauritzen, J.; Guzman, A.; Adsersen, A.; et al. Antimicrobial evaluation of Huilliche plant medicine used to treat wounds. J. Ethnopharmacol. 2011, 138, 219–227. [Google Scholar] [CrossRef]
- Raudsepp, P.; Kaldmäe, H.; Kikas, A.; Libek, A.-V.; Püssa, T. Nutritional quality of berries and bioactive compounds in the leaves of black currant (Ribes nigrum L.) cultivars evaluated in Estonia. J. Berry Res. 2010, 1, 53–59. [Google Scholar] [CrossRef]
- Kendir, G.; Süntar, I.; Çeribaşı, A.O.; Köroğlu, A. Activity evaluation on Ribes species, traditionally used to speed up healing of wounds: With special focus on Ribes nigrum. J. Ethnopharmacol. 2019, 237, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Wang, N.; Xu, W.; Zhou, H. Genus Ribes Linn. (Grossulariaceae): A comprehensive review of traditional uses, phytochemistry, pharmacology and clinical applications. J. Ethnopharmacol. 2021, 276, 114166. [Google Scholar] [CrossRef]
- D’Urso, G.; Montoro, P.; Piacente, S. Detection and comparison of phenolic compounds in different extracts of black currant leaves by liquid chromatography coupled with high-resolution ESI-LTQ-Orbitrap MS and high-sensitivity ESI-Qtrap MS. J. Pharm. Biomed. Anal. 2020, 179, 112926. [Google Scholar] [CrossRef] [PubMed]
- Tabart, J.; Franck, T.; Kevers, C.; Pincemail, J.; Serteyn, D.; Defraigne, J.-O.; Dornmes, J. Antioxidant and anti-inflammatory activities of Ribes nigrum extracts. Food Chem. 2012, 131, 1116–1122. [Google Scholar] [CrossRef]
- Muller, C.J.F.; Joubert, E.; de Beer, D.; Sanderson, M.; Malherbe, C.J.; Fey, S.J.; Louw, J. Acute assessment of an aspalathin-enriched green rooibos (Aspalathus linearis) extract with hypoglycemic potential. Phytomedicine 2012, 20, 32–39. [Google Scholar] [CrossRef]
- Lim, J.; Ferruzzi, M.G.; Hamaker, B.R. Structural requirements of flavonoids for the selective inhibition of α-amylase versus α-glucosidase. Food Chem. 2022, 370, 130981. [Google Scholar] [CrossRef]
- Rozzi, R.; Massardo, F.; Anderson, C.B.; Heidinger, K.; Silander Jr, J.A. Ten principles for biocultural conservation at the southern tip of the Americas: The approach of the Omora Ethnobotanical Park. Ecol. Soc. 2006, 11, 1. Available online: http://www.ecologyandsociety.org/vol11/iss1/art43/ (accessed on 28 July 2025). [CrossRef]
- Nina, N.; Theoduloz, C.; Paillán, H.; Jiménez-Aspee, F.; Márquez, K.; Schuster, K.; Becker, L.; Oellig, C.; Frank, J.; Schmeda-Hirschmann, G. Chemical profile and bioactivity of Chilean bean landraces (Phaseolus vulgaris L.). J. Funct. Foods 2023, 104, 105513. [Google Scholar] [CrossRef]
- Jiménez-Aspee, F.; Theoduloz, C.; Vieira, M.N.; Rodríguez-Werner, M.A.; Schmalfuss, E.; Winterhalter, P.; Schmeda-Hirschmann, G. Phenolics from the Patagonian currants Ribes spp.: Isolation, characterization and cytoprotective effect in human AGS cells. J. Funct. Foods 2016, 26, 11–26. [Google Scholar] [CrossRef]
- Jiménez-Aspee, F.; Valdés, S.T.; Schulz, A.; Ladio, A.; Theoduloz, C.; Schmeda-Hirschmann, G. Antioxidant activity and phenolic profiles of the wild currant Ribes magellanicum from Chilean and Argentinean Patagonia. Food Sci. Nutr. 2016, 4, 595–610. [Google Scholar] [CrossRef]
- Theoduloz, C.; Burgos-Edwards, A.; Schmeda-Hirschmann, G.; Jimenez-Aspee, F. Effect of polyphenols from wild Chilean currants (Ribes spp.) on the activity of intracellular antioxidant enzymes in human gastric AGS cells. Food Biosci. 2018, 24, 80–88. [Google Scholar] [CrossRef]
- Wagner, H.; Bladt, S. Plant drug analysis. In A Thin Layer Chromatography Atlas; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Laghi, L.; Parpinello, G.P.; Del Rio, D.; Calani, L.; Mattioli, A.U.; Versari, A. Fingerprint of enological tannins by multiple techniques approach. Food Chem. 2010, 121, 783–788. [Google Scholar] [CrossRef]
- Ping, L.; Pizzi, A.; Guo, Z.D.; Brosse, N. Condensed tannins from grape pomace: Characterization by FTIR and MALDI TOF and production of environmentally friendly wood adhesive. Ind. Crops Prod. 2012, 40, 13–20. [Google Scholar] [CrossRef]
