Polyphenolic, Anthocyanin, and Volatile Profile of Barrel-Aged Industrial Red Wines Made from Vitis vinifera Cv Maratheftiko
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Wines
- Treatment C (control)—Must fermentation was accomplished with pomace contact for 11 days. Temperature was maintained at 13–17 °C.
- Treatment CE—Cryoextraction was deployed before must fermentation, at 5 °C, for 48 h, and it was followed by saigneé. The saigneé technique was applied by removing a must volume corresponding to 10% of the total volume from the mash. Then, vinification was carried out as described for treatment C.
- Treatment CEE—Cryoextraction was implemented before fermentation, at 5 °C, for 48 h, followed by saigneé and the addition of pectolytic enzymes. Then, vinification was performed as described for treatment C.
- Treatment CEET—Cryoextraction was deployed before fermentation, at 5 °C, for 48 h, followed by saigneé and the addition of pectolytic enzymes and enological tannins. Then, vinification was carried out as described for treatment C.
2.3. Barrel Aging
2.4. Gas Chromatography-Mass Spectrometry (GC-MS)—Sample Preparation and Analysis
2.5. Liquid Chromatography Determinations
2.6. Statistical Processing
3. Results and Discussion
3.1. Composition of Non-Pigment Polyphenols
3.2. Anthocyanin Composition
3.3. Profile of Volatile Constituents
3.4. Principal Component Analysis (PCA)-Based Discrimination
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Merkytė, V.; Longo, E.; Windisch, G.; Boselli, E. Phenolic compounds as markers of wine quality and authenticity. Foods 2020, 9, 1785. [Google Scholar] [CrossRef] [PubMed]
- Pittari, E.; Moio, L.; Piombino, P. Interactions between polyphenols and volatile compounds in wine: A literature review on physicochemical and sensory insights. Appl. Sci. 2021, 11, 1157. [Google Scholar] [CrossRef]
- Basalekou, M.; Tataridis, P.; Georgakis, K.; Tsintonis, C. Measuring wine quality and typicity. Beverages 2023, 9, 41. [Google Scholar] [CrossRef]
- Cataldo, E.; Fucile, M.; Mattii, G.B. A review: Soil management, sustainable strategies and approaches to improve the quality of modern viticulture. Agronomy 2021, 11, 2359. [Google Scholar] [CrossRef]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine polyphenol content and its influence on wine quality and properties: A review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef]
- Zhang, X.K.; Jeffery, D.W.; Li, D.M.; Lan, Y.B.; Zhao, X.; Duan, C.Q. Red wine coloration: A review of pigmented molecules, reactions, and applications. Comp. Rev. Food Sci. Food Saf. 2022, 21, 3834–3866. [Google Scholar] [CrossRef]
- Robinson, A.L.; Boss, P.K.; Solomon, P.S.; Trengove, R.D.; Heymann, H.; Ebeler, S.E. Origins of grape and wine aroma. Part 2. Chemical and sensory analysis. Am. J. Enol. Vitic. 2014, 65, 25–42. [Google Scholar] [CrossRef]
- Soares, S.; Brandão, E.; Mateus, N.; de Freitas, V. Sensorial properties of red wine polyphenols: Astringency and bitterness. Crit. Rev. Food Sci. Nutr. 2017, 57, 937–948. [Google Scholar] [CrossRef]
