Alternatives to Traditional Aging of Bobal Red Wines from Semi-Arid Climate: Influence on Phenolic Composition and Related Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Samples
2.2. Conventional Analysis
2.3. Antioxidant Capacity
2.4. Total Polyphenols Content
2.5. Wine Sample Preparation for Determination of Non-Anthocyanin Phenolic Compounds
2.6. Determination of Phenolic Composition by HPLC-DAD
2.6.1. Chemicals
2.6.2. HPLC-DAD-ESI-MS/MS: Separation and Identification of Phenolic Compounds
2.6.3. Quantification of Phenolic Compounds by HPLC-DAD
2.7. Copigmented Anthocyanins
2.8. CIELAB Parameters of Wines
2.9. Data Analysis
3. Results and Discussion
3.1. Conventional Parameters
3.2. Antioxidant Activity
3.3. Total Polyphenols
3.3.1. Monomeric Anthocyanins and Pyroanthocianins
3.3.2. Flavonols
3.3.3. Flavan-3-ols
3.3.4. Hydroxycinnamic Acid Derivatives (HCAD)
3.3.5. Resveratrol-Based Monomeric Stilbenes
3.4. Chromatic Characteristics and Co-Pigmentation Degree
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gordillo, B.; Cejudo-Bastante, M.J.; Rodríguez-Pulido, F.J.; González-Miret, M.L.; Heredia, F.J. Application of the differential colorimetry and polyphenolic profile to the evaluation of the chromatic quality of Tempranillo red wines elaborated in warm climate. Influence of the presence of oak wood chips during fermentation. Food Chem. 2013, 141, 2184–2190. [Google Scholar] [CrossRef] [PubMed]
- López-Solís, R.; Osorio-Umaña, P.; Medel-Marabolí, M.; Obreque-Slier, E. Comparative analysis of the evolution of phenolic profiles during wood aging of a Carménère wine using novel products or procedures aimed at re-using oak barrels. Food Biosci. 2024, 57, 103623. [Google Scholar] [CrossRef]
- Pérez-Magariño, S.; Ortega-Heras, M.; Rodríguez-Bencomo, J.J.; González-Huerta, C.; González-Sanjosé, M.L. Aceptación de los consumidores españoles de las nuevas prácticas enológicas. In Proceedings of the XXX Congreso Mundial de la Viña y el Vino. Section Three: Economic and Law, Budapest, Hungary, 10 June 2007. [Google Scholar]
- Pérez-Coello, M.S.; Sánchez, M.A.; García, E.; González-Viñas, M.A.; Sanz, J.; Cabezudo, M.D. Fermentation of white wines in the presence of wood chips of American and French oak. J. Agric. Food Chem. 2000, 48, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Arapitsas, P.; Antonopoulos, A.; Stefanou, E.; Dourtoglou, V.G. Artificial aging of wines using oak chips. Food Chem. 2004, 86, 563–570. [Google Scholar] [CrossRef]
- Guchu, E.; Díaz-Maroto, M.; Pérez-Coello, M.; González-Viñas, M.A.; Cabezudo-Ibañez, M. Volatile composition and sensory characteristics of Chardonnay wines treated with American and Hungarian oak chips. Food Chem. 2006, 99, 350–359. [Google Scholar] [CrossRef]