- Diwani, N.; Fakhfakh, J.; Athmouni, K.; Belhaj, D.; El Feki, A.; Allouche, N.; Ayadi, H.; Bouaziz-Ketata, H. Optimization, extraction, structure analysis and antioxidant properties of flavan-3-ol polymers: Proanthocyanidins isolated from Periploca angustifolia using surface response methodology. Ind. Crops Prod. 2020, 144, 112040. [Google Scholar] [CrossRef]
- Esquivel-Alvarado, D.; Muñoz-Arrieta, R.; Alfaro-Viquez, E.; Madrigal-Carballo, S.; Krueger, C.G.; Reed, J.D. Composition of anthocyanins and proanthocyanidins in three tropical Vaccinium species from Costa Rica. J. Agric. Food Chem. 2020, 68, 2872–2879. [Google Scholar] [CrossRef]
- Fernández-Fernández, R.; López-Martínez, J.C.; Romero-González, R.; Martínez-Vidal, J.L.; Alarcón Flores, M.I.; Garrido, F.A. Simple LC–MS determination of citric and malic acids in fruits and vegetables. Chromatographia 2010, 72, 55–62. [Google Scholar] [CrossRef]
- Clifford, M.N.; Johnston, K.L.; Knight, S.; Kuhnert, N. Hierarchical scheme for LC MSn identification of chlorogenic acids. J. Agric. Food Chem. 2003, 51, 2900–2911. [Google Scholar] [CrossRef]
- Sasaki, T.; Li, W.; Zaike, S.; Asada, Y.; Li, Q.; Ma, F.; Zhang, Q.; Koike, K. Antioxidant lignoids from leaves of Ribes nigrum. Phytochemistry 2013, 95, 333–340. [Google Scholar] [CrossRef]
- Lin, L.; Sun, J.; Chen, P.; Monagas, M.J.; Harnly, J.M. UHPLC-PDA-ESI/HRMS Profiling method to identify and quantify oligomeric proanthocyanidins in plant products. J. Agric. Food Chem. 2014, 62, 9387–9400. [Google Scholar] [CrossRef]
- Zhang, Q.; Fan, D.; Xiong, B.; Kong, L.; Zhu, X. Isolation of new flavan-3-ol and lignan glucoside from Loropetalum chinense and their antimicrobial activities. Fitoterapia 2013, 90, 228–232. [Google Scholar] [CrossRef]
- Bernardo, J.; Ferreres, F.; Gil-Izquierdo, A.; Videira, R.M.; Valentao, P.; Veiga, F.; Andrade, P.B. In vitro multimodal-effect of Trichilia catigua A. Juss. (Meliaceae) bark aqueous extract in CNS targets. J. Ethnopharmacol. 2018, 211, 247–255. [Google Scholar] [CrossRef]
- Burgos-Edwards, A.; Theoduloz, C.; Miño, S.; Ghosh, D.; Shulaev, V.; Ramírez, C.; Sánchez-Jardón, L.; Rozzi, R.; Schmeda-Hirschmann, G. Phenolic composition and bioactivity of Ribes magellanicum fruits from Southern Patagonia. Heliyon 2024, 10, e25542. [Google Scholar] [CrossRef] [PubMed]
- Burgos-Edwards, A.; Jiménez-Aspee, F.; Thomas-Valdés, S.; Schmeda-Hirschmann, G.; Theoduloz, C. Qualitative and quantitative changes in polyphenol composition and bioactivity of Ribes magellanicum and R. punctatum after in vitro gastrointestinal digestion. Food Chem. 2017, 237, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Vallverdú-Queralt, A.; Jáuregui, O.; Di Lecce, G.; Andrés-Lacueva, C.; Lamuela-Raventós, R.M. Screening of the polyphenol content of tomato-based products through accurate-mass spectrometry (HPLC–ESI-QTOF). Food Chem. 2011, 129, 877–883. [Google Scholar] [CrossRef]
- Shelke, V.; Kale, A.; Kulkarni, Y.A.; Gaikwad, A.B. Phloretin: A comprehensive review of its potential against diabetes and associated complications. J. Pharm. Pharmacol. 2024, 76, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Terazawa, M. Dihydroroseoside, a new cyclohexanone glucoside, from the leaves of shirakamba (Betula platyphylla Sukatchev var. japonica Hara). J. Wood Sci. 2001, 47, 145–148. [Google Scholar] [CrossRef]
- Rontani, J.-F.; Galeron, M.A.; Aubert, C. Electron ionization mass spectrometric fragmentation and multiple reaction monitoring quantification of trimethylsilyl derivatives of cucurbic acid and its 6,7-stereoisomers. Rapid Commun. Mass Spectrom. 2016, 30, 2253–2264. [Google Scholar] [CrossRef]
- Dong, H.W.; Wang, K.; Chang, X.X.; Jin, F.-F.; Wang, Q.; Jiang, X.-F.; Liu, J.-R.; Wu, Y.-H.; Yang, C. Beta-ionone-inhibited proliferation of breast cancer cells by inhibited COX-2 activity. Arch. Toxicol. 2019, 93, 2993–3003. [Google Scholar] [CrossRef]
