Phenolic Compound Characterization and Biological Activities of Mistletoe (Viscum album L.) Ethanol Macerates Used in Herbal Spirit Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Mistletoe (V. album) Macerates
2.3. Misletoe Herbal Spirit (Biska) Samples
2.4. Determination of the Total Phenolic Content (TPC) and the Total Flavonoid Content (TFC)
2.5. UPLC/ESI-MS2 Analysis of Polyphenols
2.6. Antioxidant Activity
2.7. Cell Proliferation Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Maceration Parameters
3.2. Phenolic Compounds Characterization
3.3. Polyphenolic Profile
3.4. Biological Activity
3.4.1. Antioxidative Activity
3.4.2. Antiproliferative Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tonutti, I.; Liddle, P. Aromatic plants in alcoholic beverages. A review. Flavour Fragr. J. 2010, 25, 341–350. [Google Scholar] [CrossRef]
- Veljković, V.B.; Stanković, M.Z. Herbs used in alcoholic drinks. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Trugo, L.C., Finglas, M., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2003; pp. 3098–3107. [Google Scholar]
- Mrvčić, J.; Posavec, S.; Kazazić, S.; Stanzer, D.; Peša, A.; Stehlik-Tomas, V. Spirit drinks: A source of dietary polyphenols. Croat. J. Food Sci. Technol. 2012, 4, 102–111. [Google Scholar]
- Rodríguez-Solana, R.; Salgado, J.M.; Domínguez, J.M.; Cortés-Diéguez, S. Phenolic compounds and aroma-impact odorants in herb liqueurs elaborated by maceration of aromatic and medicinal plants in grape marc distillates. J. Inst. Brew. 2016, 122, 653–660. [Google Scholar] [CrossRef]
- Rodríguez-Solana, R.; Salgado, J.M.; Pérez-Santín, E.; Romano, A. Effect of carob variety and roasting on the antioxidant capacity, and the phenolic and furanic contents of carob liquors. J. Sci. Food Agric. 2019, 99, 2697–2707. [Google Scholar] [CrossRef] [PubMed]
- Andreou, V.; Strati, I.F.; Fotakis, C.; Liouni, M.; Zoumpoulakis, P.; Sinanoglou, V.J. Herbal distillates: A new era of grape marc distillates with enriched antioxidant profile. Food Chem. 2018, 253, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Petrović, M.; Vukosavljević, P.; Đurović, S.; Ntić, M.; Gorjanović, S. New herbal bitter liqueur with high antioxidant activity and lower sugar content: Innovative approach to liqueurs formulations. J. Food Sci. Technol. 2019, 56, 4465–4473. [Google Scholar] [CrossRef] [PubMed]
- Luczaj, L.; Jug-Dujaković, M.; Dolina, K.; Vitasović-Kosić, I. Plants in alcoholic beverages on the Croatian islands, with special reference to rakija travarica. J. Ethnobiol. Ethnomed. 2019, 15, 51. [Google Scholar] [CrossRef] [PubMed]
- Nazaruk, J.; Orlikowski, P. Phytochemical profile and therapeutic potential of Viscum album L. Nat. Prod. Res. 2016, 30, 373–385. [Google Scholar] [CrossRef]
- Pietrzak, W.; Nowak, R. Impact of Harvest Conditions and Host Tree Species on Chemical Composition and Antioxidant Activity of Extracts from Viscum album L. Molecules 2021, 26, 3741. [Google Scholar] [CrossRef]
- Kleszken, E.; Timar, A.V.; Memete, A.R.; Miere, F.; Vicas, S.I. On Overview of Bioactive Compounds, Biological And Pharmacological Effects Of Mistletoe (Viscum Album L.). Pharmacophore 2022, 13, 10–26. [Google Scholar] [CrossRef]
- Melo, M.N.d.O.; Batista, J.V.d.C.; Peñaloza, E.M.C.; Oliveira, A.P.; Garrett, R.; Baumgartner, S.; Holandino, C. A Scoping Review of Genus Viscum: Biological and Chemical Aspects of Alcoholic Extracts. Plants 2023, 12, 1811. [Google Scholar] [CrossRef]
- Hussain, M.A.; Khan, M.Q.; Hussain, N.; Habib, T. Antibacterial and Antifungal Potential of Leaves and Twigs of Viscum album L. J. Med. Plants Res. 2011, 5, 5545–5549. [Google Scholar]
- Anatole, P.C.; Jeanne, N.; Marieta, C. Polyphenol Contents of Five of Medicinal Plants from Cameroon and Effects of Their Extracts on Antioxidant Capacities of Human Breast Cancer Cells. Toxicol. Environ. Chem. 2014, 96, 1120–1130. [Google Scholar]