- Ordóñez, A.I.; Suberviola, J.; Ortega-Heras, M.; Pino, C.; Gómez-Cordovés, C. Fenoles volátiles como marcadores del uso de chips frente al envejecimiento tradicional de los vinos tintos. In Proceedings of the 20th Reunión de los Grupos de Experimentación en Viticultura y Enología, Tomelloso, Spain, 13–14 December 2005; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2006; pp. 166–178. [Google Scholar]
- Frangipane, M.T.; De Santis, D.; Ceccarelli, A. Influence of oak woods of different geographical origins on the quality of wines aged in barriques and using oak chips. Food Chem. 2007, 103, 46–54. [Google Scholar] [CrossRef]
- Martínez-García, J.; Ojeda, S.; Rubio, P. Influencia de la aplicación de chips de roble y microoxigenación sobre la composición de un vino tinto. Comparación con la crianza en barrica. In Proceedings of the 21th Reunión de los Grupos de Experimentación en Viticultura y Enología, Valladolid, Spain, 22–24 May 2007; pp. 47–58. [Google Scholar]
- Gómez García-Carpintero, E.; Gómez-Gallego, M.A.; Sánchez-Palomo, E.; González-Viñas, M.A. Impact of alternative technique to ageing using oak chips in alcoholic or in malolactic fermentation on volatile and sensory composition of red wines. Food Chem. 2012, 134, 851–863. [Google Scholar] [CrossRef]
- Martínez-Gil, A.M.; Alamo-Sanza, M.; Gutiérrez-Gamboa, G.; Moreno-Simunovic, Y.; Nevares, I. Volatile composition and sensory characteristics of Carménère wines macerating with Colombian (Quercus humboldtii) oak chips compared to wines macerated with American (Q. alba) and European (Q. petraea) oak chips. Food Chem. 2018, 266, 90–100. [Google Scholar] [CrossRef]
- Del Álamo-Sanza, M.; Fernández-Escudero, J.A.; Castro-Torío, R. Changes in phenolic compounds and colour parameters of red wine aged in oak chips and in oak barrels. Food Sci. Technol. Int. 2004, 10, 233–241. [Google Scholar] [CrossRef]
- Del Álamo-Sanza, M.; Nevares-Domínguez, I. Wine aging in bottle from artificial systems (staves and chips) and oak woods: Anthocyanin composition. Anal. Chim. Acta. 2006, 563, 255–263. [Google Scholar] [CrossRef]
- Gómez-Cordovés, M.C.; Suberviola, J.; Bartolomé, B. Variaciones producidas en los pigmentos, color y capacidad antioxidante de un vino tinto por el envejecimiento tradicional y por uno de los alternativos: Virutas (“chips″). In Proceedings of the XXIX Congreso Mundial de la Viña y el Vino, Logroño, Spain, 25–30 June 2006; p. 66. [Google Scholar]
- Ortega-Heras, M.; Pérez-Magariño, S.; Cano-Mozo, E.; González-San José, M.L. Differences in the phenolic composition and sensory profile between red wines aged in oak barrels and wines aged with oak chips. LWT-Food Sci. Technol. 2010, 43, 1533–1541. [Google Scholar] [CrossRef]
- Salon, J.L.; Chirivella, C.; Castel, J.R. Response of cv. Bobal to timing of deficit irrigation in Requena, Spain: Water relations, yield, and wine quality. Am. J. Enol. Vitic. 2005, 56, 1–8. [Google Scholar] [CrossRef]