- Shimomura, H.; Sashida, Y.; Adachi, T. Phenolic glucosides from Prunus grayana. Phytochemistry 1986, 26, 249–251. [Google Scholar] [CrossRef]
- Kasajima, N.; Ito, H.; Hatano, T.; Yoshida, T. Phloroglucinol diglycosides accompanying hydrolyzable tannins from Kunzea ambigua. Phytochemistry 2008, 69, 3080–3086. [Google Scholar] [CrossRef] [PubMed]
- Staszowska-Karkut, M.; Materska, M. Phenolic composition, mineral content, and beneficial bioactivities of leaf extracts from black currant (Ribes nigrum L.), raspberry (Rubus idaeus), and aronia (Aronia melanocarpa). Nutrients 2020, 12, 463. [Google Scholar] [CrossRef]
- Declume, C. Anti-inflammatory evaluation of a hydroalcoholic extract of black currant leaves (Ribes nigrum). J. Ethnopharmacol. 1989, 27, 91–98. [Google Scholar] [CrossRef]
- Garbacki, N.; Tits, M.; Angenot, N.; Damas, J. Inhibitory effects of proanthocyanidins from Ribes nigrum leaves on carrageenan acute inflammatory reactions induced in rats. BMC Pharmacol. 2004, 4, 1471–2210. [Google Scholar] [CrossRef]
- Semwal, R.; Joshi, S.K.; Semwal, R.B.; Semwal, D.K. Health benefits and limitations of rutin—A natural flavonoid with high nutraceutical value. Phytochem. Lett. 2021, 46, 119–128. [Google Scholar] [CrossRef]
- Farha, A.K.; Gan, R.Y.; Li, H.B.; Wu, D.T.; Atanasov, A.G.; Gul, K.; Zhang, J.-R.; Yang, Q.-Q.; Corke, H. The anticancer potential of the dietary polyphenol rutin: Current status, challenges, and perspectives. Crit. Rev. Food Sci. Nutr. 2022, 62, 832–859. [Google Scholar] [CrossRef]
- Dhanya, R. Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomed. Pharmacother. 2022, 146, 112560. [Google Scholar] [CrossRef] [PubMed]
- Şöhretoğlu, D.; Sari, S. Flavonoids as alpha-glucosidase inhibitors: Mechanistic approaches merged with enzyme kinetics and molecular modelling. Phytochem. Rev. 2020, 19, 1081–1092. [Google Scholar] [CrossRef]
- Magar, R.T.; Sohng, J.K. A review on structure, modifications and structure-activity relation of quercetin and its derivatives. J. Microbiol. Biotechnol. 2020, 30, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Kostić, A.Ž.; Arserim-Uçar, D.K.; Materska, M.; Sawicka, B.; Skiba, D.; Milinčić, D.D.; Pešić, M.B.; Pszczółkowski, P.; Moradi, D.; Ziarati, P.; et al. Unlocking quercetin’s neuroprotective potential: A focus on bee-collected pollen. Chem. Biodivers. 2024, 21, e202400114. [Google Scholar] [CrossRef]
- Bangar, S.P.; Chaudhary, V.; Sharma, N.; Bansal, V.; Ozogul, F.; Lorenzo, J.M. Kaempferol: A flavonoid with wider biological activities and its applications. Crit. Rev. Food Sci. Nutr. 2023, 63, 9580–9604. [Google Scholar] [CrossRef]
- Aleixandre, A.; Gil, J.V.; Sineiro, J.; Rosell, C.M. Understanding phenolic acids inhibition of α-amylase and α-glucosidase and influence of reaction conditions. Food Chem. 2022, 372, 131231. [Google Scholar] [CrossRef]
- Son, T.G.; Camandola, S.; Mattson, M.P. Hormetic dietary phytochemicals. Neuromol. Med. 2008, 10, 236–246. [Google Scholar] [CrossRef]
- Barreiro-Sisto, U.; Fernández-Fariña, S.; González-Noya, A.M.; Pedrido, R.; Maneiro, M. Enemies or allies? Hormetic and ap parent non-dose-dependent effects of natural bioactive antioxidants in the treatment of inflammation. Int. J. Mol. Sci. 2024, 25, 1892. [Google Scholar] [CrossRef]
- Dilberger, B.; Weppler, S.; Eckert, G.P. Phenolic acid metabolites of polyphenols act as inductors for hormesis in C. elegans. Mech. Ageing Dev. 2021, 198, 111518. [Google Scholar] [CrossRef]
- Mattson, M.P. Dietary factors, hormesis and health. Ageing Res. Rev. 2008, 7, 43–48. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Iavicoli, I.; Calabrese, V. Hormesis: Its impact on medicine and health. Hum. Exp. Toxicol. 2013, 32, 120–152. [Google Scholar] [CrossRef] [PubMed]