- Yoo, J.-M.; Yang, J.-H.; Kim, Y.S.; Yang, H.J.; Cho, W.-K.; Ma, J.Y. Inhibitory Effects of Viscum coloratum Extract on IgE/Antigen- Activated Mast Cells and Mast Cell-Derived Inflammatory Mediator-Activated Chondrocytes. Molecules 2016, 22, 37. [Google Scholar] [CrossRef]
- Radenkovic, M.; Ivetic, V.; Popovic, M.; Brankovic, S.; Gvozdenovic, L. Effects of Mistletoe (Viscum album L., Loranthaceae) Extracts on Arterial Blood Pressure in Rats Treated with Atropine Sulfate and Hexocycline. Clin. Exp. Hypertens. 2009, 31, 11–19. [Google Scholar] [CrossRef]
- Sun, C.; Wu, Z.; Wang, Z.; Zhang, H. Effect of Ethanol/Water Solvents on Phenolic Profiles and Antioxidant Properties of Beijing Propolis Extracts. Evid. Based Complement. Altern. Med. 2015, 2015, 595393. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Cendrowski, A.; Ścibisz, I.; Kieliszek, M.; Kolniak-Ostek, J.; Mitek, M. UPLCPDA-Q/TOF-MS Profile of Polyphenolic Compounds of Liqueurs from Rose Petals (Rosa rugosa). Molecules 2017, 22, 1832. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, L.; Ye, W. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. J. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Solana, R.; Vázquez-Araújo, L.; Salgado, J.M.; Domínguez, J.M.; Cortés-Diéguez, S. Optimization of the process of aromatic and medicinal plant maceration in grape marc distillates to obtain herbal liqueurs and spirits. J. Sci. Food Agric. 2016, 96, 4760–4771. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Solana, R.; Esteves, E.; Mansinhos, I.; Gonçalves, S.; Pérez-Santín, E.; Galego, L.; Romano, A. Influence of elaboration process on chemical, biological, and sensory characteristics of European pennyroyal liqueurs. J. Sci. Food Agric. 2021, 101, 4076–4089. [Google Scholar] [CrossRef]
- Caldeira, I.; Lopes, D.; Delgado, T.; Canas, S.; Anjos, O. Development of blueberry liquor: Influence of distillate, sweetener and fruit quantity. J. Sci. Food Agric. 2018, 98, 1088–1094. [Google Scholar] [CrossRef]
- Hanousek Čiča, K.; Mrvčić, J.; Srečec, S.; Filipan, K.; Blažić, M.; Stanzer, D. Physicochemical and aromatic characterization of carob macerates produced by different maceration conditions. Food Sci. Nutr. 2020, 8, 942–954. [Google Scholar] [CrossRef]
- Hanousek Čiča, K.; Lukin, P.; Derewiaka, D.; Mrvčić, J.; Stanzer, D. Chemical Composition, Physical Properties, and Aroma Profile of Ethanol Macerates of Mistletoe (Viscum album). Beverages 2022, 8, 46. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi Junior, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Pekal, A.; Pyrzynska, K. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal. Methods 2014, 7, 1776–1782. [Google Scholar] [CrossRef]
- Elez Garofulić, I.; Zorić, Z.; Pedisić, S.; Brnčić, M.; Dragović-Uzelac, V. UPLC-MS2 profiling of blackthorn flower polyphenols isolated by ultrasound-assisted extraction. J. Food Sci. 2018, 83, 2782–2789. [Google Scholar] [CrossRef]
- Benzie, F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–23. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Coelho, E.M.; de Souza, M.E.A.O.; Corrêa, L.C.; Viana, A.C.; de Azevêdo, L.C.; dos Santos Lima, M. Bioactive Compounds and Antioxidant Activity of Mango Peel Liqueurs (Mangifera indica L.) Produced by Different Methods of Maceration. Antioxidants 2019, 8, 102. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, A.; Petrović, P.; Ðorđević, V.; Zdunić, G.; Šavikin, K.; Bugarski, B. Polyphenols extraction from plant sources. Lek. Sirovine 2017, 37, 45–49. [Google Scholar] [CrossRef]
- Galego, L.R.; da Silva, J.P.; Almeida, V.R.; Bronze, M.R.; Boas, L.V. Preparation of novel distinct highly aromatic liquors using fruit distillates. Int. J. Food Sci. Technol. 2011, 46, 67–73. [Google Scholar] [CrossRef]
- Vuleta, G.; Milic, J.; Savic, S. Farmaceutska Tehnologija (Pharmaceutical Technology); Faculty of Pharmacy, University of Belgrade: Belgrade, Serbia, 2012. [Google Scholar]