- Gómez-Gallego, M.A.; Gómez García-Carpintero, E.; Sánchez-Palomo, E.; González Viñas, M.A.; Hermosín-Gutiérrez, I. Oenological potential, phenolic composition, chromatic characteristics and antioxidant activity of red single-cultivar wines from Castilla-La Mancha. Food Res. Int. 2012, 48, 7–15. [Google Scholar] [CrossRef]
- Gómez García-Carpintero, E.; Sánchez-Palomo, E.; González-Viñas, M.A. Aroma characterization of red wines from cv. Bobal grape variety grown in La Mancha region. Food Res. Int. 2011, 44, 61–70. [Google Scholar] [CrossRef]
- Gómez García-Carpintero, E.; Sánchez-Palomo, E.; González-Viñas, M.A. Sensory descriptive analysis of Bobal red wines treated with oak chips at different stages of winemaking. Aust. J. Grape Wine Res. 2011, 17, 368–377. [Google Scholar] [CrossRef]
- Gómez García-Carpintero, E.; Sánchez-Palomo, E.; González-Viñas, M.A. Volatile composition of Bobal red wines subjected to alcoholic/malolactic fermentation with oak chips. LWT-Food Sci. Technol. 2014, 55, 586–594. [Google Scholar] [CrossRef]
- O.I.V. International Oenological Codex. Recueil des Methodes Internationales D’analyse des vins et Desmoûts; 2022 edition; Office International de la Vigne et du Vin: Paris, France, 2022. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Leb. Wiss Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Mazza, G.; Fukumoto, L.; Delaquis, P.; Girard, B.; Ewert, B. Anthocyanins, phenolics, and color of Cabernet franc, Merlot, and Pinot noir wines from British Columbia. J. Agric. Food Chem. 1999, 47, 4009–4017. [Google Scholar] [CrossRef]
- Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines. J. Agric. Food Chem. 2007, 55, 992–1002. [Google Scholar] [CrossRef]
- Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E.; Gómez, M.V.; Velders, A.H.; Hermosín-Gutiérrez, I. Flavonol 3-O-glycosides series of Vitis vinifera cv. Petit verdot red wine grapes. J. Agric. Food Chem. 2009, 57, 209–219. [Google Scholar] [CrossRef]
- Nixdorf, S.L.; Hermosín-Gutiérrez, I. Brazilian red wines made from the hybrid grape cultivar Isabel: Phenolic composition and antioxidant activity. Anal. Chim. Acta 2010, 659, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Rentzsch, M.; Schwarz, M.; Winterhalter, P.; Blanco-Vega, D.; Hermosín-Gutiérrez, I. Survey on the content of vitisin A and hydroxyphenyl-pyranoanthocyanins in Tempranillo wines. Food Chem. 2010, 119, 1426–1434. [Google Scholar] [CrossRef]
- Hermosín-Gutiérrez, I. Influence of ethanol content on the extent of copigmentation in a Cencibel young red wine. J. Agric. Food Chem. 2003, 51, 4079–4083. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Caballero, V.; Ayala, F.; Echávarri, J.F.; Negueruela, A.I. Proposal for a new standard OIV method for determination of chromatic characteristics of wine. Am. J. Enol. Vitic. 2003, 54, 59–62. [Google Scholar] [CrossRef]