- Pande, S.; Raisuddin, S. The underexplored dimensions of nutritional hormesis. Curr. Nutr. Rep. 2022, 11, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, D.M.; Porzel, A.; Frolov, A.; El Seedi, H.R.; Ludger, A.; Farag, M.A. Comparative analysis of Hibiscus sabdariffa (roselle) hot and cold extracts in respect to their potential for α-glucosidase inhibition. Food Chem. 2018, 250, 236–244. [Google Scholar] [CrossRef]
- Orita, T.; Chogahara, S.; Okuda, M.; Sakao, K.; Miyata, T.; Hou, D.-X. Extraction efficiency and alpha-glucosidase inhibitory activities of green tea catechins by different infusion methods. Foods 2023, 12, 2611. [Google Scholar] [CrossRef]
- Jiang, S.; Zhao, X.; Liu, C.; Dong, Q.; Mei, L.; Chen, C.; Shao, Y.; Tao, Y.; Yue, H. Identification of phenolic compounds in fruits of Ribes stenocarpum Maxim. by UHPLC-QTOF/MS and their hypoglycemic effects in vitro and in vivo. Food Chem. 2021, 344, 128568. [Google Scholar] [CrossRef] [PubMed]
Sample | % w/w Extraction Yield | TP (g GAE/ 100 g PEE) | TF (g CE/ 100 g PEE) | TPC (g CE/ 100 g PEE | DPPH (SC50, µg/mL) | FRAP (µmol TE/g PEE) | TEAC (µmol TE/g PEE) | ORAC (µmol TE/g PEE) |
---|---|---|---|---|---|---|---|---|
Conguillio | ||||||||
Extract | 13.5 | 8.40 ± 0.02 a | 6.33 ± 0.23 a | 3.74 ± 0.11 a | 18.78 ± 0.36 a | 1417.02 ± 20.91 a | 1200.48 ± 23.52 a | 1215.24 ± 69.84 a |
Infusion | 16.0 | 6.20 ± 0.03 b | 4.70 ± 0.24 b | 6.67 ± 0.10 b | 32.79 ± 0.72 b | 929.46 ± 22.32 b | 659.34 ± 13.12 b | 200.59 ± 10.38 b |
Frutillar | ||||||||
Extract | 22.9 | 18.38 ± 0.15 c | 11.02 ± 0.28 c,d | 6.69 ± 0.11 b | 9.56 ± 0.34 c,d | 2634.40 ± 36.34 c,d | 2116.68 ± 41.94 c | 1123.92 ± 67.18 a,c,d |
Infusion | 24.4 | 18.46 ± 0.09 c | 10.51 ± 0.00 c | 6.06 ± 0.15 c | 10.77 ± 0.58 c | 2498.03 ± 19.80 c | 1857.76 ± 36.09 d | 507.56 ± 26.66 a,b |
Lago Espolón | ||||||||
Extract | 26.1 | 8.57 ± 0.13 a,d | 7.59 ± 0.12 e,f | 2.95 ± 0.09 d | 19.46 ± 0.34 a,e | 1517.04 ± 83.55 a | 1238.72 ± 24.17 a | 815.91 ± 31.69 a,b |
Cuesta Queulat | ||||||||
Extract | 27.8 | 9.62 ± 0.17 e | 8.69 ± 0.17 g | 4.31 ± 0.14 a | 10.90 ± 0.38 c | 2099.91 ± 46.35 e | 1910.75 ± 36.61 d | 520.43 ± 53.69 a,b |
Reserva Nacional Magallanes | ||||||||
Shrub 1 | 28.9 | 14.77 ± 0.36 f | 8.01 ± 0.13 e,g | 4.98 ± 0.10 e | 28.40 ± 0.90 f | 2111.13 ± 57.76 e | 1759.88 ± 51.42 d | 251.90 ± 2.94 b |
Shrub 2 | 21.1 | 15.57 ± 0.11 f | 7.41 ± 0.06 e | 6.99 ± 0.62 b | 21.71 ± 0.81 e,g | 2435.80 ± 70.98 f | 2914.55 ± 84.43 e | 745.39 ± 37.04 a,b |
Shrub 3 | 29.3 | 20.34 ± 0.43 g | 13.14 ± 0.32 h | 9.27 ± 0.13 f | 23.86 ± 0.91 g,h | 3116.97 ± 70.98 g | 2455.85 ± 71.32 f | 1043.38 ± 114.89 a |
Shrub 4 | 29.9 | 20.18 ± 0.11 g | 11.41 ± 0.10 d | 8.19 ± 0.09 g | 22.74 ± 0.38 g,i | 3178.51 ± 58.35 g | 2512.49 ± 71.60 f,g | 463.56 ± 3.75 b,c |
Infusion pool | 25.7 | 9.13 ± 0.05 d,e | 8.33 ± 0.24 f,g | 4.16 ± 0.15 a | 20.10 ± 0.52 a,g | 1490.64 ± 53.34 a | 1149.02 ± 22.67 a | 249.85 ± 15.19 b |
Navarino Island | ||||||||
Camping CONAF | 21.1 | 18.58 ± 0.24 c | 9.61 ± 0.45 i | 8.50 ± 0.13 g | 22.75 ± 0.43 g,j | 2711.67 ± 105.06 d | 2618.45 ± 74.37 g | 402.39 ± 10.46 b,d |
Puente Guanaco | 21.3 | 18.65 ± 0.38 c | 9.01 ± 0.50 g,i | 8.13 ± 0.03 g | 24.92 ± 0.77 h,i,j | 2524.93 ± 60.51 c,f | 2851.55 ± 78.50 e | 138.37 ± 8.68 b |
Upushuaia | 22.2 | 13.24 ± 0.18 h | 5.85 ± 0.04 a | 5.43 ± 0.03 e | 34.29 ± 2.22 b | 1744.02 ± 51.85 h | 1565.44 ± 45.16 h | Inactive |
Catechin # | - | - | - | 11.11 ± 1.62 c | 5380.15 ± 80.14 i | - | 9328.16 ± 354.89 e | |
Quercetin # | - | - | 8.01 ± 0.45 d | 1000.32 ± 12.58 b | 8220.15 ± 28.08 i | 23,374.06 ± 897.39 f |
Sample | α-Glucosidase (IC50, µg/mL) |
---|---|
Conguillío | |
Extract | 0.05 ± 0.01 |
Infusion | 0.19 ± 0.00 |
Frutillar | |
Extract | 0.02 ± 0.00 |
Infusion | 0.12 ± 0.01 |
Lago Espolón | |
Extract | 0.06 ± 0.00 |
Cuesta Queulat | |
Extract | 0.06 ± 0.01 |
Reserva Nacional Magallanes | |
Shrub 1 | 0.07 ± 0.01 |
Shrub 2 | 0.11 ± 0.01 |
Shrub 3 | 0.10 ± 0.00 |
Shrub 4 | 0.07 ± 0.00 |
Infusion | 0.13 ± 0.02 |
Navarino Island | |
Camping CONAF | 0.06 ± 0.00 |
Puente Guanaco | 0.09 ± 0.00 |
Upushuaia | 0.05 ± 0.00 |
Reference compound | |
