Effect of Pectin Extracted from Lemon Peels on the Stability of Buffalo Milk Liqueurs
Abstract
1. Introduction
- Improving product stability by creating innovative mixtures using fresh buffalo milk, alcohol, and lemon peel waste-derived pectin.
- The study of the rheological properties of the liquor creams to ensure the proper balance of ingredients and stability.
2. Materials and Methods
2.1. Reagents
2.2. Materials and Pectin Extraction
2.3. Formulation Development
2.4. Rheological and Shelf-Life Testing
2.5. Analytical Methods
2.6. Sensory Analysis
2.7. Statistical Analysis
3. Results
3.1. Pectin Extraction Yield
3.2. Rheological Properties and Formulation Optimization
3.3. Shelf-Life Predictions
3.4. Sensory Analysis
4. Discussion
4.1. Current Formulation
4.2. Future Perspective
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banks, W.; Muir, D.D. Effect of alcohol content on emulsion stability of cream liqueurs. Food Chem. 1985, 18, 139–152. [Google Scholar] [CrossRef]
- Mc Clements, D.J. Food Emulsions: Principles, Practices, and Techniques, Second Edition, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- Rai, D.; Popovic, T.; Jancic, D.; Šukovic, D.; Pajovic-Šcepanovic, R. The Impact of Type of Brandy on the Volatile Aroma Compounds and Sensory Properties of Grape Brandy in Montenegro. Molecules 2022, 27, 2974. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2019: Moving Forward on Food Loss and Waste Reduction; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; ISBN 978-92-5-131789-1. [Google Scholar]
- Laurent, M.A.; Boulenguer, P. Stabilization mechanism of acid dairy drinks (ADD) induced by pectin. Food Hydrocoll. 2003, 17, 445–454. [Google Scholar] [CrossRef]
- Chandel, V.; Biswas, D.; Roy, S.; Vaidya, D.; Verma, A.; Gupta, A. Current advancements in pectin: Extraction, properties and multifunctional applications. Foods 2022, 11, 2683. [Google Scholar] [CrossRef]
- Voragen, A.G.J.; Coenen, G.J.; Verhoef, R.P.; Schols, H.A. Pectin, a versatile polysaccharide present in plant cell walls. Struct. Chem. 2009, 20, 263–275. [Google Scholar] [CrossRef]
- Chen, J.; Liu, W.; Liu, C.M.; Li, T.; Liang, R.H.; Luo, S.J. Pectin modifications: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1684–1698. [Google Scholar] [CrossRef]
- Ropartz, D.; Ralet, M.C. Pectin structure. In Pectin: Technological and Physiological Properties; Springer: Berlin/Heidelberg, Germany, 2020; pp. 17–36. [Google Scholar] [CrossRef]
- Kuang, Y.; Yang, Y.; Wang, X.; Liu, M.; Wang, T.; Zhang, Z.; Wu, K.; Chen, K.; Deng, P.; Zhao, X.; et al. Improved stability and mechanical properties of citrus pectin-zein emulsion gels by double crosslinking with calcium and transglutaminase. Ind. Crops Prod. 2024, 211, 118305. [Google Scholar] [CrossRef]
- Said, N.S.; Olawuyi, I.F.; Lee, W.Y. Pectin hydrogels: Gel-forming behaviors, mechanisms, and food applications. Gels 2023, 9, 732. [Google Scholar] [CrossRef]
- Liang, L.I.; Luo, Y. Casein and pectin: Structures, interactions, and applications. Trends Food Sci. Technol. 2020, 97, 391–403. [Google Scholar] [CrossRef]
- Thakur, B.R.; Singh, R.K.; Handa, A.K.; Rao, M.A. Chemistry and uses of pectin-a review. Crit. Rev. Food Sci. Nutr. 1997, 37, 47–73. [Google Scholar] [CrossRef]