- Landrault, N.; Poucheret, P.; Ravel, P.; Gasc, F.; Cros, G.; Teissedre, P.L. Antioxidant capacities and phenolics levels of French wines from different varieties and vintages. J. Agric. Food Chem. 2001, 49, 3341–3348. [Google Scholar] [CrossRef]
- Fernández-Pachón, M.S.; Villaño, D.; García-Parrilla, M.C.; Troncoso, A.M. Antioxidant activity of wines and relation with their polyphenolic composition. Anal. Chim. Acta. 2004, 513, 113–118. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology. Volume 2. The Chemistry of Wine. Stabilization and Treatments, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2000. [Google Scholar]
- Vidal, S.; Francis, L.; Noble, A.; Kwiatkowski, M.; Cheynier, V.; Waters, E. Taste and mouth-feel properties of different types of tannin-like polyphenolic compounds and anthocyanins in wine. Anal. Chim. Acta 2004, 513, 57–65. [Google Scholar] [CrossRef]
- Soto-Vázquez, E.; Río Segade, S.; Orriols Fernández, I. Effect of the winemaking technique on phenolic composition and chromatic characteristics in young red wines. Eur. Food Res. Technol. 2010, 231, 789–802. [Google Scholar] [CrossRef]
- Sartini, E.; Arfelli, G.; Fabiani, A.; Piva, A. Influence of chips, lees and microoxygenation during aging on the phenolic composition of a red Sangiovese wine. Food Chem. 2007, 104, 1599–1604. [Google Scholar] [CrossRef]
- Cejudo-Bastante, M.J.; Hermosín-Gutiérrez, I.; Pérez-Coello, M.S. Micro-oxygenation and oak chip treatments of red wines: Effects on colour-related phenolics, volatile composition and sensory characteristics. Part I: Petit Verdot wines. Food Chem. 2011, 124, 727–737. [Google Scholar] [CrossRef]
- Cejudo-Bastante, M.J.; Hermosín-Gutiérrez, I.; Pérez-Coello, M.S. Micro-oxygenation and oak chip treatments of red wines: Effects on colour-related phenolics, volatile composition and sensory characteristics. Part II: Merlot wines. Food Chem. 2011, 124, 738–748. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Cao, G.; Ou, B.; Prior, R. Anthocyanin and proanthocyanidin content in selected White and red wines. Oxygen radical absorbance capacity comparison with nontraditional wines obtained from high bush blueberry. J. Agric. Food Chem. 2003, 51, 4889–4896. [Google Scholar] [CrossRef] [PubMed]
- Kallithraka, S.; Tsoutsouras, E.; Tzourou, E.; Lanaridis, P. Principal phenolic compounds in Greek red wines. Food Chem. 2006, 99, 784–793. [Google Scholar] [CrossRef]
- Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence. J. Food Compos. Anal. 2007, 20, 618–626. [Google Scholar] [CrossRef]
- Monagas, M.; Bartolomé, B. Anthocyanins and anthocyanin-derived compounds. In Wine Chemistry and Biochemistry; Moreno-Arribas, M.V., Polo, M.C., Eds.; Springer Science and Business Media: New York, NY, USA, 2009; pp. 529–570. [Google Scholar]
- Blanco-Vega, D.; López-Bellido, F.J.; Alía-Robledo, J.M.; Hermosín-Gutiérrez, I. HPLC-DAD-ESI-MS/MS Characterization of Pyranoanthocyanins Pigments Formed in Model Wine. J. Agric. Food Chem. 2011, 59, 9523–9531. [Google Scholar] [CrossRef]