Acarbose | 118.17 ± 2.06 |
Sephadex LH-20 Fraction | α-Glucosidase (IC50, µg/mL) |
---|---|
2/4 | 0.50 ± 0.06 |
5/8 | 0.05 ± 0.04 |
9 | 1.19 ± 0.03 |
10/11 | 0.61 ± 0.07 |
12/13 | 0.19 ± 0.00 |
14 | 0.31 ± 0.00 |
15/16 | 0.22 ± 0.01 |
17/20 | 0.19 ± 0.02 |
21/22 | 0.19 ± 0.02 |
23/24 | 1.35 ± 0.03 |
25 | 1.99 ± 0.13 |
26/28 | 0.85 ± 0.02 |
29/32 | 0.02 ± 0.00 |
33 | 0.04 ± 0.00 |
Reference compound | |
Acarbose | 118.17 ± 2.06 |
Peak | Rt (min) | UVmax | [M-H]− Measured | Molecular Formula | [M-H]− Expected | Error (ppm) | MS/MS | Tentative Identification | RNM | RNM I | U |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1.47 | 191.0197 | C6H7O7 | 191.0197 | 0.01 | 111.0089 (100) | Citric acid [23] | X | X | X | |
2 | 2.14 | 331.0666 | C13H15O10 | 331.0671 | 1.51 | 168.9770 (100) | Galloyl hexose 1 | X | X | X | |
3 | 3.90 | 331.0665 | C13H15O10 | 331.0671 | 1.81 | 169.0478 (100) | Galloyl hexose 2 [9] | X | X | X | |
4 | 4.29 | 609.1235 | C30H25O14 | 609.1250 | 2.46 | 441.0253 (100), 305.0337 (30) | (epi)-gallocatechin-(epi)-gallocatechin dimer 1 | X | X | X | |
5 | 4.59 | 913.1818 | C45H37O21 | 913.1833 | 1.64 | 727.1298 (100), 609.1247 (30) | (epi)-gallocatechin trimer | X | X | X | |
6 | 4.70 | 315.0719 | C13H15O9 | 315.0722 | 0.95 | 153.0193 (100) | Protocatechuic acid hexoside | X | X | X | |
7 | 4.77 | 1217.2413 | C60H49O28 | 1217.2415 | 0.16 | 1031.2002 (100), 609.0896 (30) | (epi)-gallocatechin tetramer | X | X | X | |
8 | 6.16 | 280 | 305.0658 | C15H14O7 | 305.0667 | 2.95 | 221.0453 (80), 179.0350 (100) | Gallocatechin | X | X | X |
9 | 6.28 | 897.1859 | C44H33O21 | 897.1884 | 2.78 | 771.1570 (20), 711.1360 (100), 593.1300 (30) | (epi)-gallocatechin-(epi)-gallocatechin-(epi)-catechin trimer | X | X | X | |
10 | 7.23 | 593.1296 | C30H25O13 | 593.1301 | 0.84 | 425.0872 (100), 289.0717 (30) | (epi)-catechin-(epi)-gallocatechin dimer 1 | X | X | X | |
11 | 8.16 | 324, 295 sh | 353.0864 | C16H17O9 | 353.0878 | 3.96 | 191.0560 (100), 179.0350 (50) | 3-Caffeoylquinic acid * | X | X | X |
12 | 8.41 | 609.1245 | C30H25O14 | 609.1250 | 0.82 | 441.0822 (100), 305.0667 (40) | (epi)-gallocatechin-(epi)-gallocatechin dimer 2 | X | X | X | |
13 | 9.49 | 329, 296 sh | 341.0877 | C15H17O9 | 341.0878 | 0.29 | 179.0349 (100) | Caffeoyl hexoside 1 | X | X | X |
14 | 9.94 | 881.1926 | C45H37O19 | 881.1935 | 1.02 | 711.1276 (100), 593.1057 (60) | (epi)-gallocatechin-(epi)-catechin-(epi)-catechin trimer 1 | X | X | X | |
15 | 10.49 | 310 | 337.0927 | C16H17O8 | 337.0929 | 0.59 | 191.0561 (10), 163.0400 (100) | 3-coumaroylquinic acid [24] | X | X | X |
16 | 11.06 | 353.0875 | C16H17O9 | 353.0878 | 0.85 | 179.0650 (70), 173.0738 (100) | 4-caffeoylquinic acid [24] | X | X | X | |
17 | 12.15 | 593.1288 | C30H25O13 | 593.1301 | 2.19 | 425.0550 (100), 289.0560 (30) | (epi)-catechin-(epi)-gallocatechin dimer 2 | X | X | X | |
18 | 12.33 | 305.0665 | C15H14O7 | 305.0667 | 0.65 | 221.0406 (80), 179.0103 (100) | (epi)-gallocatechin | X | X | X | |
19 | 12.40 | 272 | 577.1346 | C30H25O12 | 577.1352 | 1.03 | 425.0496 (100), 289.0594 (20) | (epi)-catechin dimer 2 | X | X | X |
20 | 12.47 | 325.0919 | C15H17O8 | 325.0929 | 3.03 | 163.0400 (100) | Coumaroyl hexoside 1 | X | X | X | |
21 | 12.50 | 341.0871 | C15H17O9 | 341.0878 | 2.05 | 179.0476 (100) | Caffeoyl hexoside 2 | X | X | X | |
22 | 13.26 | 279 | 289.0716 | C15H13O6 | 289.0712 | −1.38 | 245.0819 (100) | Catechin | X | X | X |
23 | 13.32 | 325.0927 | C15H17O8 | 325.0929 | 0.61 | 162.9986 (100) | Coumaroyl hexoside 2 | X | X | ||
24 | 13.60 | 320, 296 sh | 353.0874 | C16H17O9 | 353.0878 | 1.13 | 191.0349 (100) | 5-caffeoylquinic acid [24] | X | X | X |
25 | 14.00 | 367.1029 | C17H19O9 | 367.1035 | 1.63 | 193.0435 (100) | 3-feruloylquinic acid | X | |||
26 | 14.31 | 325.0924 | C15H17O8 | 325.0929 | 1.53 | 163.0271 (95), 145.0142 (100) | Coumaroyl hexoside 3 | X | X | X | |
27 | 14.37 | 278 | 865.1982 | C45H37O18 | 865.1985 | 0.34 | 695.0706 (100), 577.0770 (70) | (epi)-catechin trimer | X | ||