- Senica, M.; Mikulic-Petkovsek, M. Changes in beneficial bioactive compounds in eight traditional herbal liqueurs during a one-month maceration process. J. Sci. Food Agric. 2019, 100, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Uma, D.B.; Ho, C.W.; Aida, W.M. Optimization of extraction parameters of total phenolic compounds from henna (Lawsonia inermis) leaves. Sains Malays. 2010, 39, 119–128. [Google Scholar]
- Urech, K.; Baumgartner, S. Chemical Constituents Of Viscum album L.: Implications for the Pharmaceutical Preparation of Mistletoe. In Mistletoe: From Mythology to Evidence-Based Medicine, 4th ed.; Zänker, K.S., Kaveri, S.V., Eds.; Karger Publishing: Basel, Switzerland, 2015; pp. 11–23. [Google Scholar]
- Cosmulescu, S.; Trandafir, I.; Nour, V.; Ionica, M.; Tutulescu, F. Phenolics Content, Antioxidant Activity and Color of Green Walnut Extracts for Preparing Walnut Liquor. Not. Bot. Horti Agrobot. 2014, 42, 551–555. [Google Scholar] [CrossRef]
- Bamba, B.S.B.; Shi, J.; Tranchant, C.C.; Xue, S.J.; Forney, C.F.; Lim, L.-T. Influence of Extraction Conditions on Ultrasound-Assisted Recovery of Bioactive Phenolics from Blueberry Pomace and Their Antioxidant Activity. Molecules 2018, 23, 1685. [Google Scholar] [CrossRef] [PubMed]
- Ćujić, N.; Šavikin, K.; Janković, T.; Pljevljakušić, D.; Zdunić, G.; Ibric, S. Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chem. 2016, 194, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Dent, M.; Dragović-Uzelac, V.; Penić, M.; Brnčić, M.; Bosiljkov, T.; Levaj, B. The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in Dalmatian wild sage (Salvia officinalis L.) extracts. Food Technol. Biotechnol. 2013, 51, 84–91. [Google Scholar]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.P.; Zhang, J.; Bravo, L.L.; Martínez, F.S.; Agudo, P.T.; et al. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules 2018, 22, 2322. [Google Scholar] [CrossRef] [PubMed]
- Issa-Issa, H.; Ivanišová, E.; Noguera-Artiaga, L.; Kántor, A.; López-Lluch, D.; Kačániová, M.; Szumny, A.; Carbonell-Barrachina, A.A. Effect of the herbs used in the formulation of a Spanish herb liqueur, Herbero de la sierra de Mariola, on its chemicaland functional compositions and antioxidant and antimicrobial activities. Eur. Food Res. Technol. 2019, 245, 1197–1206. [Google Scholar] [CrossRef]
- Gorjanović, S.Z.; Novaković, M.M.; Potkonjak, N.I.; Sužnjević, D.Z. Antioxidant activity of wines determined by a polarographic assay based on hydrogen peroxide scavenge. J. Agric. Food Chem. 2010, 58, 4626–4631. [Google Scholar] [CrossRef]
- Gorjanović, S.Z.; Novaković, M.M.; Vukosavljević, P.V.; Pastor, F.T.; Tešević, V.; Sužnjević, D.Ž. Polarographic assay based on hydrogen peroxide scavenging in determination of antioxidant activity of strong alcohol beverages. J. Agric. Food Chem. 2010, 58, 8400–8406. [Google Scholar] [CrossRef]
- Alamprese, C. Characterization and antioxidant activity of nocino liqueur. Food Chem. 2005, 90, 495–502. [Google Scholar] [CrossRef]
- Lee, H.K.; Choi, Y.M.; Noh, D.O.; Suh, H.J. Antioxidant effect of Korean traditional lotus liquor (Yunyupju). Int. J. Food Sci. Technol. 2005, 40, 709–715. [Google Scholar] [CrossRef]
- Montero, L.; Schmitz, O.J.; Meckelmann, S.W. Chemical characterization of eight herbal liqueurs by means of liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 2020, 1631, 461560. [Google Scholar] [CrossRef]
- Luczkiewicz, M.; Cisowski, W.; Kaiser, P.; Ochocka, R.; Piotrowski, A. Comparative analysis of phenolic acids in mistletoe plants from various hosts. Acta Pol. Pharm. Drug Res. 2001, 58, 373–379. [Google Scholar]
- Vicas, S.I.; Rugina, D.; Socaciu, C. Comparative Study about Antioxidant Activities of Viscum album from Different Host Trees, Harvested in Different Seasons. J. Med. Plants Res. 2011, 5, 2237–2244. [Google Scholar]