- Casassa, L.F.; Keller, M.; Harbertson, J.F. Regulated deficit irrigation alters anthocyanins, tannins and sensory properties of Cabernet Sauvignon grapes and wines. Molecules 2015, 20, 7820–7844. [Google Scholar] [CrossRef]
- Hermosín-Gutiérrez, I.; Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E. Flavonol Profiles for Grape and Wine Authentication. In Progress in Authentication of Food and Wine; Ebeler, S.E., Takeoka, G.R., Winterhalter, P., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2011; pp. 113–129. [Google Scholar]
- Lamuela-Raventós, R.M.; Romero-Pérez, A.I.; Waterhouse, A.L.; de la Torre-Boronat, M.C. Direct HPLC analysis of cis- and trans-resveratrol and piceid isomers in Spanish red Vitis vinifera wines. J. Agric. Food Chem. 1995, 43, 281–283. [Google Scholar] [CrossRef]
- Mattivi, F.; Reniero, F.; Korhammer, S. Isolation, characterization, and evolution in red vinification of resveratrol monomers. J. Agric. Food Chem. 1995, 43, 1820–1823. [Google Scholar] [CrossRef]
- Gu, X.; Creasy, L.; Kester, A.; Zeece, M. Capillary electrophoretic determination of resveratrol in wines. J. Agric. Food Chem. 1999, 47, 3223–3227. [Google Scholar] [CrossRef]
Alcoholic Degree (% v/v) | pH | Total Acidity (g/L as Tartaric Acid) | Volatile Acidity (g/L as Acetic Acid) | SO2 Free (mg/L) | SO2 Total (mg/L) | Total Polyphenols (mg/L as Gallic Acid) | Antioxidant Capacity (mmol/L of Trolox Equivalents) | |
---|---|---|---|---|---|---|---|---|
CW | 13.8 | 3.75 | 4.05 | 0.49 | 16.5 | 34.5 b | 1457.8 | 21.2 |
0.55 | 0.10 | 0.15 | 0.07 | 071 | 1.41 | 47.8 | 1.32 | |
AFA3 | 14.7 | 3.75 | 4.16 | 0.56 | 16.0 | 33.5 b | 1435.7 | 20.8 |
0.41 | 0.11 | 0.12 | 0.08 | 0.71 | 1.41 | 73.2 | 1.21 | |
AFA6 | 13.4 | 3.79 | 4.27 | 0.53 | 15.0 | 31.5 b | 1400.3 | 20.1 |
0.52 | 0.15 | 0.17 | 0.06 | 0.71 | 2.83 | 86.4 | 1.35 | |
MFA3 | 14.7 | 3.80 | 3.98 | 0.55 | 15.5 | 31.5 b | 1350.2 | 20.3 |
0.60 | 0.10 | 0.17 | 0.07 | 0.10 | 1.41 | 30.3 | 1.22 | |
MFA6 | 14.6 | 3.84 | 4.08 | 0.51 | 16.0 | 27.0 a | 1462.3 | 20.9 |
0.71 | 0.12 | 0.12 | 0.06 | 0.71 | 1.41 | 53.9 | 1.38 | |
PFA3 | 13.9 | 3.76 | 4.16 | 0.51 | 16.0 | 32.0 b | 1380.5 | 21.1 |
0.62 | 0.15 | 0.11 | 0.07 | 0.71 | 0.70 | 43.4 | 1.20 | |
PFA6 | 14.3 | 3.77 | 4.09 | 0.50 | 14.5 | 33.0 b | 1412.9 | 22.9 |
0.40 | 0.14 | 0.13 | 0.06 | 0.80 | 0.71 | 69.1 | 1.22 |
Anthocyanin | CW | AFA3 | AFA6 | MFA3 | MFA6 | PFA3 | PFA6 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dp-3-glc | 10.97 | 1.91 | 9.33 | 0.35 | 8.35 | 1.38 | 9.51 | 0.21 | 9.85 | 0.68 | 8.20 | 1.89 | 8.53 | 1.68 |
cy-3-glc | 0.52 | 0.03 | 0.45 | 0.04 | 0.47 | 0.02 | 0.41 | 0.05 | 0.46 | 0.02 | 0.40 | 0.08 | 0.68 | 0.19 |
pt-3-glc | 12.22 | 1.61 | 10.78 | 1.14 | 11.36 | 0.44 | 11.25 | 0.29 | 12.30 | 1.54 | 11.29 | 0.66 | 11.94 | 0.22 |
pn-3-glc | 9.08 | 1.24 | 9.21 | 1.31 | 8.96 | 0.25 | 9.01 | 0.79 | 7.15 | 1.47 | 8.58 | 0.35 | 9.15 | 1.41 |