- Einhorn-Stoll, U.; Benthin, A.; Zimathies, A.; Görke, O.; Drusch, S. Pectin-water interactions: Comparison of different analytical methods and influence of storage. Food Hydrocoll. 2015, 43, 577–583. [Google Scholar] [CrossRef]
- Einhorn-Stoll, U. Pectin-water interactions in foods from powder to gel. Food Hydrocoll. 2018, 78, 109–119. [Google Scholar] [CrossRef]
- Lara-Espinoza, C.; Carvajal-Millán, E.; Balandrán-Quintana, R.; López-Franco, Y.; Rascón-Chu, A. Pectin and pectin-based composite materials: Beyond food texture. Molecules 2018, 23, 942. [Google Scholar] [CrossRef]
- Naseri, A.T.; Thibault, J.F.; Ralet-Renard, M.C. Citrus pectin: Structure and application in acid dairy drinks. Tree For. Sci. Biotechnol. 2008, 2, 60–70. [Google Scholar]
- Canteri-Schemin, M.H.; Fertonani, H.C.R.; Waszczynskyj, N.; Wosiacki, G. Extraction of pectin from apple pomace. Braz. Arch. Biol. Technol. 2005, 48, 259–266. [Google Scholar] [CrossRef]
- Maqbool, Z.; Khalid, W.; Atiq, H.T.; Koraqi, H.; Javaid, Z.; Alhag, S.K.; Al-Shuraym, L.A.; Bader, D.M.D.; Almarzuq, M.; Afifi, M.; et al. Citrus waste as source of bioactive compounds: Extraction and utilization in health and food industry. Molecules 2023, 28, 1636. [Google Scholar] [CrossRef]
- Vilela, A.; Cosme, F.; Pinto, T. Emulsions, foams, and suspensions: The microscience of the beverage industry. Beverages 2018, 4, 25. [Google Scholar] [CrossRef]
- Freitas, C.M.P.; Coimbra, J.S.R.; Souza, V.G.L.; Sousa, R.C.S. Structure and applications of pectin in food, biomedical, and pharmaceutical industry: A review. Coatings 2021, 11, 922. [Google Scholar] [CrossRef]
- Vanitha, T.; Khan, M. Role of pectin in food processing and food packaging. In Pectins-Extraction, Purification, Characterization and Applications; IntechOpen: London, UK, 2019; Volume 10. [Google Scholar] [CrossRef]
- Singhal, S.; Hulle, N.R.S. Citrus pectins: Structural properties, extraction methods, modifications and applications in food systems–A review. Appl. Food Res. 2022, 2, 100215. [Google Scholar] [CrossRef]
- Tárrega, A.; Durán, L.; Costell, E. Rheological characterization of semisolid dairy desserts. Effect of temperature. Food Hydrocoll. 2005, 19, 133–139. [Google Scholar] [CrossRef]
- Kumar, R.; Chauhan, S.K.; Shinde, G.; Subramanian, V.; Nadanasabapathi, S. Whey Proteins: A potential ingredient for food industry-A review. Asian J. Dairy Res. 2018, 37, 283–290. [Google Scholar] [CrossRef]
- Yan, X.; Ma, C.; Cui, F.; McClements, D.J.; Liu, X.; Liu, F. Protein-stabilized Pickering emulsions: Formation, stability, properties, and applications in foods. Trends Food Sci. Technol. 2020, 103, 293–303. [Google Scholar] [CrossRef]
- Mc Clements, D.J.; Bai, L.; Chung, C. Recent advances in the utilization of natural emulsifiers to form and stabilize emulsions. Annu. Rev. Food Sci. Technol. 2017, 8, 205–236. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Wang, Y.; Selomulya, C. Dairy and plant proteins as natural food emulsifiers. Trends Food Sci. Technol. 2020, 105, 261–272. [Google Scholar] [CrossRef]
- Erxleben, S.W.; Pelan, E.; Wolf, B. Effect of the interplay between lipid phase properties and ethanol concentration on the stability of model cream liqueurs. Colloids Surf. A Physicochem. Eng. Asp. 2024, 685, 133233. [Google Scholar] [CrossRef]