- Holandino, C.; de Melo, M.N.O.; Oliveira, A.P.; da Batista, J.V.C.; Capella, M.A.M.; Garrett, R.; Grazi, M.; Ramm, H.; Torre, C.D.; Schaller, G.; et al. Phytochemical Analysis and in Vitro Anti-Proliferative Activity of Viscum album Ethanolic Extracts. BMC Complement. Med. Ther. 2020, 20, 215. [Google Scholar] [CrossRef]
- Melo, M.N.O.; Oliveira, A.P.; Wiecikowski, A.F.; Carvalho, R.S.; de Lima Castro, J.; de Oliveira, F.A.G.; Pereira, H.M.G.; da Veiga, V.F.; Capella, M.M.A.; Rocha, L.; et al. Phenolic Compounds from Viscum album Tinctures Enhanced Antitumor Activity in Melanoma Murine Cancer Cells. Saudi Pharm. J. 2018, 26, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.; Yan, J.; Zheng, D.; Sun, F.; Wang, J.; Han, L.; Zhang, Y.; Wang, T. Comprehensive chemical profiling in the ethanol extract of Pluchea indica aerial parts by liquid chromatography/mass spectrometry analysis of its silica gel column chromatography fractions. Molecules 2019, 24, 2784. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, H.M.; Farag, M.A.; Abdel-Naim, A.B.; Ghareib, S.A.; Abdel-Sattar, E.A. Mechanistic Evidence of Viscum schimperi (Viscaceae) Antihyperglycemic Activity: From a Bioactivity-Guided Approach to Comprehensive Metabolite Profiling. Phytother Res. 2015, 29, 1737–1743. [Google Scholar] [CrossRef]
- Stefanucci, A.; Zengin, G.; Llorent-Martinez, E.J.; Dimmito, M.P.; Della Valle, A.; Pieretti, S.; Ak, G.; Sinan, K.I.; Mollica, A. Viscum album L. Homogenizer-Assisted and Ultrasound-Assisted Extracts as Potential Sources of Bioactive Compounds. J. Food Biochem. 2020, 44, e13377. [Google Scholar] [CrossRef]
- Ali, A.; Bashmil, Y.M.; Cottrell, J.J.; Suleria, H.A.R.; Dunshea, F.R. LC-MS/MSQTOF Screening and Identification of Phenolic Compounds from Australian Grown Herbs and Their Antioxidant Potential. Antioxidants 2021, 10, 1770. [Google Scholar] [CrossRef]
- Vuolo, M.M.; Lima, V.S.; Junior, M.R.M. Phenolic compounds: Structure, classification, and antioxidant power. In Bioactive Compounds; Campos, M.R.S., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 33–50. [Google Scholar]
- Haas, K.; Bauer, M.; Wollenweber, E. Cuticular waxes and flavonol aglycones of mistletoes. Z. Naturforsch. C 2003, 58, 464–470. [Google Scholar] [CrossRef]
- Carocho, M.; Barros, L.; Bento, A.; Santos-Buelga, C.; Morales, P.; Ferreira, I.C.F.R. Castanea sativa Mill. Flowers amongst the Most Powerful Antioxidant Matrices: A Phytochemical Approach in Decoctions and Infusions. Biomed. Res. Int. 2014, 2014, 232956. [Google Scholar] [CrossRef]
- Pinheiro, P.F.; Justino, G.C. Structural Analysis of Flavonoids and Related Compounds—A Review of Spectroscopic Applications. In Phytochemicals—A Global Perspective of Their Role in Nutrition and Health; Rao, V., Ed.; InTech: Rijeka, Croatia, 2012; pp. 33–56. [Google Scholar]
- Elez Garofulić, I.; Kruk, V.; Martić, A.; Martić, I.; Zorić, Z.; Pedisić, S.; Dragović, S.; Dragović-Uzelac, V. Evaluation of Polyphenolic Profile and Antioxidant Activity of Pistacia lentiscus L. Leaves and Fruit Extract Obtained by Optimized Microwave-Assisted Extraction. Foods 2020, 9, 1556. [Google Scholar] [CrossRef]
- Reis, S.F.; Rai, D.K.; Abu-Ghannam, N. Water at room temperature as a solvent for the extraction of apple pomace phenolic compounds. Food Chem. 2012, 135, 1991–1998. [Google Scholar] [CrossRef]
- Zeng, X.; Su, W.; Zheng, Y.; Liu, H.; Li, P.; Zhang, W.; Liang, Y.; Bai, Y.; Peng, W.; Yao, H. UFLC-Q-TOF-MS/MS-based screening and identification of flavonoids and derived metabolites in human urine after oral administration of Exocarpium Citri Grandis extract. Molecules 2018, 23, 895. [Google Scholar] [CrossRef]
- Feng, J.; Xiang, C.; Liang, H.; Zhao, Y.Y. Chemical constituents of isoflavones from vine stems of Millettia nitita var. hirsutissima. China J. Chin. Mater. Med. 2007, 34, 321–322. [Google Scholar]
- Ammar, S.; del Mar Contreras, M.; Belguith-Hadrich, O.; Bouaziz, M.; Segura-Carretero, A. New insights into the qualitative phenolic profile of Ficus carica L. fruits and leaves from Tunisia using ultra-high-performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry and their antioxidant activity. RSC Adv. 2015, 5, 20035–20050. [Google Scholar] [CrossRef]