mv-3-glc | 53.39 | 2.84 | 55.63 | 1.98 | 56.46 | 1.74 | 55.15 | 1.54 | 55.48 | 2.02 | 57.46 | 2.74 | 56.14 | 1.85 |
dp-3-acglc | 1.93 | 0.47 | 1.91 | 0.31 | 1.73 | 0.18 | 1.45 | 0.44 | 1.25 | 0.35 | 1.69 | 0.15 | 1.98 | 0.43 |
cy-3-acglc | 1.01 | 0.09 | 0.95 | 0.08 | 0.93 | 0.07 | 0.95 | 0.05 | 1.31 | 0.36 | 0.81 | 0.31 | 0.75 | 0.41 |
pt-3-acglc | 1.09 | 0.11 | 1.06 | 0.08 | 1.04 | 0.12 | 1.14 | 0.09 | 1.43 | 0.35 | 1.13 | 0.07 | 0.88 | 0.05 |
pn-3-acglc | 0.67 | 0.18 | 0.73 | 0.12 | 0.63 | 0.11 | 0.69 | 0.13 | 0.79 | 0.08 | 0.58 | 0.10 | 0.55 | 0.09 |
mv-3-acglc | 4.16 | 0.24 | 4.31 | 0.31 | 4.31 | 0.15 | 4.41 | 0.15 | 4.65 | 0.41 | 4.23 | 0.19 | 4.08 | 0.38 |
dp-3-cmglc | 1.05 | 0.07 | 1.19 | 0.09 | 1.15 | 0.11 | 1.12 | 0.07 | 1.15 | 0.07 | 1.01 | 0.09 | 1.00 | 0.10 |
cy-3-cmglc | 0.42 | 0.13 | 0.31 | 0.07 | 0.37 | 0.04 | 0.36 | 0.04 | 0.44 | 0.09 | 0.40 | 0.03 | 0.38 | 0.04 |
pt-3-cmglc | 0.24 | 0.03 | 0.22 | 0.06 | 0.21 | 0.04 | 0.24 | 0.04 | 0.29 | 0.04 | 0.22 | 0.03 | 0.24 | 0.04 |
pn-3-cmglc | 0.92 a | 0.08 | 1.07 a,b | 0.09 | 1.17 b | 0.11 | 1.19 b | 0.09 | 1.05 a,b | 0.05 | 1.11 b | 0.11 | 1.08 a,b | 0.08 |
mv-3-cis-cmglc | 0.13 a | 0.04 | 0.20 b | 0.04 | 0.10 a | 0.03 | 0.10 a | 0.02 | 0.64 c | 0.09 | 0.07 a | 0.03 | 0.07 a | 0.04 |
mv-3-trans-cmglc | 2.07 b | 0.21 | 2.30 b | 0.31 | 2.42 b,c | 0.22 | 2.74 c | 0.22 | 1.52 a | 0.24 | 2.48 c | 0.13 | 2.29 b | 0.15 |
mv-3-cfglc | 0.13 a | 0.06 | 0.35 b | 0.07 | 0.33 b | 0.06 | 0.28 b | 0.07 | 0.24 a,b | 0.07 | 0.35 b | 0.07 | 0.26 b | 0.05 |
Total Anthocyanin * | 473.5 c | 12.11 | 493.7 c | 13.71 | 499.3 c | 19.21 | 379.4 a | 9.35 | 368.3 a | 11.29 | 450.1 b | 11.98 | 488.2 c | 9.54 |
pyranoanthocyanin | CW | AFA3 | AFA6 | MFA3 | MFA6 | PFA3 | PFA6 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
vitisin A * | 9.15 d | 0.31 | 11.61 f | 0.18 | 10.48 e | 0.21 | 6.00 b | 0.26 | 4.32 a | 0.27 | 8.17 c | 0.19 | 8.37 c | 0.34 |
vitisin B * | 1.96 c | 0.11 | 1.63 b | 0.31 | 1.28 b | 0.15 | 0.50 a | 0.17 | 1.28 b | 0.09 | 0.83 a | 0.19 | 0.81 a | 0.17 |
total vitisins * | 11.11 d | 0.34 | 13.25 e | 0.37 | 11.75 d | 0.28 | 6.50 b | 0.31 | 5.60 a | 0.21 | 9.00 c | 0.17 | 9.18 c | 0.28 |
10-MHP-pyrmv-3-glc ** | 0.53 b | 0.12 | 0.49 b | 0.08 | 0.61 b | 0.09 | 0.21 a | 0.15 | 0.17 a | 0.11 | 0.63 b | 0.08 | 0.60 b | 0.10 |
10-MHP-pyrmv-3-cmglc ** | 0.06 | 0.02 | 0.06 | 0.01 | 0.08 | 0.02 | 0.04 | 0.01 | 0.02 | 0.01 | 0.08 | 0.02 | 0.07 | 0.01 |
10-DHP-pyrmv-3-glc ** | 0.16 b | 0.03 | 0.14 b | 0.03 | 0.15 b | 0.03 | 0.08 a | 0.02 | 0.06 a | 0.01 | 0.14 b | 0.02 | 0.12 b | 0.03 |
10-DHP-pyrmv-3-cmglc ** | 0.04 | 0.01 | 0.05 | 0.02 | 0.07 | 0.03 | 0.05 | 0.01 | 0.03 | 0.01 | 0.03 | 0.01 | 0.04 | 0.02 |
total hydroxyphenyl-pyranonthocyanins ** | 0.78 c | 0.19 | 0.74 c | 0.18 | 0.90 c | 0.17 | 0.38 b | 0.05 | 0.28 a | 0.04 | 0.87 c | 0.18 | 0.82 c | 0.16 |