- Tao, Y.; García, J.F.; Sun, D.-W. Advances in wine aging technologies for enhancing wine quality and accelerating wine aging process. Crit. Rev. Food Sci. Nutr. 2014, 54, 817–835. [Google Scholar] [CrossRef]
- Ma, T.; Wang, J.; Wang, H.; Zhao, Q.; Zhang, F.; Ge, Q.; Li, C.; Gamboa, G.G.; Fang, Y.; Sun, X. Wine aging and artificial simulated wine aging: Technologies, applications, challenges, and perspectives. Food Res. Inter. 2022, 153, 110953. [Google Scholar] [CrossRef]
- Carpena, M.; Pereira, A.G.; Prieto, M.A.; Simal-Gandara, J. Wine aging technology: Fundamental role of wood barrels. Foods 2020, 9, 1160. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-Y.; Duan, C.-Q. Astringency, bitterness and color changes in dry red wines before and during oak barrel aging: An updated phenolic perspective review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1840–1867. [Google Scholar] [CrossRef] [PubMed]
- Roufas, K.; Chatzimitakos, T.; Athanasiadis, V.; Lalas, S.I.; Makris, D.P. Changes in polyphenols and anthocyanin pigments during ripening of Vitis vinifera cv Maratheftiko: A two-year study. Beverages 2023, 9, 39. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Kotanidis, A.; Dianellou, M.; Gekas, V. Phenolic content and antioxidant capacity of Cypriot wines. Czech J. Food Sci. 2015, 33, 126–136. [Google Scholar] [CrossRef]
- Copper, A.; Johnson, T.; Danner, L.; Bastian, S.; Collins, C. Preliminary sensory and chemical profiling of Cypriot wines made from indigenous grape varieties Xynisteri, Maratheftiko and Giannoudhi and acceptability to Australian consumers. OENO One 2019, 2, 229–248. [Google Scholar]
- Tsiakkas, O.; Escott, C.; Loira, I.; Morata, A.; Rauhut, D.; Suárez-Lepe, J.A. Determination of anthocyanin and volatile profile of wines from varieties Yiannoudi and Maratheftiko from the island of Cyprus. Beverages 2020, 6, 4. [Google Scholar] [CrossRef]
- Copper, A.W.; Collins, C.; Bastian, S.E.; Johnson, T.E.; Capone, D.L. Preliminary investigation of potent thiols in Cypriot wines made from indigenous grape varieties Xynisteri, Maratheftiko and Giannoudhi. OENO One 2021, 55, 223–234. [Google Scholar] [CrossRef]
- Roufas, K.; Athanasiadis, V.; Chatzimitakos, T.; Lalas, S.I.; Toulaki, A.; Makris, D.P. Impact of various prefermentation treatments on the pigment, polyphenol, and volatile composition of industrial red wines made from Vitis vinifera cv Maratheftiko. Beverages 2024, 10, 39. [Google Scholar] [CrossRef]
- Toulaki, A.K.; Athanasiadis, V.; Chatzimitakos, T.; Kalompatsios, D.; Bozinou, E.; Roufas, K.; Mantanis, G.I.; Dourtoglou, V.G.; Lalas, S.I. Investigation of xinomavro red wine aging with various wood chips using pulsed electric field. Beverages 2024, 10, 13. [Google Scholar] [CrossRef]
- Makris, D.P.; Psarra, E.; Kallithraka, S.; Kefalas, P. The effect of polyphenolic composition as related to antioxidant capacity in white wines. Food Res. Int. 2003, 36, 805–814. [Google Scholar] [CrossRef]