- Onay-Uçar, E.; Karagöz, A.; Arda, N. Antioxidant activity of Viscum album ssp. album. Fitoterapia 2006, 77, 556–560. [Google Scholar] [CrossRef]
- Leu, Y.L.; Hwang, T.L.; Chung, Y.M.; Hong, P.Y. The inhibition of superoxide anion generation in human neutrophils by Viscum coloratum. Chem. Pharm. Bull. 2006, 54, 1063–1066. [Google Scholar] [CrossRef]
- Yao, H.; Liao, Z.X.; Wu, Q.; Lei, G.Q.; Liu, Z.J.; Chen, D.F.; Chen, J.K.; Zhou, T.S. Antioxidative flavanone glycosides from the branches and leaves of Viscum coloratum. Chem. Pharm. Bull. 2006, 54, 133–135. [Google Scholar] [CrossRef]
- Vicas, S.; Rugina Socaciu, C. Antioxidant Activity of European Mistletoe (Viscum album). In Phytochemicals as Nutraceuticals—Global Approaches to Their Role in Nutrition and Health; Venkteteshwer, R., Ed.; InTech: Rijeka, Croatia, 2012; pp. 115–130. [Google Scholar]
- Choudhary, M.I.; Maher, S.; Begum, A.; Abbaskhan, A.; Ali, S.; Khan, A.; Shafique-ur-Rehman; Atta-ur-Rahman. Characterization and Antiglycation Activity of Phenolic Constituents from Viscum album (European Mistletoe). Chem. Pharm. Bull. 2010, 58, 980–982. [Google Scholar] [CrossRef]
- Pietrzak, W.; Nowak, R.; Gawlik-Dziki, U.; Lemieszek, M.K.; Rzeski, W. LC-ESI-MS/MS Identification of Biologically Active Phenolic Compounds in Mistletoe Berry Extracts from Different Host Trees. Molecules 2017, 22, 624. [Google Scholar] [CrossRef]
- Roman, G.P.; Neagu, E.; Radu, G.L. Antiradical activities of Salvia officinalis and Viscum album L. Extracts concentrated by ultrafiltration process. Acta Sci. Pol. Technol. Aliment 2009, 8, 47–58. [Google Scholar]
- Sokół-Łętowska, A.; Kucharska, A.Z.; Wińska, K.; Szumny, A.; Nawirska-Olszańska, A.; Mizgier, P.; Wyspiańska, D. Composition and antioxidant activity of red fruit liqueurs. Food Chem. 2014, 157, 533–539. [Google Scholar] [CrossRef]
- Serreli, G.; Jerković, I.; Gil, K.A.; Marijanović, Z.; Pacini, V.; Tuberoso, C.I.G. Phenolic Compounds, Volatiles and Antioxidant Capacity of White Myrtle Berry Liqueurs. Plant Foods Hum. Nutr. 2017, 72, 205–210. [Google Scholar] [CrossRef]
- Ochocka, J.R.; Piotrowski, A. Biologically active compounds from European mistletoe (Viscum album L.). Can. J. Plant Pathol. 2002, 24, 21–28. [Google Scholar] [CrossRef]
- Singh, B.N.; Saha, C.; Galun, D.; Upreti, D.K.; Bayry, J.; Kaveri, S.V. European Viscum album: A potent phytotherapeutic agent with multifarious phytochemicals pharmacological properties and clinical evidence. RSC Adv. 2016, 6, 23837–23857. [Google Scholar] [CrossRef]
- Tröger, W.; Galun, D.; Reif, M.; Schumann, A.; Stanković, N.; Milićević, M. Quality of life of patients with advanced pancreatic cancer during treatment with mistletoe: A randomized controlled trial. Deutsches Arzteblatt Int. 2014, 111, 493–502. [Google Scholar]
- Stan, R.; Hangan, A.; Dican, L.; Sevastre, B.; Hanganu, D.; Catoi, C.; Sarpataki, O.; Ionescu, C. Comparative Study Concerning Mistletoe Viscotoxins Antitumor Activity. Acta Biol. Hung. 2013, 64, 279–288. [Google Scholar] [CrossRef]
- Sarpataki, O.; Páll, E.; Sevastre-Berghian, A.C.; Stan, R.L.; Hanganu, D.; Benedec, D.; Hangan, A.C.; Sevastre, B.; Marcus, I. Antiproliferative effect of Viscum album alcoholic extract in vitro. Bull. UASVM Vet. Med. 2015, 72, 170–173. [Google Scholar] [CrossRef]
- Vlad, D.C.; Popescu, R.; Dumitrascu, V.; Cimporescu, A.; Vlad, C.S.; Vágvölgyi, C.; Krisch, J.; Dehelean, C.; Horhat, F.G. Phytocomponents Identification in Mistletoe (Viscum album) Young Leaves and Branches, by GC-MS and Antiproliferative Effect on HEPG2 and MCF7 Cell Lines. Farmacia J. 2016, 64, 82–87. [Google Scholar]
Biska Sample | Type of Production | % Ethanol * (v/v) | TPC (mg GAE/L) | FRAP (mM Trolox) | DPPH ** (% Inhibition) |
---|---|---|---|---|---|
B1 | homemade | 32 | 373.41 ± 1.72 c | 3.08 ± 0.08 d | 57.41 ± 2.35 d |