Flavonol | CW | AFA3 | AFA6 | MFA3 | MFA6 | PFA3 | PFA6 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
myricetin-type | 28.99 | 1.51 | 27.93 | 1.21 | 30.66 | 1.64 | 28.21 | 1.74 | 30.51 | 1.82 | 28.00 | 1.14 | 29.99 | 3.21 |
quercetin-type | 24.77 a | 2.31 | 27.78 b,c | 1.58 | 26.21 b | 2.11 | 30.94 c | 2.11 | 31.76 c | 1.58 | 33.14 c | 2.21 | 30.20 c | 2.44 |
laricitrin-type | 8.02 | 0.98 | 8.01 | 0.78 | 9.15 | 0.65 | 9.09 | 0.40 | 9.28 | 0.94 | 9.51 | 0.31 | 8.75 | 0.35 |
kaempferol-type | 3.57 | 0.17 | 4.05 | 0.41 | 3.68 | 0.32 | 3.95 | 0.24 | 3.98 | 0.21 | 3.88 | 0.14 | 3.75 | 0.21 |
isorhamnetin-type | 14.49 a | 0.31 | 15.07 a | 0.28 | 16.39 b | 0.19 | 16.62 b | 0.18 | 16.37 b | 0.17 | 16.34 b | 0.24 | 16.79 b | 0.24 |
syringetin-type | 20.16 g | 0.15 | 17.15 f | 0.41 | 13.90 e | 0.18 | 11.20 d | 0.22 | 8.11 a | 0.14 | 9.13 b | 0.21 | 10.52 c | 0.31 |
total flavonols * | 273.6 a | 8.24 | 281.4 a | 10.11 | 279.8 a | 7.21 | 270.3 a | 9.21 | 286.4 a | 8.75 | 299.1 a,b | 11.14 | 305.3 b | 7.54 |
(+)-Catechin | (-)-Epicatechin | (-)-Epigallocatechin | |
---|---|---|---|
CW | 38.54 c | 26.66 c | 5.27 b |
1.12 | 1.54 | 0.45 | |
AFA3 | 30.44 a | 20.14 a | 4.12 a |
1.54 | 1.07 | 0.34 | |
AFA6 | 34.74 b | 20.55 a | 5.44 b |
1.14 | 0.89 | 0.44 | |
MFA3 | 35.21 b | 21.87 a | 3.89 a |
0.98 | 1.04 | 0.34 | |
MFA6 | 38.22 c | 25.68 b,c | 6.21 c |
1.05 | 2.12 | 0.74 | |
PFA3 | 29.54 a | 23.07 b | 3.98 a |
0.97 | 0.77 | 0.61 | |
PFA6 | 35.78 b | 23.11 b | 4.39 a,b |
1.11 | 0.82 | 0.47 |
HCAD | CW | AFA3 | AFA6 | MFA3 | MFA6 | PFA3 | PFA6 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
caftaric acid | 61.20 b | 2.22 | 61.03 b | 1.78 | 58.37 b | 2.24 | 62.63 b | 1.91 | 60.27 b | 2.54 | 52.91 a | 1.32 | 50.98 a | 1.39 |
coutaric acid | 17.03 a,b | 1.19 | 15.01 a | 0.97 | 19.17 b | 1.01 | 14.59 a | 0.98 | 14.66 a | 0.99 | 14.48 a | 1.07 | 15.71 a | 1.14 |
caffeic acid | 7.08 a | 0.76 | 8.14 a | 0.85 | 8.00 a | 0.79 | 7.27 a | 0.83 | 8.62 a | 0.95 | 10.06 a,b | 1.03 | 11.15 b | 0.52 |
p-coumaric acid | 5.20 a | 0.82 | 6.08 a | 0.91 | 6.39 a | 0.75 | 6.98 a | 0.96 | 7.36 a | 1.08 | 12.95 b | 0.54 | 13.20 b | 0.77 |
ethyl caffeate | 1.04 a,b | 0.32 | 1.51 b | 0.21 | 0.78 a | 0.12 | 0.67 a | 0.23 | 1.06 a,b | 0.15 | 1.88 b | 0.19 | 1.82 b | 0.29 |
ethyl coumarate | 8.46 b | 0.32 | 8.25 b | 0.31 | 7.31 a | 0.39 | 7.86 a,b | 0.16 | 8.03 b | 0.25 | 7.73 a,b | 0.45 | 7.14 a | 0.47 |
total amount * | 178.94 a,b | 11.4 | 176.33 a,b | 12.1 | 182.87 a,b | 12.3 | 163.13 a | 12.1 | 160.12 a | 11.9 | 194.57 b | 12.1 | 205.90 b | 9.91 |
caffeic-type | 69.31 b | 2.01 | 70.67 b | 1.28 | 67.14 b | 1.81 | 70.56 b | 1.89 | 69.95 b | 1.95 | 64.84 a | 0.54 | 63.94 a | 1.68 |
p-coumaric-type | 30.69 a | 1.33 | 29.33 a | 1.25 | 32.86 a | 1.45 | 29.44 a | 1.77 | 30.05 a | 1.57 | 35.16 b | 1.17 | 36.06 b | 1.22 |
% hydrolysis ** | 22.22 a | 1.56 | 21.09 a | 1.78 | 25.55 a,b | 2.74 | 21.57 a | 1.98 | 22.02 a | 1.47 | 27.43 b | 1.48 | 28.91 b | 1.07 |