- Dalgleish, D.G. Food Emulsions: Their Structures and Properties; Marcel Dekker: New York, NY, USA, 2004; ISBN 0-8247-4696-1. [Google Scholar]
- Walstra, P. Dairy Technology: Principles of Milk Properties and Processes; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar] [CrossRef]
- Horne, D.S. A balanced view of casein interactions. Curr. Opin. Colloid Interface Sci. 2017, 28, 74–86. [Google Scholar] [CrossRef]
- Smialowska, A.; Matia-Merino, L.; Ingham, B.; Carr, A.J. Effect of calcium on the aggregation behaviour of caseinates. Colloids Surf. A Physicochem. Eng. Asp. 2017, 522, 113–123. [Google Scholar] [CrossRef]
- Sadiq, U.; Gill, H.; Chandrapala, J. Casein micelles as an emerging delivery system for bioactive food components. Foods 2021, 10, 1965. [Google Scholar] [CrossRef]
- Dalgleish, D.G.; Corredig, M. The structure of the casein micelle of milk and its changes during processing. Annu. Rev. Food Sci. Technol. 2012, 3, 449–467. [Google Scholar] [CrossRef]
- Ozcan-Yilsay, T.Ü.L.A.Y.; Lee, W.J.; Horne, D.; Lucey, J.A. Effect of trisodium citrate on rheological and physical properties and microstructure of yogurt. J. Dairy Sci. 2007, 90, 1644–1652. [Google Scholar] [CrossRef]
- Buňka, F.; Salek, R.N.; Kůrová, V.; Buňková, L.; Lorencová, E. The impact of phosphate-and citrate-based emulsifying salts on processed cheese techno-functional properties: A review. Int. Dairy J. 2024, 158, 106031. [Google Scholar] [CrossRef]
- Murray, B.S.; Ettelaie, R.; Sarkar, A.; Mackie, A.R.; Dickinson, E. The perfect hydrocolloid stabilizer: Imagination versus reality. Food Hydrocoll. 2021, 117, 106696. [Google Scholar] [CrossRef]
- Bayés-García, L.; Patel, A.R.; Dewettinck, K.; Rousseau, D.; Sato, K.; Ueno, S. Lipid crystallization kinetics-roles of external factors influencing functionality of end products. Curr. Opin. Food Sci. 2015, 4, 32–38. [Google Scholar] [CrossRef]
- Hondoh, H.; Ueno, S.; Sato, K. Fundamental aspects of crystallization of lipids. In Crystallization of Lipids: Fundamentals and Applications in Food, Cosmetics, and Pharmaceuticals; Wiley: Hoboken, NJ, USA, 2018; pp. 105–141. [Google Scholar] [CrossRef]
- Given, P.S. Encapsulation of flavors in emulsions for beverages. Curr. Opin. Colloid Interface Sci. 2009, 14, 43–47. [Google Scholar] [CrossRef]
- Di Matteo, A.; Simeone, G.D.R.; Cirillo, A.; Rao, M.A.; Di Vaio, C. Morphological characteristics, ascorbic acid and antioxidant activity during fruit ripening of four lemon (Citrus limon (L.) Burm. F.) cultivars. Sci. Hortic. 2021, 276, 109741. [Google Scholar] [CrossRef]
- Todaro, A.; Peluso, O.; Catalano, A.E.; Mauromicale, G.; Spagna, G. Polyphenol Oxidase activity from three sicilian artichoke (Cynara cardunculus L. var. scolymus L. (Fiori)) cultivars: Studies and technological application on minimally processed production. J. Agric. Food Chem. 2010, 58, 1714–1718. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Hundie, K.B.; Abdissa, D. Extraction and characterization of pectin from lemon waste for commercial applications. J. Turk. Chem. Soc. A Chem. 2021, 8, 1111–1120. [Google Scholar] [CrossRef]
- ISO 13299:2016; Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/58042.html (accessed on 5 September 2024).