B2 | homemade | 32 | 246.59 ± 3.12 b | 2.47 ± 0.05 c | 62.28 ± 0.47 d |
B3 | homemade | 39 | 217.32 ± 2.32 b | 1.96 ± 0.07 b | 46.68 ± 0.94 cd |
B4 | homemade | 39 | 127.07 ± 3.67 ab | 0.79 ± 0.04 a | 10.18 ± 0.10 a |
B5 | homemade | 37 | 125.85 ± 2.59 ab | 1.42 ± 0.05 b | 33.30 ± 0.78 c |
B6 | homemade | 35 | 545.37 ± 2.70 d | 3.37 ± 0.11 d | 62.61 ± 0.31 d |
B7 | homemade | 32 | 55.12 ± 3.45 a | 1.00 ± 0.03 b | 17.26 ± 3.44 b |
B8 | commercial | 35 | 49.02 ± 2.77 a | 0.94 ± 0.03 ab | 3.21 ± 2.97 a |
B9 | commercial | 38 | 86.83 ± 10.35 a | 1.06 ± 0.01 b | 2.32 ± 1.10 a |
B10 | commercial | 31 | 210.00 ± 1.72 b | 1.69 ± 0.06 b | 28.10 ± 6.57 bc |
B11 | homemade | 43 | 207.56 ± 5.87 b | 1.86 ± 0.12 b | 45.24 ± 0.16 c |
B12 | homemade | 38 | 216.10 ± 13.80 b | 1.99 ± 0.11 bc | 44.03 ± 9.07 c |
B13 | commercial | 28 | 113.66 ± 6.90 ab | 0.99 ± 0.01 ab | 4.54 ± 0.16 a |
B14 | commercial | 37 | 177.07 ± 5.54 ab | 1.20 ± 0.02 b | 13.72 ± 1.56 a |
B15 | homemade | 40 | 243.41 ± 8.80 b | 2.33 ± 0.19 c | 42.32 ± 2.41 c |
B16 | commercial | 37 | 163.54 ± 4.31 ab | 1.45 ± 0.20 b | 19.83 ± 14.72 b |
B17 | homemade | 40 | 642.80 ± 1.91 e | 5.71 ± 0.11 e | 69.28 ± 1.93 d |
B18 | homemade | 40 | 639.76 ± 6.22 e | 6.10 ± 0.43 f | 52.83 ± 21.96 cd |
B19 | homemade | 46 | 376.95 ± 9.49 c | 3.49 ± 0.09 d | 62.29 ± 2.17 d |
B20 | commercial | 36 | 764.76 ± 6.04 f | 6.61 ± 0.06 f | 70.99 ± 2.90 d |
B21 | homemade | 41 | 358.05 ± 4.49 c | 2.72 ± 0.17 c | 23.90 ± 17.86 b |
B22 | commercial | 39 | 25.51 ± 5.52 a | 0.36 ± 0.26 a | 1.67 ± 0.43 a |
B23 | homemade | 40 | 134.88 ± 5.17 ab | 1.25 ± 0.02 b | 2.48 ± 5.07 a |
B24 | commercial | 37 | 790.98 ± 4.84 f | 6.91 ± 0.15 f | 60.68 ± 7.72 d |
B25 | homemade | 40 | 423.29 ± 8.46 cd | 3.33 ± 0.04 d | 38.21 ± 2.65 c |
B26 | commercial | 40 | 333.66 ± 7.26 c | 2.69 ± 0.21 c | 9.39 ± 0.24 a |
B27 | homemade | 34 | 155.00 ± 7.76 ab | 0.97 ± 0.03 a | 4.27 ± 0.24 a |
B28 | homemade | 35 | 411.10 ± 7.05 cd | 3.00 ± 0.09 d | 31.23 ± 0.72 c |
B29 | homemade | 32 | 298.29 ± 10.35 b | 2.42 ± 0.52 c | 18.94 ± 3.62 b |
B30 | homemade | 24 | 440.98 ± 6.90 cd | 3.26 ± 0.02 d | 41.35 ± 10.62 c |
B31 | homemade | 32 | 308.66 ± 6.38 c | 2.52 ± 0.11 c | 42.23 ± 25.82 c |
B32 | homemade | 40 | 210.49 ± 7.94 b | 1.26 ± 0.02 b | 25.60 ± 3.38 b |
B33 | homemade | 40 | 74.54 ± 4.80 a | 0.28 ± 0.05 a | 17.25 ± 1.43 b |
B34 | homemade | 40 | 423.09 ± 9.86 cd | 3.03 ± 0.08 d | 39.13 ± 4.10 c |
Sample/ Macerate * | Maceration Period (Days) | TPC (mg GAE/L) | TFC (µg RE/mL) | FRAP (mM Trolox) | DPPH ** (% Inhibition) |
---|---|---|---|---|---|
A_20 | 21 | 146.16 ± 2.98 a | 35.59 ± 5.93 a | 0.69 ± 0.00 a | 4.37 ± 1.48 a |
A_40 | 21 | 317.40 ± 19.52 b | 90.96 ± 3.42 b | 1.45 ± 0.01 b | 8.22 ± 1.24 a |
A_80 | 21 | 582.85 ± 10.65 c | 201.13 ± 3.42 c | 2.50 ± 0.04 c | 10.81 ± 1.14 b |
B_20 | 21 | 164.62 ±1.89 a | 54.52 ± 3.53 a | 1.24 ± 0.02 b | 10.44 ± 3.29 b |
B_40 | 21 | 425.53 ± 8.57 b | 156.50 ± 3.21 b | 2.90 ± 0.05 c | 25.04 ± 4.62 c |
B_80 | 28 | 633.93 ± 18.67 c | 253.11 ± 2.98 c | 3.87 ± 0.02 d | 24.30 ± 5.70 c |
C_20 | 21 | 168.52 ± 10.00 a | 75.42 ± 0.85 a | 1.29 ± 0.06 b | 7.70 ± 1.64 a |
C_40 | 28 | 388.13 ± 13.87 b | 155.93 ± 1.47 b | 2.77 ± 0.03 c | 25.11 ± 5.02 c |
C_80 | 28 | 774.31 ± 19.83 d | 332.49 ± 1.76 d | 5.79 ± 0.15 e | 55.11 ± 6.60 d |
D_20 | 28 | 181.37 ± 3.39 a | 136.44 ± 1.47 b | 1.62 ± 0.02 b | 19.04 ± 4.69 c |
D_40 | 28 | 393.41 ± 17.59 b | 217.23 ± 4.35 c | 3.06 ± 0.16 d | 41.93 ± 5.78 d |
D_80 | 28 | 686.50 ± 43.47 c | 425.99 ± 10.60 e | 5.78 ± 0.06 e | 63.19 ± 6.81 d |
Compound Number | Compound Tentative Identification | Mass Spectrometric Data | Concentration (mg/L) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Precursor Ion (m/z) | Fragment Ion (m/z) | Macerates | Biska Samples | ||||||||||
A_80 | B_80 | C_80 | D_80 | B17 | B18 | B22 | B25 | B30 | B34 | ||||
Phenolic acids | |||||||||||||