% ethyl esters | 9.50 | 0.87 | 9.75 | 1.02 | 8.08 | 1.01 | 8.53 | 0.74 | 9.08 | 0.49 | 9.60 | 0.65 | 8.96 | 0.88 |
trans-Piceid * | cis-Piceid * | trans-Resveratrol * | cis-Resveratrol * | % total trans-Isomers | % total cis-Isomers | total Resveratrol ** | |
---|---|---|---|---|---|---|---|
CW | 12.18 e | 72.53 f | 11.12 b | 29.13 c | 18.65 | 81.35 | 34.74 f |
0.67 | 0.62 | 0.28 | 1.11 | 1.11 | 1.21 | 1.14 | |
AFA3 | 10.75 d | 64.50 e | 8.95 a | 23.30 b | 18.33 | 81.67 | 29.88 e |
0.27 | 0.97 | 0.77 | 0.92 | 1.25 | 1.29 | 0.88 | |
AFA6 | 9.56 b,c | 58.26 d | 8.56 a | 21.79 b | 18.46 | 81.54 | 27.29 d |
0.57 | 0.70 | 0.49 | 0.81 | 1.12 | 1.61 | 1.13 | |
MFA3 | 9.87 c | 47.61 c | 8.28 a | 23.07 b | 20.43 | 79.57 | 24.70 c |
0.28 | 0.81 | 0.59 | 0.77 | 1.30 | 1.89 | 1.21 | |
MFA6 | 8.80 b | 43.25 b | 7.58 a | 20.45 a | 20.45 | 79.55 | 22.26 b |
0.46 | 0.85 | 0.57 | 1.21 | 1.29 | 1.02 | 1.14 | |
PFA3 | 7.95 b | 44.68 b | 8.05 a | 22.80 b | 19.17 | 80.83 | 23.21 b |
0.66 | 0.91 | 0.59 | 0.82 | 1.18 | 1.29 | 0.99 | |
PFA6 | 6.51 a | 38.99 a | 7.38 a | 19.76 a | 19.12 | 80.88 | 20.19 a |
0.56 | 0.84 | 0.69 | 0.71 | 1.29 | 1.31 | 1.14 |
L* | C* | h* | % Copigmentation | |
---|---|---|---|---|
CW | 79.12 | 22.16 b | 357.8 b | 5.45 a |
2.35 | 1.07 | 1.50 | 2.04 | |
AFA3 | 78.15 | 23.72 b | 354 a,b | 6.33 a |
2.15 | 1.67 | 2.76 | 0.87 | |
AFA6 | 78.11 | 22.84 b | 355.5 a,b | 7.21 a,b |
2.81 | 1.57 | 2.91 | 1.99 | |
MFA3 | 81.23 | 20.48 a,b | 352.2 a | 6.44 a |
2.49 | 2.13 | 1.40 | 0.79 | |
MFA6 | 80.36 | 19.51 a | 351.4 a | 8.21 b |
1.92 | 1.16 | 1.15 | 0.59 | |
PFA3 | 82.77 | 17.71 a | 351.1 a | 8.31 b |
1.95 | 2.34 | 1.25 | 0.44 | |
PFA6 | 79.75 | 19.73 a | 351.3 a | 8.44 b |
2.17 | 0.71 | 1.87 | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osorio Alises, M.; Sánchez Palomo, E.; González-Viñas, M.Á. Alternatives to Traditional Aging of Bobal Red Wines from Semi-Arid Climate: Influence on Phenolic Composition and Related Properties. Beverages 2024, 10, 89. https://doi.org/10.3390/beverages10030089
Osorio Alises M, Sánchez Palomo E, González-Viñas MÁ. Alternatives to Traditional Aging of Bobal Red Wines from Semi-Arid Climate: Influence on Phenolic Composition and Related Properties. Beverages. 2024; 10(3):89. https://doi.org/10.3390/beverages10030089
Chicago/Turabian StyleOsorio Alises, María, Eva Sánchez Palomo, and M. Ángel González-Viñas. 2024. "Alternatives to Traditional Aging of Bobal Red Wines from Semi-Arid Climate: Influence on Phenolic Composition and Related Properties" Beverages 10, no. 3: 89. https://doi.org/10.3390/beverages10030089
APA StyleOsorio Alises, M., Sánchez Palomo, E., & González-Viñas, M. Á. (2024). Alternatives to Traditional Aging of Bobal Red Wines from Semi-Arid Climate: Influence on Phenolic Composition and Related Properties. Beverages, 10(3), 89. https://doi.org/10.3390/beverages10030089