- ISO 3972:2011; Sensory Analysis—Methodology—Method of Investigating Sensitivity of Taste. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/50110.html (accessed on 5 September 2024).
- Twinomuhwezi, H.; Godswill, A.C.; Kahunde, D. Extraction and characterization of pectin from orange (Citrus sinensis), lemon (Citrus limon) and tangerine (Citrus tangerina). Am. J. Phys. 2023, 1, 17–30. [Google Scholar] [CrossRef]
- Smiddy, M.A.; Kelly, A.L.; Huppertz, T. Cream and related products. In Dairy Fats and Related Products; Wiley: Hoboken, NJ, USA, 2009; pp. 61–85. [Google Scholar] [CrossRef]
- Heffernan, S.P.; Kelly, A.L.; Mulvihill, D.M. High-pressure-homogenised cream liqueurs: Emulsification and stabilization efficiency. J. Food Eng. 2009, 95, 525–531. [Google Scholar] [CrossRef]
- Medina-Torres, L.; Calderas, F.; Gallegos-Infante, J.A.; González-Laredo, R.F.; Rocha-Guzmán, N. Stability of alcoholic emulsions containing different caseinates as a function of temperature and storage time. Colloids Surf. A Physicochem. Eng. Asp. 2009, 352, 38–46. [Google Scholar] [CrossRef]
- Masuelli, M.A. Viscometric study of pectin. Effect of temperature on the hydrodynamic properties. Int. J. Biol. Macromol. 2011, 48, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Banks, W.; Muir, D.D.; Wilson, A.G. Formulation of cream-based liqueurs: A comparison of sucrose and sorbitol as the carbohydrate component. J. Dairy Technol. 1982, 35, 41–43. [Google Scholar] [CrossRef]
- Power, P.C. The Formulation, Testing and Stability of 16% Fat Cream Liqueurs. Ph.D. Thesis, University College Cork, Cork, Irland, 1996. Available online: https://hdl.handle.net/10468/1628 (accessed on 5 September 2024).
- O’Sullivan, M.G. Principles of sensory shelf-life evaluation and its application to alcoholic beverages. In Alcoholic Beverages; Woodhead Publishing: Sawston, UK, 2012; pp. 42–65. [Google Scholar] [CrossRef]
- Weinbreck, F.; De Vries, R.; Schrooyen, P.; De Kruif, C.G. Complex coacervation of whey proteins and gum arabic. Biomacromolecules 2003, 4, 293–303. [Google Scholar] [CrossRef]
- Dickinson, E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll. 2003, 17, 25–39. [Google Scholar] [CrossRef]
- Celus, M.; Kyomugasho, C.; Van Loey, A.M.; Grauwet, T.; Hendrickx, M.E. Influence of pectin structural properties on interactions with divalent cations and its associated functionalities. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1576–1594. [Google Scholar] [CrossRef]
- Heffernan, S.P.; Kelly, A.L.; Mulvihill, D.M.; Uwe, L.; Schuchmann, H.P. Efficiency of a range of homogenization technologies in the emulsification and stabilization of cream liqueurs. Innov. Food Sci. Emerg. Technol. 2019, 12, 628–634. [Google Scholar] [CrossRef]
- Fabroni, S.; Amenta, M.; Timpanaro, N.; Todaro, A.; Rapisarda, P. Change in Taste-altering Non-volatile Components of Blood and Common Orange Fruit during Cold Storage. Food Res. Int. 2020, 131, 108916. [Google Scholar] [CrossRef]
- Schultz, S.; Wagner, G.; Urban, K.; Ulrich, J. High-pressure homogenization as a process for emulsion formation. Chem. Eng. Technol. 2004, 27, 361–368. [Google Scholar] [CrossRef]