1 | Protocatechuic acid * | 153 | 109 | 0.64 ± 0.10 a | 1.08 ± 0.12 b | 1.06 ± 0.12 b | 1.37 ± 0.00 b | 0.93 ± 0.07 a | 0.23 ± 0.02 a | 0.28 ± 0.01 a | 0.57 ± 0.08 a | 3.06 ± 0.12 d | 0.31 ± 0.02 a |
2 | Chlorogenic acid * | 353 | 191 | 0.44 ± 0.04 c | 0.13 ± 0.09 a | 0.36 ± 0.09 c | 0.49 ± 0.04 c | 0.06 ± 0.00 a | 0.05 ± 0.00 a | 0.06 ± 0.00 a | 0.12 ± 0.01 a | 0.04 ± 0.00 a | 0.25 ± 0.03 b |
3 | Quinic acid * | 191 | 85 | 355.39 ± 12.83 d | 375.42 ± 15.24 d | 155.55 ± 8.75 b | 145.33 ± 10.05 b | 157.66 ± 12.75 b | 18.60 ± 1.04 a | 251.82 ± 10.65 c | 60.27 ± 3.2 a | 357.92 ± 15.28 d | 108.01 ± 12.74 b |
4 | Gentisic acid | 153 | 109 | 0.27 ± 0.03 a | 0.28 ± 0.02 a | 1.03 ± 0.23 b | 1.41 ± 0.06 b | 0.42 ± 0.03 a | 0.45 ± 0.05 a | 0.29 ± 0.01 a | 0.94 ± 0.08 b | 3.24 ± 0.64 c | 0.31 ± 0.02 a |
5 | Cinnamic acid | 147 | 103 | 1.18 ± 0.16 b | 0.24 ± 0.13 a | 0.15 ± 0.08 a | 1.72 ± 0.07 b | 1.52 ± 0.32 b | 1.50 ± 0.45 b | 1.14 ± 0.23 b | 0.22 ± 0.02 a | 1.49 ± 0.21 b | 1.36 ± 0.18 b |
6 | p-coumaric acid * | 163 | 119 | 0.28 ± 0.00 b | 0.13 ± 0.01 a | 0.27 ± 0.03 b | 0.13 ± 0.01 a | 0.98 ± 0.02 d | 0.23 ± 0.01 b | 0.44 ± 0.02 c | 0.29 ± 0.01 b | 0.32 ± 0.03 b | 0.25 ± 0.02 b |
7 | Syringic acid * | 197 | 182 | 0.29 ± 0.02 b | 0.18 ± 0.01 a | 0.08 ± 0.00 a | 0.12 ± 0.01 a | 0.32 ± 0.01 b | 0.09 ± 0.00 a | 0.32 ± 0.02 b | 0.56 ± 0.01 c | 0.07 ± 0.00 a | 0.18 ± 0.00 a |
8 | Ferulic acid * | 193 | 178 | 0.60 ± 0.07 b | 0.43 ± 0.09 b | 0.51 ± 0.04 b | 0.85 ± 0.03 c | 0.92 ± 0.01 c | 0.26 ± 0.03 a | 0.73 ± 0.00 c | 1.36 ± 0.01 d | 0.44 ± 0.02 b | 0.29 ± 0.01 a |
9 | Gallic acid * | 169 | 125 | 0.48 ± 0.08 b | 0.28 ± 0.03 a | 0.42 ± 0.03 b | 0.87 ± 0.02 b | 0.55 ± 0.08 b | 1.62 ± 0.06 c | 0.50 ± 0.01 b | 1.37 ± 0.05 c | 0.83 ± 0.02 b | 1.11 ± 0.04 c |
10 | p-hydroxybenzoic acid | 137 | 93 | 0.64 ± 0.11 a | 10.07 ± 0.47 d | 1.92 ± 0.04 b | 2.02 ± 0.07 b | 1.00 ± 0.23 b | 0.60 ± 0.04 a | 3.21 ± 0.49 c | 1.15 ± 0.04 b | 1.10 ± 0.05 b | 2.83 ± 0.14 c |
11 | Sinapic acid | 223 | 193 | 8.34 ± 0.18 c | 4.93 ± 0.11 b | 3.22 ± 0.14 a | 3.60 ± 0.12 a | 10.04 ± 0.49 c | 2.65 ± 1.03 a | 9.28 ± 0.36 c | 13.64 ± 1.64 d | 3.98 ± 0.15 b | 5.87 ± 0.28 b |
12 | Caffeic acid * | 179 | 135 | 5.71 ± 0.36 b | 6.53 ± 0.71 b | 5.27 ± 0.31 b | 6.32 ± 0.53 b | 2.58 ± 0.06 a | 14.05 ± 0.72 d | 4.49 ± 0.23 b | 4.30 ± 0.11 b | 8.20 ± 0.88 c | 8.20 ± 0.25 c |
Flavonols | |||||||||||||
13 | Kaempferol 3-O-glucoside | 449 | 287 | 0.09 ± 0.00 a | 0.17 ± 0.0.01 b | 0.08 ± 0.00 a | 0.13 ± 0.08 a | 0.33 ± 0.02 b | 0.10 ± 0.02 a | 0.29 ± 0.02 b | 0.34 ± 0.02 b | 0.07 ± 0.00 a | 0.08 ± 0.00 a |
14 | Quercetin-pentoside | 435 | 303 | 0.19 ± 0.02 b | 0.04 ± 0.00 a | 0.26 ± 0.01 b | 0.07 ± 0.00 a | 0.15 ± 0.01 b | 0.04 ± 0.00 a | 0.34 ± 0.01 c | 0.17 ± 0.00 b | 0.10 ± 0.01 b | 0.03 ± 0.00 a |
15 | Kaempferol | 285 | 285 | 1.00 ± 0.01 a | 1.07 ± 0.04 a | 3.22 ± 0.18 d | 0.75 ± 0.02 a | 1.17 ± 0.07 b | 1.33 ± 0.09 b | 2.31 ± 0.12 c | 0.71 ± 0.02 a | 1.12 ± 0.07 b | 0.84 ± 0.01 a |
16 | Kaempferol-rhamnoside | 433 | 287 | 0.16 ± 0.01 b | 0.02 ± 0.00 a | 0.38 ± 0.01 c | 0.23 ± 0.01 b | 0.31 ± 0.00 c | 0.36 ± 0.05 c | 0.11 ± 0.01 a | 0.20 ± 0.00 b | 0.08 ± 0.00 a | 0.21 ± 0.01 b |
17 | Myricetin * | 319 | 273 | 0.12 ± 0.00 a | 0.21 ± 0.00 b | 0.50 ± 0.04 c | 0.27 ± 0.01 b | 0.34 ± 0.01 c | 0.42 ± 0.02 c | 0.09 ± 0.01 a | 0.10 ± 0.01 a | 0.07 ± 0.00 a | 0.12 ± 0.00 a |
18 | Kaempferol-pentoside | 419 | 287 | 0.25 ± 0.03 b | 0.27 ± 0.02 b | 0.05 ± 0.01 a | 0.28 ± 0.01 b | 0.05 ± 0.00 a | 0.03 ± 0.00 a | 0.06 ± 0.00 a | 0.13 ± 0.01 a | 0.34 ± 0.02 b | 0.23 ± 0.01 b |
19 | Quercetin-acetyl-rutinsoide | 653 | 303 | 0.18 ± 0.01 a | 0.25 ± 0.01 b | 0.22 ± 0.02 ab | 0.22 ± 0.00 ab | 0.30 ± 0.05 b | 0.22 ± 0.00 b | 0.27 ± 0.01 b | 0.29 ± 0.01 b | 0.17 ± 0.01 a | 0.21 ± 0.01 ab |
Flavan-3-ols | |||||||||||||
20 | Epicatechin gallate * | 443 | 291 | 0.31 ± 0.06 b | 0.18 ± 0.02 b | 0.08 ± 0.01 a | 0.08 ± 0.01 a | 0.08 ± 0.01 a | 0.05 ± 0.00 a | 0.13 ± 0.01 a | 0.25 ± 0.02 b | 0.10 ± 0.00 a | 0.14 ± 0.02 a |