28 | 15.20 | 385.1132 | C17H21O10 | 385.1140 | 2.07 | 161.0720 (100), 223.1552 (40) | Synapoyl hexoside | X | |||
29 | 15.20 | 1169.2567 | C60H49O25 | 1169.2568 | 0.08 | 881.2656 (100), 423.3024 (40) | (epi)-gallocatechin-(epi)catechin-(epi)catechin-(epi)catechin tetramer | X | |||
30 | 16.05 | 337.0923 | C16H17O8 | 337.0929 | 1.77 | 173.0892 (100), 163.1285 (15) | 4-coumaroylquinic acid [24] | X | |||
31 | 16.46 | 355.1030 | C16H19O9 | 355.1034 | 1.12 | 193.0506 (100) | Feruloyl hexoside | X | X | X | |
32 | 16.60 | 431.1921 | C20H31O10 | 431.1922 | 0.23 | 385.1857 (100), 223.1127 (10), 205.1655 (5) | Roseoside [M+HCOOH]− [25] | X | X | ||
33 | 17.28 | 367.1028 | C17H19O9 | 367.1035 | 1.90 | 193.0739 (20), 160.9781 (100) | Feruloylquinic acid | X | X | ||
34 | 17.59 | 329.0877 | C14H17O9 | 329.0878 | 0.30 | 167.0349 (100) | Vanillic acid hexoside | X | X | X | |
35 | 17.67 | 595.1659 | C27H31O15 | 595.1668 | 1.51 | 475.1231 (70), 385.1146 (90), 355.0962 (100) | Naringenin C-dihexoside | X | X | X | |
36 | 18.25 | 625.1400 | C27H29O17 | 625.1410 | 1.59 | 463.1028 (100), 301.0603 (40) | Quercetin dihexoside | X | |||
37 | 18.54 | 433.2074 | C20H33O10 | 433.2079 | 1.15 | 387.2018 (100), 225.1496 (10), 207.2055 (5) | [M+HCOOH]− Dihydro-roseoside [25] | X | X | X | |
38 | 19.42 | 337.0927 | C16H17O8 | 337.0929 | 0.59 | 191.0558 (100) | 5-coumaroylquinic acid [24] | X | X | ||
39 | 19.50 | 577.1345 | C30H25O12 | 577.1352 | 1.21 | 425.0872 (100), 289.0718 (22) | (epi)-catechin-(epi)-catechin dimer 1 | X | X | X | |
40 | 19.97 | 289.0717 | C15H13O6 | 289.0712 | −1.72 | 245.0815 (100) | (epi)-catechin | X | X | X | |
41 | 20.00 | 449.1083 | C21H21O11 | 449.1089 | 1.33 | 287.0791 (100) | Eriodictyol hexoside | X | |||
42 | 20.20 | 383.0981 | C17H19O10 | 383.0983 | 0.52 | 179.0348 (100), 135.0452 (20) | Caffeic acid acetylhexoside | X | X | X | |
43 | 20.98 | 479.0815 | C21H19O13 | 479.0831 | 3.33 | 303.0506 (100) | Taxifolin glucuronide | X | X | X | |
44 | 21.37 | 335.0764 | C16H15O8 | 335.0772 | 2.38 | 179.0073 (100) | Caffeoylshikimic acid | X | X | ||
45 | 22.50 | 367.1028 | C17H19O9 | 367.1035 | 1.90 | 191.0558 (100) | 5-feruloylquinic acid | X | X | X | |
46 | 23.36 | 755.2025 | C33H39O20 | 755.2040 | 1.98 | 593.1301 (100), | Kaempferol hexoside rutinoside 1 | X | X | X | |
47 | 23.74 | 881.1918 | C45H37O19 | 881.1935 | 1.92 | 755.1702 (50), 729.2177 (20), 711.1658 (40), 695.1482 (100), 407.1939 (30) | (epi)-gallocatechin-(epi)-catechin-(epi)-catechin trimer 2 [26] | X | X | X | |
48 | 25.31 | 351, 253 | 771.1985 | C33H39O21 | 771.1989 | 0.51 | 609.1483 (40), 300.0273 (100) | Quercetin hexoside rutinoside | X | X | |
49 | 26.55 | 625.1389 | C27H29O17 | 625.1410 | 3.35 | 300.0272 (100) | Quercetin dihexoside | X | X | X | |
50 | 27.02 | 709.2554 | 547.1656 (100), 429.2217 (20), 367.1470 (10) | Unknown | X | ||||||
51 | 27.33 | 625.1402 | C27H29O17 | 625.1410 | 1.27 | 316.0224 (100) | Myricetin rutinoside | X | X | X | |
52 | 27.74 | 354, 255 | 741.1854 | C32H37O20 | 741.1884 | 4.04 | 609.1456 (30), 300.0272 (100) | Quercetin pentoside rutinoside | X | X | X |
53 | 28.46 | 739.1663 | C39H31O15 | 739.1668 | 0.67 | 587.0905 (100), 341.0427 (10) | Cinchonain II type | X | X | X | |
54 | 28.54 | 755.2035 | C33H39O20 | 755.2040 | 0.66 | 593.0807 (20), 575.1007 (100), 284.9888 (60) | Kaempferol hexoside rutinoside 2 | X | X | ||
55 | 28.71 | 611.2527 | 431.1834 (100), 251.0960 (70) | Unknown | X | X | X | ||||
56 | 28.85 | 354, 253 | 595.1292 | C26H27O16 | 595.1305 | 2.18 | 300.0272 (100) | Quercetin hexoside pentoside | X | X | X |
57 | 29.09 | 467.0980 | C24H19O10 | 467.0984 | 0.86 | 356.9974 (100) | Apocynin E type isomer 1 | X | X | X | |
58 | 29.21 | 609.1079 | C26H25O17 | 609.1097 | 2.95 | 301.0349 (100) | Quercetin pentoside glucuronide | X | X | ||
59 | 29.65 | 358, 254 | 711.1404 | C30H31O20 | 711.1414 | 1.41 | 667.0915 (100), 299.0018 (10) | Quercetin malonyl dihexoside | X | X | |