- Vaucher, A.C.D.S.; Dias, P.C.; Coimbra, P.T.; Costa, I.D.S.M.; Marreto, R.N.; Dellamora-Ortiz, G.M.; De Freitas, O.; Ramos, M.F. Microencapsulation of fish oil by casein-pectin complexes and gum arabic microparticles: Oxidative stabilisation. J. Microencapsul. 2019, 36, 459–473. [Google Scholar] [CrossRef]
- Zhao, S.; Gao, W.; Tian, G.; Zhao, C.; Di Marco-Crook, C.; Fan, B.; Li, C.; Xiao, H.; Lian, Y.; Zheng, J. Citrus oil emulsions stabilized by citrus pectin: The influence mechanism of citrus variety and acid treatment. J. Agric. Food Chem. 2018, 66, 12978–12988. [Google Scholar] [CrossRef] [PubMed]
- Ekene, U.S.; Okey, O.E. Studies on the Production of Cream Liqueur Using Whiskey and Milk Cream. SAR J. Pathol. Microbiol. 2022, 3, 73–80. [Google Scholar] [CrossRef]
- Jones, O.G.; Decker, E.A.; Mc Clements, D.J. Formation of biopolymer particles by thermal treatment of lactoglobulin–pectin complexes. Food Hydrocoll. 2009, 23, 1312–1321. [Google Scholar] [CrossRef]
- Ibanoglu, E. Effect of hydrocolloids on the thermal denaturation of proteins. Food Chem. 2005, 90, 621–626. [Google Scholar] [CrossRef]
- Jafari, S.M.; Ganje, M.; Dehnad, D.; Ghanbari, V.; Hajitabar, J. Arrhenius equation modeling for the shelf life prediction of tomato paste containing a natural preservative. J. Sci. Food Agric. 2017, 97, 5216–5222. [Google Scholar] [CrossRef]
- Nurhayati, R.; NH, E.R.; Susanto, A.; Khasanah, Y. Shelf-life prediction for canned gudeg using accelerated shelf life testing (ASLT) based on Arrhenius method. IOP Conf. Ser. Mater. Sci. Eng. 2017, 193, 012025. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, X.; Jin, H.; Feng, X.; Tian, F.; Song, Y.; Ren, Y.; Man, C.; Zhang, W. Shelf-life prediction and chemical characteristics analysis of milk formula during storage. LWT 2021, 144, 111268. [Google Scholar] [CrossRef]
- Aniya, M.; Shinkawa, T. A model for the fragility of metallic glass forming liquids. Mater. Trans. 2007, 48, 1793–1796. [Google Scholar] [CrossRef]
- Ikeda, M.; Aniya, M. Bond Strength-Coordination Number Fluctuation Model of Viscosity: An Alternative Model for the Vogel-Fulcher-Tammann Equationand an Application to Bulk Metallic Glass Forming Liquids. Materials 2010, 3, 5246–5262. [Google Scholar] [CrossRef]
- Baldwin, R.L. Temperature-dependence of the hydrophobic interaction in protein folding. Proc. Natl. Acad. Sci. USA 1986, 21, 8069–8072. [Google Scholar] [CrossRef]
- Masuelli, M.A. Mark-Houwink parameters for aqueous soluble polymers and biopolymers at various temperatures. J. Polym. Sci. 2014, 6, 13–25. [Google Scholar]
- Kar, F.; Arslan, N. Effect of temperature and concentration on viscosity of orange peel pectin solutions and intrinsic viscosity–molecular weight relationship. Carbohydr. Polym. 1999, 40, 277–284. [Google Scholar] [CrossRef]
- Horne, D.S. Ethanol stability and milk composition. In Advanced Dairy Chemistry Volume 1B: Proteins: Applied Aspects; McSweeney, P.L.H., O’Mahony, J.A., Eds.; Springer: New York, NY, USA, 2016; pp. 225–246. [Google Scholar]