21 | Epicatechin * | 291 | 139 | 0.49 ± 0.10 c | 0.45 ± 0.09 c | 0.45 ± 0.08 c | 0.21 ± 0.02 b | 0.76 ± 0.16 d | 0.63 ± 0.11 d | 0.19 ± 0.02 b | 0.04 ± 0.00 a | 0.41 ± 0.07 c | 0.47 ± 0.05 c |
22 | Catechin * | 291 | 139 | 0.83 ± 0.05 b | 1.04 ± 0.23 b | 0.85 ± 0.06 b | 0.95 ± 0.04 b | 2.06 ± 0.72 c | 2.71 ± 0.94 c | 0.67 ± 0.03 ab | 0.77 ± 0.02 b | 0.36 ± 0.02 s | 0.74 ± 0.04 b |
23 | Epigallocatehnin gallate * | 459 | 139 | 0.11 ± 0.01 b | 0.04 ± 0.01 a | 0.05 ± 0.01 a | 0.03 ± 0.00 a | 0.16 ± 0.01 b | 0.06 ± 0.02 a | 0.05 ± 0.01 a | 0.14 ± 0.02 b | 0.05 ± 0.01 a | 0.03 ± 0.00 a |
Flavones | |||||||||||||
24 | Luteolin * | 287 | 135 | 0.04 ± 0.00 a | 0.09 ± 0.01 a | 0.05 ± 0.00 a | 0.07 ± 0.00 a | 0.36 ± 0.01 b | 0.47 ± 0.01 b | 0.39 ± 0.01 b | 0.36 ± 0.02 b | 0.38 ± 0.00 b | 0.37 ± 0.02 b |
25 | Chrysoeriol | 301 | 229 | 0.48 ± 0.05 b | 0.34 ± 0.03 a | 0.16 ± 0.01 a | 0.20 ± 0.02 a | 0.80 ± 0.03 b | 0.30 ± 0.02 a | 0.37 ± 0.02 a | 1.06 ± 0.07 b | 0.23 ± 0.01 a | 0.41 ± 0.03 a |
26 | Apigenin * | 271 | 153 | 0.15 ± 0.01 a | 0.18 ± 0.02 a | 0.32 ± 0.03 b | 0.29 ± 0.03 b | 0.31 ± 0.02 b | 0.28 ± 0.01 b | 0.30 ± 0.02 b | 0.31 ± 0.02 b | 0.11 ± 0.01 a | 0.34 ± 0.03 b |
27 | Apigenin 7-O-glucoside | 433 | 271 | 0.14 ± 0.02 a | 0.14 ± 0.02 a | 0.19 ± 0.01 a | 0.15 ± 0.01 a | 0.88 ± 0.05 c | 0.32 ± 0.03 b | 0.26 ± 0.03 ab | 1.67 ± 0.12 d | 0.24 ± 0.03 a | 1.63 ± 0.10 d |
Flavanones | |||||||||||||
28 | Naringenin | 271 | 151 | 0.67 ± 0.09 a | 0.75 ± 0.10 a | 0.72 ± 0.08 a | 0.72 ± 0.09 a | 0.87 ± 0.08 a | 0.64 ± 0.09 a | 1.16 ± 0.15 b | 2.12 ± 0.32 c | 0.64 ± 0.10 a | 0.64 ± 0.10 a |
Isoflavones | |||||||||||||
29 | Genistein | 269 | 133 | 0.48 ± 0.12 b | 0.71 ± 0.14 c | 0.20 ± 0.02 a | 0.19 ± 0.01 a | 0.86 ± 0.09 c | 0.23 ± 0.02 a | 0.72 ± 0.10 c | 1.41 ± 0.13 d | 0.50 ± 0.10 b | 0.53 ± 0.10 b |
Coumarins | |||||||||||||
30 | Scopoletin * | 191 | 176 | 5.92 ± 1.06 c | 2.96 ± 0.34 b | 1.88 ± 0.54 a | 2.15 ± 0.37 a | 6.82 ± 1.36 c | 2.15 ± 0.046 a | 4.57 ± 0.66 c | 8.79 ± 1.77 d | 3.05 ± 0.61 b | 1.61 ± 0.68 a |
31 | Umbelliferone | 161 | 133 | 0.27 ± 0.05 ab | 0.22 ± 0.03 a | 0.13 ± 0.02 a | 0.18 ± 0.04 a | 0.44 ± 0.09 b | 0.22 ± 0.03 a | 0.33 ± 0.04 b | 0.65 ± 0.06 c | 0.20 ± 0.05 a | 0.13 ± 0.05 a |
32 | Esculetin * | 177 | 133 | 2.09 ± 0.83 a | 3.63 ± 0.94 b | 3.71 ± 0.73 b | 4.84 ± 0.56 bc | 3.19 ± 0.21 b | 7.23 ± 1.93 c | 4.01 ± 0.45 b | 4.24 ± 0.27 bc | 3.66 ± 0.45 b | 2.94 ± 0.33 ab |
Total UPLC/ESI-MS2 identified compounds (mg/L) | 388.20 | 412.46 | 183.36 | 176.26 | 197.21 | 58.12 | 289.19 | 108.57 | 392.55 | 140.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanousek Čiča, K.; Stanzer, D.; Zorić, Z.; Radošević, K.; Radeka, S.; Lešić, T.; Derewiaka, D.; Mrvčić, J. Phenolic Compound Characterization and Biological Activities of Mistletoe (Viscum album L.) Ethanol Macerates Used in Herbal Spirit Production. Beverages 2024, 10, 41. https://doi.org/10.3390/beverages10020041
Hanousek Čiča K, Stanzer D, Zorić Z, Radošević K, Radeka S, Lešić T, Derewiaka D, Mrvčić J. Phenolic Compound Characterization and Biological Activities of Mistletoe (Viscum album L.) Ethanol Macerates Used in Herbal Spirit Production. Beverages. 2024; 10(2):41. https://doi.org/10.3390/beverages10020041
Chicago/Turabian StyleHanousek Čiča, Karla, Damir Stanzer, Zoran Zorić, Kristina Radošević, Sanja Radeka, Tina Lešić, Dorota Derewiaka, and Jasna Mrvčić. 2024. "Phenolic Compound Characterization and Biological Activities of Mistletoe (Viscum album L.) Ethanol Macerates Used in Herbal Spirit Production" Beverages 10, no. 2: 41. https://doi.org/10.3390/beverages10020041
APA StyleHanousek Čiča, K., Stanzer, D., Zorić, Z., Radošević, K., Radeka, S., Lešić, T., Derewiaka, D., & Mrvčić, J. (2024). Phenolic Compound Characterization and Biological Activities of Mistletoe (Viscum album L.) Ethanol Macerates Used in Herbal Spirit Production. Beverages, 10(2), 41. https://doi.org/10.3390/beverages10020041