- Makris, D.; Kefalas, P. Characterization of polyphenolic phytochemicals in red grape pomace. Int. J. Waste Resour. 2013, 3, 126. [Google Scholar] [CrossRef]
- Fernández de Simón, B.; Hernández, T.; Cadahía, E.; Dueñas, M.; Estrella, I. Phenolic compounds in a Spanish red wine aged in barrels made of Spanish, French and American oak wood. Eur. Food Res. Technol. 2003, 216, 150–156. [Google Scholar] [CrossRef]
- Sanz, M.; de Simón, B.F.; Esteruelas, E.; Muñoz, Á.M.; Cadahía, E.; Hernández, M.T.; Estrella, I.; Martinez, J. Polyphenols in red wine aged in acacia (Robinia pseudoacacia) and oak (Quercus petraea) wood barrels. Anal. Chim. Acta 2012, 732, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Laqui-Estaña, J.; López-Solís, R.; Peña-Neira, Á.; Medel-Marabolí, M.; Obreque-Slier, E. Wines in contact with oak wood: The impact of the variety (Carménère and Cabernet Sauvignon), format (barrels, chips and staves), and aging time on the phenolic composition. J. Sci. Food Agric. 2019, 99, 436–448. [Google Scholar] [CrossRef]
- Fang, F.; Li, J.-M.; Zhang, P.; Tang, K.; Wang, W.; Pan, Q.-H.; Huang, W.-D. Effects of grape variety, harvest date, fermentation vessel and wine ageing on flavonoid concentration in red wines. Food Res. Int. 2008, 41, 53–60. [Google Scholar] [CrossRef]
- Boido, E.; Alcalde-Eon, C.; Carrau, F.; Dellacassa, E.; Rivas-Gonzalo, J.C. Aging effect on the pigment composition and color of Vitis vinifera L. Cv. Tannat wines. Contribution of the main pigment families to wine color. J. Agric. Food Chem. 2006, 54, 6692–6704. [Google Scholar] [CrossRef]
- Alcalde-Eon, C.; Escribano-Bailón, M.T.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. Changes in the detailed pigment composition of red wine during maturity and ageing: A comprehensive study. Anal. Chim. Acta 2006, 563, 238–254. [Google Scholar] [CrossRef]
- He, F.; Liang, N.-N.; Mu, L.; Pan, Q.-H.; Wang, J.; Reeves, M.J.; Duan, C.-Q. Anthocyanins and their variation in red wines II. Anthocyanin derived pigments and their color evolution. Molecules 2012, 17, 1483–1519. [Google Scholar] [CrossRef]
- Guadalupe, Z.; Ayestarán, B. Changes in the color components and phenolic content of red wines from Vitis vinifera L. Cv.“Tempranillo” during vinification and aging. Eur. Food Res. Technol. 2008, 228, 29–38. [Google Scholar] [CrossRef]
- Aleixandre-Tudo, J.; Du Toit, W. Evolution of phenolic composition during barrel and bottle aging. SA J. Enol. Vitic. 2020, 41, 233–237. [Google Scholar] [CrossRef]
- Uysal, R.S.; Issa-Issa, H.; Sendra, E.; Carbonell-Barrachina, Á.A. Changes in anthocyanin pigments, trans-resveratrol, and colorimetric characteristics of Fondillón wine and other “Monastrell” wines during the aging period. Eur. Food Res. Technol. 2023, 249, 1821–1831. [Google Scholar] [CrossRef]
- Wang, C.; Wang, C.; Tang, K.; Rao, Z.; Chen, J. Effects of different aging methods on the phenolic compounds and antioxidant activity of red wine. Fermentation 2022, 8, 592. [Google Scholar] [CrossRef]