60 | 29.82 | 347, 265 | 609.1421 | C27H29O16 | 609.1461 | 6.56 | 285.0808(100) | Kaempferol dihexoside | X | X | |
61 | 30.10 | 354, 254 | 609.1456 | C27H29O16 | 609.1461 | 0.82 | 463.0876 (100), 301.0352 (25) | Quercetin hexoside rhamnoside | X | X | |
62 | 30.60 | 521.1862 | C22H33O14 | 521.1870 | 1.53 | 403.1983 (100), 341.1638 (90), 223.1259 (90), 179.0835 (40) | Unknown | X | X | X | |
63 | 30.82 | 449.0718 | C20H17O12 | 449.0726 | 1.78 | 316.0220 (100) | Myricetin pentoside | X | |||
64 | 31.52 | 467.0975 | C24H19O10 | 467.0984 | 1.92 | 357.0284 (100), 216.9720 (20) | Apocynin E type isomer 2 | X | X | X | |
65 | 31.76 | 346, 265 | 725.1917 | C32H37O19 | 725.1934 | 2.34 | 593.1505 (35), 575.1403 (100), 285.0403 (70) | Kaempferol pentoside rutinoside | X | X | |
66 | 32.01 | 356, 266 | 609.1442 | C27H29O16 | 609.1461 | 3.11 | 301.0393 (100) | Quercetin rutinoside (Rutin) * | X | X | X |
67 | 32.04 | 449.2026 | 269.0987(100) | Unknown | X | ||||||
68 | 32.45 | 637.1405 | C28H29O17 | 637.1410 | 0.78 | 595.1153 (60), 300.0103 (100) | Quercetin acetyl hexoside pentoside | X | X | ||
69 | 32.51 | 565.1196 | C25H25O15 | 565.1198 | 0.35 | 300.0272 (100) | Quercetin dipentoside | X | X | ||
70 | 32.68 | 477.0665 | C21H17O13 | 477.0675 | 2.09 | 301.0348 (100) | Quercetin glucuronide | X | X | X | |
71 | 32.92 | 354, 253 | 463.0871 | C21H19O12 | 463.0882 | 2.37 | 301.0349 (100) | Quercetin hexoside | X | X | X |
72 | 33.09 | 314 | 709.2556 | 547.1414 (100), 529.1611 (60), 367.1158 (10) | Unknown | X | X | X | |||
73 | 33.10 | 345, 265 | 447.0928 | C21H19O11 | 447.0933 | 1.11 | 285.0400 (100) | Luteolin hexoside | X | X | X |
74 | 33.22 | 483.1293 | C25H23O10 | 483.1296 | 0.62 | 451.1090 (80), 289.0829 (100), 245.0851 (10) | Loropetaliside A [27] | X | |||
75 | 33.54 | 579.1352 | C26H27O15 | 579.1355 | 0.51 | 284.0323 (100) | Kaempferol hexoside pentoside | X | X | ||
76 | 33.91 | 479.0822 | C21H19O13 | 479.0831 | 1.87 | 316.9932 (100) | Myricetin hexoside | X | X | ||
77 | 33.92 | 597.1813 | C27H33O15 | 597.1824 | 1.84 | 477.1375 (100), 387.1035 (80), 357.1005 (90) | Phloretin-C-dihexoside | X | X | X | |
78 | 34.23 | 345, 267 | 593.1497 | C27H29O15 | 593.1512 | 2.53 | 285.0401 (100) | Kaempferol rutinoside 1 | X | X | X |
79 | 35.05 | 505.0981 | C23H21O13 | 505.0988 | 1.38 | 463.0716 (80), 301.0532 (100) | Quercetin acetylhexoside 1 | X | X | X | |
80 | 35.42 | 353, 254 | 433.0772 | C20H17O11 | 433.0776 | 0.92 | 300.0270 (100) | Quercetin pentoside | X | X | X |
81 | 35.88 | 349, 266 | 447.0925 | C21H19O11 | 447.0933 | 1.78 | 284.0629 (100) | Kaempferol hexoside | X | X | X |
82 | 36.11 | 352, 255 | 505.0981 | C23H21O13 | 505.0988 | 1.38 | 301.0421 (100) | Quercetin acetylhexoside 2 | X | X | X |
83 | 36.72 | 345, 265 | 593.1493 | C27H29O15 | 593.1512 | 3.20 | 284.9876 (100) | Kaempferol rutinoside 2 | X | X | X |
84 | 36.90 | 451.1027 | C24H19O9 | 451.1034 | 1.55 | 341.0774 (90), 299.0466 (100) | Cinchonain I isomer 1 [28] | X | X | X | |
85 | 37.66 | 447.0926 | C21H19O11 | 447.0933 | 1.56 | 285.0899 (100) | Kaempferol hexoside | X | X | X | |
86 | 37.91 | 461.0711 | C21H17O12 | 461.0726 | 3.25 | 284.9684 (100) | Kaempferol glucuronide | X | X | X | |
87 | 38.36 | 431.0977 | C21H19O10 | 431.0984 | 1.62 | 268.9863 (100) | Apigenin hexoside | X | X | X | |
88 | 38.97 | 373.1862 | C18H29O8 | 373.1868 | 1.60 | 211.1466 (20) 193.0990 (100), 179.0990 (80) | Ionone or cucurbic acid hexoside | X | X | X | |
89 | 39.28 | 461.1443 | C23H25O10 | 461.1453 | 2.16 | 179.0396 (20), 161.0041 (100) | Hydroxyphenethyl caffeoyl hexoside (phenylethanoid related) | X | X | X | |
90 | 39.53 | 314 | 547.2021 | C24H35O14 | 547.2032 | 2.01 | 429.1555 (100), 367.1267 (20), 249.1334 (40) | Unknown | X | X | |
91 | 39.97 | 489.1027 | C23H21O12 | 489.1039 | 2.45 | 285.0043 (100) | Kaempferol acetyl hexoside | X | X | X | |
92 | 40.98 | 451.1034 | C24H19O9 | 451.1034 | 0.01 | 341.0195(100) | Cinchonain I isomer 2 | X | |||