- Ibáñez, R.A.; Vyhmeister, S.; Muñoz, M.F.; Brossard, N.; Osorio, F.; Salazar, F.N.; Fellenberg, M.A.; Vargas-Bello-Pérez, E. Influence of milk pH on the chemical, physical and sensory properties of a milk-based alcoholic beverage. J. Dairy Res. 2019, 86, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, M.; Petkova, N.; Todorova, M.; Dobreva, V.; Vlaseva, R.; Denev, P.; Hadjikinov, D.; Bouvard, V. Influence of citrus and celery pectins on physicochemical and sensory characteristics of fermented dairy products. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2020, 21, 533–545. [Google Scholar]
- Shuai, X.; Chen, J.; Liu, Q.; Dong, H.; Dai, T.; Li, Z.; Liu, C.; Wang, R. The effects of pectin structure on emulsifying, rheological, and in vitro digestion properties of emulsion. Foods 2022, 11, 3444. [Google Scholar] [CrossRef]
- Wiacek, A.; Chibowski, E. Stability of oil/water (ethanol, lysozyme or lysine) emulsions. Colloids Surf. B-Biointerfaces 2000, 17, 175–190. [Google Scholar] [CrossRef]
- Wiacek, A.E.; Chibowski, E.; Wilk, K. Studies of oil-in-water emulsion stability in the presence of new dicephalic saccharide-derived surfactants. Colloids Surf. B-Biointerfaces 2002, 25, 243–256. [Google Scholar] [CrossRef]
Ingredients 1 | C | P0.05 | P0.10 | P0.15 | P0.20 |
---|---|---|---|---|---|
Buffalo milk | 45.00 | 45.00 | 45.00 | 45.00 | 45.00 |
Water | 17.40 | 17.40 | 17.40 | 17.40 | 17.40 |
Sugar | 17.00 | 17.00 | 17.00 | 17.00 | 17.00 |
Brandy | 16.00 | 16.00 | 16.00 | 16.00 | 16.00 |
Glucose sirup | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
Maltodextrins | 1.66 | 1.61 | 1.56 | 1.51 | 1.46 |
Pectin | 0.00 | 0.05 | 0.10 | 0.15 | 0.20 |
Caseinate | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 |
Sodium citrate | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 |
Total | 100 | 100 | 100 | 100 | 100 |
Sample | Viscosity (mPa·s) ± SD |
---|---|
C | 79.3 ± 3.2 b 1 |
P0.05 | 68.5 ± 2.7 c |
P0.10 | 81.1 ± 3.6 b |
P0.15 | 92.9 ± 5.1 a |
P0.20 | 94.7 ± 5.5 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velotto, S.; Gugino, I.M.; La Barbera, M.; Alfeo, V.; Proetto, I.; Parafati, L.; Palmeri, R.; Fallico, B.; Arena, E.; Romano, A.D.; et al. Effect of Pectin Extracted from Lemon Peels on the Stability of Buffalo Milk Liqueurs. Beverages 2025, 11, 94. https://doi.org/10.3390/beverages11040094
Velotto S, Gugino IM, La Barbera M, Alfeo V, Proetto I, Parafati L, Palmeri R, Fallico B, Arena E, Romano AD, et al. Effect of Pectin Extracted from Lemon Peels on the Stability of Buffalo Milk Liqueurs. Beverages. 2025; 11(4):94. https://doi.org/10.3390/beverages11040094
Chicago/Turabian StyleVelotto, Salvatore, Ignazio Maria Gugino, Miriam La Barbera, Vincenzo Alfeo, Ilaria Proetto, Lucia Parafati, Rosa Palmeri, Biagio Fallico, Elena Arena, Alfio Daniele Romano, and et al. 2025. "Effect of Pectin Extracted from Lemon Peels on the Stability of Buffalo Milk Liqueurs" Beverages 11, no. 4: 94. https://doi.org/10.3390/beverages11040094
APA StyleVelotto, S., Gugino, I. M., La Barbera, M., Alfeo, V., Proetto, I., Parafati, L., Palmeri, R., Fallico, B., Arena, E., Romano, A. D., Tripodi, G., Coppola, L., & Todaro, A. (2025). Effect of Pectin Extracted from Lemon Peels on the Stability of Buffalo Milk Liqueurs. Beverages, 11(4), 94. https://doi.org/10.3390/beverages11040094