- Gambuti, A.; Capuano, R.; Lisanti, M.T.; Strollo, D.; Moio, L. Effect of aging in new oak, one-year-used oak, chestnut barrels and bottle on color, phenolics and gustative profile of three monovarietal red wines. Eur. Food Res. Technol. 2010, 231, 455–465. [Google Scholar] [CrossRef]
- Pfahl, L.; Catarino, S.; Fontes, N.; Graça, A.; Ricardo-da-Silva, J. Effect of barrel-to-barrel variation on color and phenolic composition of a red wine. Foods 2021, 10, 1669. [Google Scholar] [CrossRef]
- Pérez-Magariño, S.; González-San José, M.L. Evolution of flavanols, anthocyanins, and their derivatives during the aging of red wines elaborated from grapes harvested at different stages of ripening. J. Agric. Food Chem. 2004, 52, 1181–1189. [Google Scholar] [CrossRef]
- García-Estévez, I.; Alcalde-Eon, C.; Puente, V.; Escribano-Bailón, M.T. Enological tannin effect on red wine color and pigment composition and relevance of the yeast fermentation products. Molecules 2017, 22, 2046. [Google Scholar] [CrossRef]
- Del Fresno, J.M.; Morata, A.; Loira, I.; Escott, C.; Suarez Lepe, J.A. Evolution of the phenolic fraction and aromatic profile of red wines aged in oak barrels. ACS Omega 2020, 5, 7235–7243. [Google Scholar] [CrossRef]
- Casassa, L.F.; Ceja, G.M.; Vega-Osorno, A.; du Fresne, F.; Llodrá, D. Detailed chemical composition of Cabernet Sauvignon wines aged in French oak barrels coopered with three different stave bending techniques. Food Chem. 2021, 340, 127573. [Google Scholar] [CrossRef]
- Dumitriu, G.-D.; de Lerma, N.L.; Zamfir, C.-I.; Cotea, V.V.; Peinado, R.A. Volatile and phenolic composition of red wines subjected to aging in oak cask of different toast degree during two periods of time. LWT 2017, 86, 643–651. [Google Scholar] [CrossRef]
- del Barrio Galán, R.; Bueno-Herrera, M.; de la Cuesta, P.L.; Pérez-Magariño, S. Volatile composition of Spanish red wines: Effect of origin and aging time. Eur. Food Res. Technol. 2022, 248, 1903–1916. [Google Scholar] [CrossRef]
- Moreira, N.; Lopes, P.; Ferreira, H.; Cabral, M.; de Pinho, P.G. Influence of packaging and aging on the red wine volatile composition and sensory attributes. Food Pack. Shelf Life 2016, 8, 14–23. [Google Scholar] [CrossRef]
- Vidal, R.B.P.; Boulton, R.B.; Olivieri, A.C.; Buscema, F. Aging of Malbec Wines from Mendoza and California: Evolution of Volatile Composition. Am. J. Enol. Vitic. 2023, 74, 0740019. [Google Scholar] [CrossRef]
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A free online platform for data visualization and graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef] [PubMed]
Compound | Year 2021 | Year 2022 | ||||||
---|---|---|---|---|---|---|---|---|
C | CE | CEE | CEET | C | CE | CEE | CEET | |
Non-pigment polyphenols | ||||||||
Caftaric acid | 8.30 ± 0.52 b | 10.84 ± 0.74 c | 4.89 ± 0.26 a | 7.92 ± 0.64 b | 60.20 ± 3.22 e | 79.53 ± 4.41 f | 54.09 ± 3.36 d | 75.14 ± 5.23 f |
Catechin | 16.40 ± 0.96 d | 25.80 ± 1.20 e | 33.05 ± 1.56 g | 31.36 ± 1.87 f | 6.21 ± 0.44 c | 5.11 ± 0.32 b | 3.73 ± 0.25 a | 5.25 ± 0.12 b |