93 | 42.06 | 489.1028 | C23H21O12 | 489.1039 | 2.24 | 284.9670 (100) | Kaempferol acetyl hexoside 2 | X | X | X | |
94 | 43.15 | 519.1508 | −148 | 371.1486 (100), 357.1285 (40) | Unknown | ||||||
95 | 43.32 | 431.1919 | 251.1352 (100), 207.1040 (10) | Unknown | X | X | X | ||||
96 | 43.81 | 547.2020 | 429.1838 (80), 367.1470 (100), 249.1082 (90), 205.1211 (40) | Unknown | X | X | X | ||||
97 | 44.80 | 353, 312 sh | 741.1666 | C35H33O18 | 741.1672 | 0.81 | 595.1301 (100), 300.0275 (15) | Quercetin coumaroyl hexoside pentoside | X | ||
98 | 45.98 | 351, 316 sh | 609.1244 | C30H25O14 | 609.1250 | 0.98 | 463.0876 (100), 301.0352 (25) | Quercetin coumaroyl hexoside | X | ||
99 | 46.36 | 301.0349 | C15H9O7 | 301.0354 | 1.66 | 179.0225 (100), 151.0394 (95) | Quercetin * | X | X | X |
Compound | Conguillio | Conguillio | Frutillar | Frutillar | Lago Espolón | Queulat | RNM | RNM |
---|---|---|---|---|---|---|---|---|
MeOH | Infus | MeOH | Infus | MeOH | MeOH | MeOH | Infus | |
11 * | 17.93 ± 0.69 | 16.47 ± 0.06 | 56.90 ± 2.86 | 47.09 ± 0.12 | 31.18 ± 1.31 | 26.84 ± 2.34 | 53.65 ± 2.09 | 41.06 ± 0.63 |
13 | 0.83 ± 0.02 | 0.67 ± 0.01 | 3.50 ± 0.18 | 2.52 ± 0.01 | 1.70 ± 0.08 | - | 9.53 ± 0.84 | 4.99 ± 0.07 |
15 | - | - | 20.99 ± 0.90 | - | - | - | 17.13 ± 1.46 | 17.86 ± 0.37 |
23 | - | - | - | - | - | - | 21.51 ± 1.12 | - |
24 * | 3.07 ± 0.11 | 3.11 ± 0.00 | 6.50 ± 0.32 | 5.70 ± 0.03 | 17.06 ± 0.73 | 4.20 ± 0.35 | 12.27 ± 0.50 | 11.05 ± 0.19 |
25 | 1.69 ± 0.08 | 3.11 ± 0.01 | 3.01 ± 0.12 | 6.35 ± 0.06 | 4.35 ± 0.20 | 2.99 ± 0.21 | 2.59 ± 0.09 | 6.53 ± 0.10 |
48 | - | - | - | - | - | - | - | 39.83 ± 0.64 |
49 | 20.78 ± 0.90 | 19.33 ± 0.06 | 164.16 ± 11.40 | 136.05 ± 0.35 | 83.65 ± 3.77 | - | - | 201.45 ± 3.13 |
52 | - | - | 31.05 ± 1.23 | 24.97 ± 0.15 | 69.27 ± 2.87 | - | - | 72.85 ± 1.03 |
56 | 18.54 ± 0.75 | 19.33 ± 0.06 | - | - | - | - | - | 34.10 ± 0.51 |
66 * | - | - | 687.39 ± 34.57 | 522.64 ± 2.07 | 131.39 ± 5.00 | 291.56 ± 26.87 | 307.15 ± 10.67 | 155.16 ± 2.09 |
70 | - | - | - | - | 56.92 ± 2.39 | 100.32 ± 9.03 | 95.59 ± 3.81 | - |
71 * | 118.88 ± 4.74 | 80.15 ± 0.64 | 76.16 ± 3.67 | 52.17 ± 0.24 | 166.26 ± 6.39 | 119.90 ± 10.84 | 11.04 ± 3.71 | 56.30 ± 0.48 |
78 | - | - | 107.08 ± 5.64 | 79.39 ± 0.31 | - | 33.67 ± 3.14 | 43.26 ± 2.13 | 22.04 ± 0.40 |
79 | 14.68 ± 0.70 | 14.12 ± 0.04 | - | - | 153.18 ± 6.26 | - | 52.84 ± 2.22 | - |
80 | - | - | - | - | - | 55.67 ± 5.09 | 44.86 ± 1.81 | 50.97 ± 0.62 |
81 | - | - | - | - | 34.22 ± 1.42 | - | - | - |
91 | 197.16 ± 7.87 | 172.72 ± 0.94 | - | - | 30.27 ± 1.40 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burgos-Edwards, A.; Theoduloz, C.; Ramírez, C.; Miño, S.; Ghosh, D.; Rozzi, R.; Shulaev, V.; Schmeda-Hirschmann, G. Leaf Infusion of Ribes magellanicum Poir.: A Traditional Beverage from Southern Patagonia with Strong Inhibitory Effects on α-Glucosidase. Beverages 2025, 11, 138. https://doi.org/10.3390/beverages11050138
Burgos-Edwards A, Theoduloz C, Ramírez C, Miño S, Ghosh D, Rozzi R, Shulaev V, Schmeda-Hirschmann G. Leaf Infusion of Ribes magellanicum Poir.: A Traditional Beverage from Southern Patagonia with Strong Inhibitory Effects on α-Glucosidase. Beverages. 2025; 11(5):138. https://doi.org/10.3390/beverages11050138
Chicago/Turabian StyleBurgos-Edwards, Alberto, Cristina Theoduloz, Crister Ramírez, Sophia Miño, Debasish Ghosh, Ricardo Rozzi, Vladimir Shulaev, and Guillermo Schmeda-Hirschmann. 2025. "Leaf Infusion of Ribes magellanicum Poir.: A Traditional Beverage from Southern Patagonia with Strong Inhibitory Effects on α-Glucosidase" Beverages 11, no. 5: 138. https://doi.org/10.3390/beverages11050138
APA StyleBurgos-Edwards, A., Theoduloz, C., Ramírez, C., Miño, S., Ghosh, D., Rozzi, R., Shulaev, V., & Schmeda-Hirschmann, G. (2025). Leaf Infusion of Ribes magellanicum Poir.: A Traditional Beverage from Southern Patagonia with Strong Inhibitory Effects on α-Glucosidase. Beverages, 11(5), 138. https://doi.org/10.3390/beverages11050138