p-coumaric acid derivative | 5.39 ± 0.44 b | 5.65 ± 0.38 d | 6.16 ± 0.48 e | 3.95 ± 0.15 a | 5.63 ± 0.49 d | 7.54 ± 0.56 g | 5.53 ± 0.47 c | 6.96 ± 0.47 f |
Ferulic acid derivative | 32.81 ± 1.01 d | 41.34 ± 2.00 f | 19.83 ± 0.87 a | 29.99 ± 2.20 c | 35.28 ± 2.56 e | 45.58 ± 3.36 f | 24.41 ± 1.12 b | 36.87 ± 1.26 |
Rutin | 2.67 ± 0.13 c | 3.69 ± 0.22 e | 3.89 ± 0.26 f | 2.36 ± 0.19 b | 3.79 ± 0.14 e | 1.36 ± 0.05 a | 1.38 ± 0.06 a | 3.20 ± 0.14 d |
Quercetin 3-O-galactoside | 12.79 ± 0.98 e | 13.68 ± 0.85 f | 12.69 ± 0.75 e | 7.69 ± 0.44 b | 9.26 ± 0.78 d | 7.91 ± 0.35 c | 7.13 ± 0.29 a | 7.74 ± 0.55 b |
Quercetin 3-O-glucuronide | 37.98 ± 2.40 b | 40.03 ± 2.31 b | 17.82 ± 0.93 a | 40.27 ± 2.31 b | 115.50 ± 6.66 e | 97.46 ± 5.44 c | 98.45 ± 7.74 c | 103.95 ± 4.32 d |
Quercetin | 11.31 ± 0.88 c | 19.77 ± 0.97 g | 15.84 ± 0.56 f | 9.36 ± 0.55 a | 13.38 ± 0.98 e | 9.99 ± 0.96 a,b | 10.83 ± 0.87 b,c | 11.77 ± 0.89 c,d |
Total | 127.65 | 160.80 | 134.17 | 132.90 | 249.25 | 254.48 | 205.55 | 250.88 |
Compound | Year 2021 | Year 2022 | ||||||
---|---|---|---|---|---|---|---|---|
C | CE | CEE | CEET | C | CE | CEE | CEET | |
Delphinidin 3-O-glucoside | 10.84 ± 0.84 b | 16.17 ± 0.98 c | 29.62 ± 1.95 e | 3.49 ± 0.24 a | 26.41 ± 1.25 d | 25.68 ± 1.98 d | 24.94 ± 1.47 d | 36.39 ± 2.55 f |
Petunidin 3-O-glucoside | 18.44 ± 0.92 a | 20.18 ± 1.02 b | 31.78 ± 2.02 d | 29.49 ± 1.85 c,d | 43.07 ± 2.44 f | 36.54 ± 2.32 e | 27.75 ± 1.69 c | 39.78 ± 2.03 e,f |
Paeonidin 3-O-glucoside | 19.35 ± 0.77 | 20.28 ± 1.65 | 37.00 ± 1.87 | 25.13 ± 1.05 | 67.34 ± 3.33 | 40.75 ± 2.66 | 43.23 ± 2.56 | 56.94 ± 3.36 |
Malvidin 3-O-glucoside | 138.44 ± 9.46 a | 144.7 ± 8.30 b | 223.55 ± 10.44 d | 173.32 ± 10.11 c | 443.97 ± 18.69 f | 363.54 ± 14.44 e | 220.81 ± 10.29 d | 342.49 ± 12.58 e |
Malvidin 3-O-glucoside acetate | 18.23 ± 1.02 b,c | 24.23 ± 1.54 e | 29.72 ± 1.56 f | 24.93 ± 1.32 e | 19.74 ± 1.00 c, d | 19.82 ± 1.05 d | 9.99 ± 0.87 a | 16.15 ± 1.97 b |
Malvidin 3-O-glucoside p-coumarate | 24.55 ± 1.10 a | 25.42 ± 1.68 a | 35.83 ± 2.47 b | 38.48 ± 2.47 c | 110.53 ± 5.58 f | 77.14 ± 3.56 e | 24.76 ± 1.76 a | 65.39 ± 3.21 d |
Total | 229.84 | 250.99 | 387.51 | 294.84 | 711.04 | 563.49 | 351.47 | 557.15 |
Compound | CAS Number | Retention Time (min.) | Year 2021 | Year 2022 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C | CE | CEE | CEET | C | CE | CEE | CEET | |||
Isoamyl alcohol | 123-51-3 | 3.11 | 9.28 ± 0.58 a | 9.17 ± 0.46 a | 11.54 ± 0.36 b | 10.73 ± 0.72 b | 10.23 ± 0.76 b | 11.50 ± 0.33 b | 11.26 ± 0.79 b | 11.41 ± 0.31 b |
Isoamyl formate | 110-45-2 | 3.60 | 6.52 ± 0.29 a | n.d b | 8.71 ± 0.22 c | n.d b | n.d b | n.d b | n.d b | n.d b |
2-Methyl-1-butanol | 1.14 ± 0.08 b | 0.29 ± 0.01 a | n.d c | n.d c | n.d c | n.d c | n.d c | n.d c | ||
Ethyl 2-hydroxypropanoate | n.d | 0.19 ± 0.01 c | 0.58 ± 0.01 d | 0.06 ± 0.00 b | n.d a | n.d a | n.d a | n.d a | ||
Hexylalcohol | 0.16 ± 0.01 d | 0.49 ± 0.03 e | 0.81 ± 0.04 g | 0.65 ± 0.03 f | 0.14 ± 0.00 d | 0.07 ± 0.00 b | 0.09 ± 0.00 c | n.d a | ||
Isoamyl acetate | 123-92-2 | 7.08 | 0.38 ± 0.01 b | n.d a | n.d a | n.d a | 1.14 ± 0.04 e | 1.44 ± 0.11 f | 0.66 ± 0.03 c | 0.97 ± 0.02 d |
Methoxy phenyloxime | 1000222-86-6 | 10.48 | 0.08 ± 0.00 c | 0.29 ± 0.01 g | 0.17 ± 0.01 f | 0.14 ± 0.01 e | 0.05 ± 0.00 c | n.d a | 0.04 ± 0.00 b | 0.04 ± 0.00 b |
Ethyl hexanoate | 123-66-0 | 13.81 | 0.24 ± 0.01 c | 0.26 ± 0.01 c | 0.23 ± 0.01 b, c | 0.12 ± 0.01 a | 0.69 ± 0.02 g | 0.61 ± 0.01 f | 0.44 ± 0.02 d | 0.53 ± 0.02 e |
Hexyl acetate | 142-92-7 | 14.69 | n.d a | n.d a | n.d a | n.d a | 0.05 ± 0.00 e | 0.04 ± 0.00 d | 0.01 ± 0.00 b | 0.03 ± 0.00 c |
2-Phenylethanol | 60-12-8 | 20.49 | 2.30 ± 0.05 b | 1.94 ± 0.09 a | 3.68 ± 0.20 d | 2.11 ± 0.05 a | 3.40 ± 0.20 d | 5.26 ± 0.33 e | 2.33 ± 0.10 b | 2.57 ± 0.19 c |
Diethyl succinate | 123-25-1 | 25.36 | 0.75 ± 0.03 f | 1.00 ± 0.07 g | 0.67 ± 0.04 e | 0.50 ± 0.02 c | 0.59 ± 0.03 d | 0.71 ± 0.04 e,f | 0.21 ± 0.01 a | 0.33 ± 0.01 b |
Ethyl octanoate | 106-32-1 | 27.43 | 0.59 ± 0.02 d | 0.54 ± 0.01 c | 0.46 ± 0.03 b | 0.16 ± 0.00 a | 1.33 ± 0.10 f | 0.97 ± 0.03 e | 0.94 ± 0.05 e | 1.23 ± 0.08 f |
Octanoic acid | 124-07-2 | 28.74 | n.d a | 0.16 ± 0.01 c | n.d a | 0.23 ± 0.01 d | 0.25 ± 0.01 d | 0.68 ± 0.02 f | 0.06 ± 0.00 b | 0.35 ± 0.02 e |
2-Phenylethyl acetate | 103-45-7 | 29.85 | 0.61 ± 0.04 e | 0.13 ± 0.01 a | 0.46 ± 0.02 d | 0.30 ± 0.02 b | 0.38 ± 0.01 c | 0.77 ± 0.05 f | 0.36 ± 0.01 c | 0.48 ± 0.01 d |
Ethyl caprate | 110-38-3 | 40.53 | 0.15 ± 0.01 e | 0.08 ± 0.01 a,b | 0.10 ± 0.00 c, d | 0.07 ± 0.00 a | 0.08 ± 0.01 a,b | 0.11 ± 0.01 | 0.09 ± 0.01 b, c | 0.11 ± 0.01 d |
Furfuryl alcohol | n.d a | n.d a | n.d a | 0.02 ± 0.00 b | 0.02 ± 0.00 b | 0.07 ± 0.00 d | n.d a | 0.06 ± 0.00 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roufas, K.; Chatzimitakos, T.; Athanasiadis, V.; Lalas, S.I.; Toulaki, A.; Makris, D.P. Polyphenolic, Anthocyanin, and Volatile Profile of Barrel-Aged Industrial Red Wines Made from Vitis vinifera Cv Maratheftiko. Beverages 2025, 11, 36. https://doi.org/10.3390/beverages11020036
Roufas K, Chatzimitakos T, Athanasiadis V, Lalas SI, Toulaki A, Makris DP. Polyphenolic, Anthocyanin, and Volatile Profile of Barrel-Aged Industrial Red Wines Made from Vitis vinifera Cv Maratheftiko. Beverages. 2025; 11(2):36. https://doi.org/10.3390/beverages11020036
Chicago/Turabian StyleRoufas, Kosmas, Theodoros Chatzimitakos, Vassilis Athanasiadis, Stavros I. Lalas, Artemis Toulaki, and Dimitris P. Makris. 2025. "Polyphenolic, Anthocyanin, and Volatile Profile of Barrel-Aged Industrial Red Wines Made from Vitis vinifera Cv Maratheftiko" Beverages 11, no. 2: 36. https://doi.org/10.3390/beverages11020036
APA StyleRoufas, K., Chatzimitakos, T., Athanasiadis, V., Lalas, S. I., Toulaki, A., & Makris, D. P. (2025). Polyphenolic, Anthocyanin, and Volatile Profile of Barrel-Aged Industrial Red Wines Made from Vitis vinifera Cv Maratheftiko. Beverages, 11(2), 36. https://doi.org/10.3390/beverages11020036